
Clock skew is an increasing concern for high speed cir-
cuit designers. Circuit designers use transparent latches
and skew-tolerant domino circuits to hide clock skew
from the critical path and take advantage of clock
domains to budget less skew between nearby elements
than across the entire die. Unfortunately, current timing
analysis algorithms do not handle clock skew. This
paper extends the latch-based timing analysis of Sakal-
lah, Mudge, and Olukotun to include different amounts
of clock skew between different elements and presents
an algorithm for verifying the constraints. It also offers a
simple formulation of min-delay analysis including clock
skew. With the less conservative skew budgets enabled
by better timing analysis, we expect clocked systems will
remain viable to multi-GHz frequencies.
Keywords: timing analysis, transparent latches, clock skew

1. Introduction
Clock skew is an increasing concern for high speed circuit
designers. Cycle times have been dramatically shrinking,
driven both by faster raw gate delays and by more
aggressive designs using fewer gates per cycle [2].
Unfortunately, clock skew, the difference between actual
and nominal interarrival times of a pair of clock signals,
depends on die size, process and environmental variations,
wire RC delay, and clock loading, all of which have been
increasing. Therefore, designers have been forced to spend
more power and area on the clock network and expect that
clock skew as a fraction of cycle time will increase.

In systems built with normal flip-flops or traditional domino
design techniques [15], clock skew directly reduces the
amount of the cycle time available for useful computation.
This is too much overhead for aggressive designs, so better
circuit techniques which tolerate clock skew are gaining
popularity. In systems built from transparent latches or
skew-tolerant domino, reasonable amounts of clock skew
have no impact on cycle time as long as data arrives when
the latch is transparent or domino gate is evaluating. As
clock frequencies reach the multi-GHz regime, skew from
one corner of the die to another may still be difficult to
tolerate. Fortunately, such fast systems can be divided into
clock domains such that less clock skew must be budgeted
between nearby gates than across the entire die [2].

Timing analysis addresses the question of whether a
particular circuit will meet a timing specification. The
analysis must check maximum delays to verify that a circuit
will meet setup times at the desired frequency, and
minimum delays to verify that hold times are satisfied. This

paper describes how to extend a traditional formulation of
timing analysis to handle clock skew, including different
budgets for skew between different regions of a system.

We begin by reviewing previous work in Section 2,
particularly the formulation of latch-based timing analysis
from Sakallah et al. [9]. We build upon this formulation in
Section 3 to analyze systems with clock skew. We can
easily analyze systems with a single clock domain by
adding worst case skew to the setup time of each latch. We
then solve the more interesting case which allows different
amounts of clock skew between different latches by
introducing a vector of arrival times initiated by various
clock edges. This leads to an explosion of timing
constraints, but most are not tight. In Section 4, we present
an extension of the Szymanski-Shenoy timing verification
algorithm [11] which prunes the irrelevant constraints. Now
that we have solved the problem of max-delay, we show a
simple solution to min-delay analysis in Section 5. Section 6
evaluates the relaxation algorithm on a large example,
showing that increase in complexity is small. Finally,
Section 7 summarizes the work and concludes the paper.

2. Background
We begin by reviewing some of the key developments in
timing analysis, then look more closely at the formulation
presented by Sakallah, Mudge, and Olukotun, which
handles level-sensitive latches. Section 3 will build upon
this formulation to analyze systems with clock skew.

2.1 Previous Work
Early efforts in timing analysis, surveyed in [4], only
considered edge-triggered flip-flops. Thus they only had to
analyze the combinational logic blocks because the cycle
time is set by the longest combinational path between
registers. Netlist-level timing analyzers, such as CRYSTAL
[8] and TV [6], used switch-level RC models to compute
delay through the blocks.

