Timing Analysis with Clock Skew

David Harris, Mark Horowitz\(^1\), & Dean Liu\(^1\)

David_Harris@hmc.edu, \{horowitz, dliu\}@vlsi.stanford.edu

March, 1999

Harvey Mudd College
Claremont, CA

\(^1\) (with Stanford University, Stanford, CA)
Outline

- Introduction
- Timing Analysis Formulation
- Timing Analysis with Clock Skew
- Timing Verification Algorithm
- Results
- Conclusion
Introduction

Clock skew, as a fraction of the cycle time, is a growing problem for fast chips
- Fewer gate delays per cycle
- Poor transistor length, threshold tolerances
- Larger clock loads
- Bigger dice

The designer may:
- Reduce skew
 Very hard; clock networks are already well optimized
- Tolerate skew
 Flip-flops and traditional domino circuits reduce cycle time by skew
 Latches and skew-tolerant domino can hide modest amounts of skew
- Only budget necessary skews
 Skew between nearby latches is often much less than skew across die
 Need better timing analysis for different skews between different latches
Timing Analysis Formulation

Build on Sakallah, Mudge, Olukotun (SMO) analysis of latch-based systems.

System contains:
- k clocks $C = \{\phi_1, \phi_2, \ldots, \phi_k\}$
- l latches $L = \{L_1, L_2, \ldots, L_l\}$
Clock Waveforms

T_c: cycle time
T_{ϕ_i}: duration for which ϕ_i is high
s_{ϕ_i}: start time, relative to beginning of common clock, of ϕ_i being high
$S_{\phi_i \phi_j}$: phase shift from ϕ_i to next occurrence of ϕ_j. Used to translate times relative to particular clock phases.
Latch Variables

p_i: clock phase controlling latch i

Δ_{DC_i}: setup time for latch i

Δ_{DQ_i}: propagation delay through latch i

Assume:

$T_c = 1000$ ps

$\Delta_{DQ} = 80$ ps

Δ_{ij}: propagation delay through logic between latches i and j

A_i: arrival time at latch i, relative to start of p_i

D_i: departure time from latch i

Q_i: output time of latch i
Timing Constraints

Latch Departure:
\[\forall i \in L \quad D_i = \max(0, A_i) \]

Latch Output:
\[\forall i \in L \quad Q_i = D_i + \Delta_{DQ_i} \]

Latch Arrival:
\[\forall i, j \in L \quad A_i = \max(Q_j + \Delta_{ji} + S_{p_jp_i}) \]

Propagation Constraints:
\[\forall i, j \in L \quad D_i = \max(0, \max(D_j + \Delta_{DQ_i} + \Delta_{ji} + S_{p_jp_i})) \]

Setup Constraints:
\[\forall i \in L \quad D_i + \Delta_{DC_i} \leq T_{p_i} \]
Timing Analysis with Clock Skew

Clock skew is the difference between nominal and actual interarrival times of a pair of clocks.

Enlarge set of physical clocks C to model skew between nominally identical clocks.

Example:

$$C = \{ \phi_{1a}, \phi_{2a}, \phi_{1b}, \phi_{2b} \}$$

D_{skew}^{local} within domains

D_{skew}^{global} between domains
Single Skew Formulation

Easy and conservative to budget global skew everywhere

Effectively increases setup time at each latch

Setup Constraints:

\[\forall i \in L \quad D_i + \Delta DC_i + t_{skew}^{global} \leq T_{pi} \]

Too conservative for high-speed designs with big global skews
Exact Skew Budgets

How much skew must be budgeted?