Many circuits use level-sensitive latches instead of flip-
flops. Latches complicate the analysis because they allow
time borrowing: a signal which reaches the latch input while
the latch is transparent does not have to wait for a clock
edge, but rather can immediately propagate through the
latch and be used in the next phase of logic. Analysis of
systems with latches was long considered a difficult
problem [8] and various netlist-level timing analyzers
applied heuristics for latch timing, but eventually Unger

Timing Analysis with Clock Skew

David Harris
Harvey Mudd College

301 E. Twelfth St.
Claremont, CA 91711

(909) 607-3623
David_Harris@hmc.edu

Mark Horowitz
Stanford University
Gates Room 306

Stanford, CA 94305
(650) 725-3707

horowitz@vlsi.stanford.edu

Dean Liu
Stanford University
Gates Room 320

Stanford, CA 94305
(650) 725-3657

dliu@stanford.edu

[14] developed a complete set of timing constraints for two-
phase clocking with level-sensitive latches. LEADOUT
[12], by Szymanski, checked timing equations to properly
handle multiphase clocking and level-sensitive latches.
Champernowne et al. [2] developed a set of latch to latch
timing rules which allow a hierarchy of clock skews but did
not permit time borrowing.

Sakallah, Mudge, and Olukotun [9] provide a very elegant
formulation of the timing constraints for latch-based
systems. They show that maximum delay constraints can be
expressed with a system of inequalities. They then use a
linear programming algorithm to minimize the cycle time
and to determine an optimal clock schedule. Since the clock
schedule is usually fixed and the user is interested in
verifying that the circuits can operate at a target frequency,
more efficient algorithms can be used to process the
constraints, such as the relaxation approach suggested by
Szymanski and Shenoy [11], [10]. Moreover, many of the
constraints in the formulation may be redundant, so graph-
based techniques proposed by Szymanski [13] can
determine the relevant constraints. Ishii et al [5] offer yet
another algorithm for verifying the cycle time of two-phase
systems. Burks et al. [1] express timing analysis in terms of
critical paths and support a limited model of clock skew.

2.2 Timing Analysis Formulation
The simplicity of the latch-based timing analysis
formulation from Sakallah et al. [9] stems from a careful
choice of time variables describing data inputs and outputs
of the latches. In this paper, we consider only D-type latches
with data in, data out, and clock terminals. It is easy to
extend the model to other clocked elements such as flip-
flops and domino gates.

A system contains a set of clocks C={φ1, φ2, ..., φk} with a
common cycle time and a set of latches L={L1, L2, ..., Ll}.
Without loss of generality, assume all clock phases are
active high; i.e., latches are transparent when the controlling
phase is high. Define the following clock variables which
are illustrated in Figure 1 for a two-phase system with 50%
duty cycle clocks.

Figure 1. Two Phase Clock Waveforms

• : clock cycle time, or period
• : duration for which φi is high
• : start time, relative to the beginning of the common

clock cycle, of φi being high
• : a phase shift operator describing the difference in

start time from φi to the next occurrence of φj.
, where W counts cycle crossings

between the clocks. Note that = -Tc because it is the
shift between subsequent rising edges of clock phase φi.

For each of the l latches in the system, define the following
latch timing variables and parameters:

• pi: clock phase used to control latch i
• Ai: arrival time, relative to the start time of pi, of a valid

data signal at the input to latch i
• Di: departure time, relative to the start time of pi, at

which the signal available at the data input of latch i
starts to propagate through the latch

• Qi: output time, relative to the start time of pi, at which
the signal at the data output of latch i starts to propagate
through the succeeding stages of combinational logic

• : setup time for latch i required between the data
input and the trailing edge of the clock input

• : maximum propagation delay of latch i from the
data input to the data output while the clock input is high

Finally, define the propagation delays between latch pairs:

• : maximum propagation delay through combinational
logic between latch i and latch j. If there are no combina-
tional paths from latch i to latch j, effectively
eliminates the path from consideration.

Using these definitions, Sakallah et al. express constraints
on the propagation of signals between latches and the setup
of signals before the sampling edges of the latches.

Setup time constraints require that a signal arrive at a latch
some setup time before the sampling clock edge. Thus:

(1)

The propagation constraints relate the departure, output, and
arrival times of latches. Data departs a latch input when the
data arrives and the latch is transparent:

(2)

The latch output becomes valid some latch propagation
delay after data departs the input:

(3)

Finally, the arrival time at a latch is the latest of the arrival
times from data leaving other latches and propagating
through combinational logic to the latch of interest. Notice
that the phase shift operator S translates between relative
times of the launching and receiving latch clocks.

(4)

Observe that both Di and Qi will always be nonnegative
quantities because a signal may not begin propagating
through a latch until the clock has risen. Ai is unrestricted in
sign because the input data may arrive before or after the
latch clock. Assuming that clock pulse widths Ti are always
greater than latch setup times and eliminating Q and
A, we can rewrite these constraints exclusively in terms of

φ1

φ2

0 TcTφ1 = Tc/2

Tφ2 = Tc/2
sφ1 = 0

Sφ1φ2 = Sφ2φ1 = -Tc/2

sφ2 = Tc/2

Tc
Tφi

sφi

Sφiφj

Sφi φj
sφi

sφj
WTc+()–≡

Sφiφi

∆DCi

∆DQi

∆ ij

∆ij ∞–≡

i L∈∀ Ai ∆DCi Tpi
≤+

i L∈∀ Di max 0 A, i()=

i L∈∀ Qi Di ∆DQi+=

i j, L∈∀ A i max Qj ∆ji Spjpi
+ +()=

∆DCi

signal departure times and the clock parameters:

L1. Setup Constraints:

(5)

L2. Propagation Constraints:

(6)

Note that when there is no combinational path between
latches i and j, and Equation 6 is trivially satisfied.

The minimum cycle time can be computed by solving an
optimization problem of minimizing Tc subject to latch
constraints L1 and L2. Often the designer only cares
whether a system can operate at a specified frequency,
rather than knowing the minimum possible cycle time. This
simpler timing verification problem can be solved more
efficiently with relaxation algorithms [11], [1].

3. Timing Analysis with Clock Skew
Sakallah’s formulation discussed in the previous section
does not account for clock skew. Since clock skews are
becoming increasingly important, we now examine how to
include skew in timing analysis. We first describe a simple
modification to the setup constraints which account for a
single clock skew budget across the chip. Unfortunately,
this is very pessimistic because most clocked elements see
much less than worst case skew. Therefore, we develop an
exact analysis allowing for different skews between each
pair of clocks. This leads to an explosion in the number of
timing constraints. In the next section, we will see that most
constraints are unnecessary and will present an algorithm to
dynamically prune such constraints.

3.1 Clock Skew
We have defined clock variables describing the nominal
timing relationships between various clocks. In a real
circuit, the timing relationships may be slightly different
due to clock skew, which includes both systematic and
random or time-varying components. Circuit designers can
manage systematic clock skews by appropriately
partitioning logic between clocked elements. Timing
analyzers also easily handle systematic skews by defining
multiple clocks which include the predicted skew. However,
random clock skew is a serious problem because a latch
input must be ready by the earliest time a clocked element
may sample, yet the latch output may not be valid until the
latest time the clocked element activates. This uncertainty
must be budgeted in each path.

To model clock skew, we use a large set of physical clock
signals, C, even when there are only a small number of
distinct logical clock phases. Conceptually, it is easy to
envision a unique clock for each latch, but one can quickly
group clocks that have very small skew relative to each
other into one clock to reduce the number of clocks. For
example, the system in Figure 2 shows a microprocessor
core with the ALU and data cache in separate clock

domains. It uses clocks C={φ1a, φ1b, φ2a, φ2b} where φ1a
and φ1b are nominally identical but located in different parts
of the chip and subject to skew. Only a small exists
between clocks in the same domain, but the larger
may occur between clocks in different domains.