- \(L_3 \) to \(L_4 \): local skew
- \(L_7 \) to \(L_4 \): global skew
- \(L_5 \) to \(L_4 \) through transparent \(L_6, L_7 \): local skew

Must track launching clock to determine skew budget
Exact Skew Formulation

Define arrival and departure times with respect to launching clocks:

\[A_i^c : \text{arrival time at latch } i \text{ for path launched by clock } c \]
\[D_i^c : \text{departure time from latch } i \text{ for path launched by clock } c \]
\[\phi_i, \phi_j : \text{skew between clocks } \phi_i, \phi_j \]
Negative Departure Times

Must now allow negative departure times with respect to other clocks:

- Path from L_5 to L_7 is earlier than L_6 to L_7, but sees more skew, miss setup
- Reaches L_6 at -50 ps, but L_6 may be transparent by then because of skew

Departure times w.r.t. latch’s own clock still must be nonnegative
Exact Constraints with Skew:

Propagation Constraints (single skew):

\[\forall i, j \in L \quad D_i = \max(0, \max(D_j + \Delta_{DQ_j} + \Delta_{ji} + S_{p_jp_i})) \]

Setup Constraints (single skew):

\[\forall i \in L \quad D_i + \Delta_{DC_i} + t^{global}_{skew} \leq T_{p_i} \]

Propagation Constraints (exact skew):

\[\forall i, j \in L, c \in C \quad \text{if } c = p_i \]
\[\text{then } D_i^c = \max(0, \max(D_j^c + \Delta_{DQ_j} + \Delta_{ji} + S_{p_jp_i})) \]
\[\text{else } D_i^c = \max(D_j^c + \Delta_{DQ_j} + \Delta_{ji} + S_{p_jp_i}) \]

Setup Constraints (exact skew):

\[\forall i \in L, c \in C \quad D_i^c + \Delta_{DC_i} + t^{c,p_i}_{skew} \leq T_{p_i} \]
Verification Algorithm

Check constraints with generalized Szymanski-Shenoy relaxation algorithm

1. For each latch i:

 2. $D_i^{p_i} = 0$; $D_i^{max} = 0$; $c_i^{max} = p_i$ // initialize departure times

 3. Enqueue $D_i^{p_i}$

4. While queue is not empty

5. Dequeue D_j^c

6. For each latch i in fanout of j

7. $A = D_j^c + \Delta_{DQi} + \Delta_{ji} + S_{p_ip_i}$ // calculate arrival time

8. If $(A > D_i^c)$ AND $(A + \Delta_{DCi} + t_{skew}^{c,p_i} > D_i^{max})$ // is it possibly critical?

9. If $(A + \Delta_{DCi} + t_{skew}^{c,p_i} > T_{p_i})$ // does it violate setup time?

10. Report setup time violation

11. Else

12. $D_i^c = A$; Enqueue D_i^c // keep following path

13. If $(A > D_i^{max})$ $D_i^{max} = A$; $c_i^{max} = c$
Results

Analyzed MAGIC: Memory & General Interconnect Controller of FLASH supercomputer

Assume \(t_{skew}^{local} = 250\text{ps} \) \(t_{skew}^{global} = 500\text{ps} \)

Model A:
- As designed, from MAGIC .sdf database

Model B:
- Flops converted to latch pairs, logic balanced between pairs

<table>
<thead>
<tr>
<th></th>
<th>Model A</th>
<th>Model B</th>
</tr>
</thead>
<tbody>
<tr>
<td># Flip-Flops</td>
<td>10559</td>
<td>0</td>
</tr>
<tr>
<td># Latches</td>
<td>1819</td>
<td>22937</td>
</tr>
<tr>
<td>Single Skew (T_c)</td>
<td>9.43 ns</td>
<td>8.05 ns</td>
</tr>
<tr>
<td># Latch Departures Checked</td>
<td>3866</td>
<td>24995</td>
</tr>
<tr>
<td>Exact Skew (T_c)</td>
<td>9.38</td>
<td>7.96</td>
</tr>
<tr>
<td># Latch Departures Checked</td>
<td>4009</td>
<td>25328</td>
</tr>
</tbody>
</table>

CPU time < 1 second in all cases
Conclusions

Global skews will be too large for GHz + systems
 • Use skew-tolerant circuit techniques such as latches
 • Take advantage of smaller local skews where possible

Requires support of timing analyzer
 • Budget appropriate skew at each receiver
 • Track departure times with respect to launching clocks
 • Allow negative departure times with respect to other clocks

Leads to explosion in number of timing constraints. However...
 • Most are not tight because most critical paths do not borrow time across many latches
 • Relaxation algorithm automatically prunes loose constraints
 • Very small increase in runtime

Expect synchronous systems well beyond 1 GHz