Figure 2. Example circuit with clock domains

For any two clocks φi and φj, the skew between particular
edges of the two clocks is the absolute value of the
difference between the nominal and actual interarrival times
measured at any latches served by the clocks. For design
purposes, it is most useful to know an upper bound on the
skew between two clocks, , which is the maximum
value of skew between any two edges of the clocks. Notice
that skew is the positive difference between the two clock
positions, rather than being plus or minus from a reference
point. When using this information in a design, we assume
the worst; i.e. for setup time checks, that the receiving clock
is skewed early relative to the launching clock. This model
of skew is more powerful than the min/max skew model of
[1] because it accounts for correlations and lower skew
between nearby clocks sharing parts of the distribution
network. If skews are not symmetrical around the nominal
interarrival times, we can define skew as a range rather than
an absolute value.

3.2 Single Skew Formulation
The simplest and most conservative way to accommodate
clock skew in timing analysis is to use a single upper bound
on clock skew. Suppose that we assume a worst case
amount of clock skew, , may exist between any two
clocked elements on an integrated circuit. Such skew can be
accommodated in the analysis by modifying the setup time
constraint [11]. Data must setup before the falling edge of
the clock, yet there may be skew between launching and
receiving elements such that the data was launched off a late
clock edge and is sampled on an early edge. Therefore, we
must add clock skew to the effective setup time.
Propagation constraints are unchanged.

L1S. Setup Constraints with Single Skew:

(7)

i L∈∀ Di ∆DCi Tpi
≤+

i j, L∈∀ Di max 0 max Dj ∆DQj ∆ji Spjpi
+ + +(),()=

∆ij ∞–≡

tskew
local

tskew
global

∆4

∆5

∆6

∆7

φ1a

φ2a

φ1b

φ2b

φ2a

ALU (clock domain a) Data Cache (clock domain b)

D4

D5

D3

D6

D7

L3

L4

L5

L6

L7

tskew
φi φj,

tskew
global

i L∈∀ Di ∆DCi tskew
global Tpi

≤+ +

3.3 Exact Skew Formulation
In a real clock distribution system, clock skews between
adjacent elements are typically much less than skews
between widely separated elements. We can avoid
budgeting global skew in all paths by considering the actual
launching and receiving elements and only budgeting the
possible skew which exists between the elements.

Unfortunately, the transparency of latches makes this a
complex problem. Consider the setup time on a signal
arriving at latch L4 in Figure 2. How much skew must be
budgeted in the setup time? The answer depends on the
skew between the clock which originally launched the
signal and φ1a, the clock which is receiving the signal. For
example, the signal might have been launched from L7 on
the rising edge of φ2b, in which case global skew must be
budgeted. On the other hand, the signal might have been
launched from L5 on the rising edge of φ2a, then propagated
through L6 and L7 while both latches were transparent. In
such a case, only local skew must be budgeted because the
launching and receiving clocks are in the same local domain
despite the fact that the signal propagated through
transparent elements in a different domain. We see that
exact timing analysis with varying amounts of skew
between elements must track not only the accumulated
delay to each element, but also the clock of the launching
element.

To track both accumulated delay and launching clock, we
can define a vector of arrival and departure times at each
latch, with one dimension per clock in the system. These
times are still nominal, not including skew.

• : arrival time at latch i, relative to the beginning of pi,
of a valid data signal launched by clock c

• : departure time, relative to the beginning of pi, at
which the signal launched by clock c and available at the
data input of latch i starts to propagate through the latch

The setup constraints must budget the skew between
the launching clock c and the sampling clock pi:

(8)

The arrival time at latch i for a path launched by clock c
depends on the propagation delay and departure times from
other latches for signals also launched by clock c:

(9)

If a latch is transparent when its input arrives, data should
depart the latch at the same time it arrives and with respect
to the same launching clock. If a latch is opaque when its
input arrives, the path from the launching clock will never
constrain timing and a new path should be started departing
at time 0, launched by the latch’s clock. Because of skew
between the launching and receiving clocks, the receiving
latch may be transparent even if the input arrives at a
slightly negative time. To model this effect, we allow

departure times with respect to a clock other than that which
controls the latch to be negative, equal to the arrival times.
Departure times with respect to the latch’s own clock are
strictly nonnegative. To achieve this, we define an identity
operator on a pair of clocks φ1 and φ2 which is the
minimum departure time for a signal launched by one clock
and received by the other: 0 if φ1 = φ2 and negative infinity
if the clocks are different.

These setup, nonnegativity, and propagation constraints are
summarized below. Notice that the number of constraints is
proportional to the number of distinct clocks in the system
and is k times greater than the skewless formulation. Also,
notice that the constraints are orthogonal; there is no mixing
of constraints from different launching clocks.

L1E. Setup Constraints with Exact Skew:

(10)

L2E. Propagation Constraints with Exact Skew:

(11)

An example may help explain negative departure times.
Consider a path launched from L6 in Figure 2 on the rising
edge of φ1b: = 0. Let the cycle time Tc be 10 units, and

 be 1. Therefore, φ2b may transition up to one unit of
time earlier or later than nominal, relative to φ1b, as shown
in Figure 3. Also, suppose the latch propagation delay is 0,
so . If ∆7 is less than 4, the signal arrives at L7
before the latch becomes transparent, even under worst case
clock skew. If ∆7 is between 4 and 6 units, corresponding to

 in the range of -1 to 1, the signal arrives at L7 when the
latch might be transparent, depending on the actual skew
between φ1b and φ2b. If ∆7 is between 6 and 9 units, the
signal arrives at L7 when the latch is definitely transparent.
Since the signal may depart the latch at the same time as it
arrives when the latch is transparent, the departure time

 may physically be as early as -1. We allow the
departure time to be arbitrarily negative; if it is more
negative than -1, it will always be less critical than the path
departing L7 on the rising edge of φ2b. Departure times must
be nonnegative with respect to the clock controlling the
latch; for example, .

Figure 3. Clock waveforms including local skew

Ai
c

Di
c

tskew
c pi,

i L c C∈,∈∀ Di
c ∆DCi tskew

c pi,
Tpi

≤+ +

i j, L c C∈,∈∀ A i
c max Dj

c ∆DQj ∆ji Spjpi
+ + +()=

Iφ1 φ2,

i L c C∈,∈∀ Di
c ∆DCi tskew

c p i,
Tpi

≤+ +

i j, L c C∈,∈∀ Di
c max Ic pi,

max Dj
c ∆DQj ∆ji Spjpi

+ + +()

,(

)

=

D6
φ1b

tskew
φ1b φ2b,

A7
φ1b ∆7 5–=

A7
φ1b

D7
φ1b

D7
φ2b 0≥

φ1b

φ2b

0 105

5

1 1

4. A Verification Algorithm
We extend the Szymanski-Shenoy timing verification
procedure to handle arbitrary skews between elements and
prune unnecessary constraints:

1 For each latch i:

2 ; ;

3 Enqueue

4 While queue is not empty

5 Dequeue

6 For each latch i in fanout of j

7

8 If AND

9 If

10 Report setup time violation

11 Else

12 ; Enqueue

13 If ;

This algorithm initializes the departure times from each
latch with respect to its own clock to be zero. It also
initializes a variable to track the latest departure time from
the latch with respect to any clock. The algorithm then
follows paths from each latch to its successors and
computes the arrival time at the successors with respect to
the launching clock. If this time is later than the latest
departure time with respect to that clock which has been
found so far at the receiving latch, the path may be
important. However, if the arrival is earlier than the latest
departure from the latch by more than the skew between the
launching clock of the current path and the launching clock
which determined the latest departure, this arrival will not
cause any setup time violations unless the later departure
also caused setup violations. Therefore, it can be ignored.
This can be thought of as dynamically pruning constraints
that will not be tight.

The algorithm performs a depth first path search if elements
are enqueued at the head of the queue and a breadth first
search if elements are enqueued at the tail. Breadth first is
likely to be faster because it can prune paths earlier.

The algorithm is very similar to one which assumes no
clock skew, but may take longer because it may search
multiple paths through the same latch. This occurs when
paths originating at different latches all arrive at a common
latch at nearly the same time. Fortunately real systems tend
to have a relatively small number of critical paths passing
through any given latch so the runtime is likely to increase
by much less than the number of constraints.

5. Min-Delay
Timing analyzers must not only compute long paths, but

also short paths. Indeed, short paths are more serious
because a chip can operate at reduced clock frequency if
paths are longer than predicted, but will not operate at any
frequency if min-delay constraints are not met. Such min-
delay analysis checks that data launched from one latch or
flip-flop will not propagate through logic so quickly as to
violate the hold time of the next clocked element. Therefore,
min-delay analysis only must check from one element to its
successor; this is much easier than cycle time analysis in
which a path may borrow time through many transparent
latches.

To avoid min-delay failure, also known as “race-through” or
“double-clocking,” data departing one element must
encounter enough delay that it does not violate the hold time
of the next element. The earliest data could possibly depart
an element is at time 0 with respect to the element’s local
clock; this earliest time is guaranteed to occur if the chip is
run at reduced frequency where no time borrowing occurs.
We define hold time and minimum propagation delays:

• : hold time for latch i required between the falling
edge of the clock and the time data changes again.

• : minimum propagation delay of latch i from the
data input to the data output while the clock is high.

• : minimum propagation delay through combinational
logic between latch i and latch j. If there are no combina-
tional paths from latch i to latch j, .

Equation 12 describes this min-delay constraint between
adjacent latches. A circuit is safe from race-through if, for
every consecutive pair of latches, data from the earlier
element cannot arrive at the later element until some hold
time after the later element sampled. In the worst case, data
departs one element at time zero and arrives at the next after
the minimum propagation delay through the element and
combinational logic adjusted by the phase shift operator to
the receiver’s clock. Data must not arrive at the receiver
until a hold time after its sampling edge of the previous
cycle; clock skew between the launching and receiving
clocks effectively increases the hold time.

(12)

Good estimates of the skew between launching and
receiving clocks makes guaranteeing min-delay constraints
easier than when worst case skew is assumed even between
nearby elements. Min-delay can be checked by using
standard algorithms such as those in [11] with an effective
hold time equal to the sum of the actual hold time and skew.

6. Results
To evaluate the costs and benefits of the exact formulation,
we analyzed a timing model of MAGIC, the Memory and
General Interconnect Controller of the FLASH
supercomputer [7], implemented in a 0.6µ process. After
trimming false paths, we found 1819 latches and 10559 flip-
flops connected by 593153 paths (Model A). To obtain an
entirely latch-based design, we replaced each flip-flop with

Di
pi 0= Di

max 0= ci
max pi=

Di
pi

Dj
c

A Dj
c ∆DQj ∆ji Spjpi

+ + +=

A Di
c>() A tskew

ci
max c,

Di
max>+

A ∆DCi tskew
c pi,

Tpi
>+ +

Di
c A= Di

c

A Di
max>() Di

max A= ci
max c=

∆CDi

δDQi

δij

δij ∞≡

i j L∈,∀ δDQj δji Spjpi
Tpi

∆CDi tskew
pi pj,

Tc–+ +≥+ +

a pair of latches and divided the path delay between the two
latches, obtaining a system with 22937 latches (Model B).
The chip was partitioned into ten units, each a local clock
domain. We assumed 500 ps of global skew and 250 ps of
local skew.

Table 1 shows the minimum cycle times achievable and
number of latch departures enqueued in each run, a measure
of the analysis cost. Model B is uniformly faster than Model
A because latches allows the system to borrow time across
cycles. The exact analysis shows that the system can run 50-
90 ps faster than a single skew analysis conservatively
predicts. Each departure is enqueued at least once when its
departure time is initialized to 0. Paths borrowing time
enqueue later departure times. The exact analysis also
enqueues more latch departures because potentially critical
paths from multiple launching clocks may pass through a
single latch. The exact analysis enqueues 143 more than the
single skew analysis in Model A and 333 more in Model B.
These differences are only a few percent of the total number
of departures, indicating that pruning makes the exact
analysis only slightly more expensive than the single skew
approximation. In all cases, the CPU time is under a second.

7. Conclusion
We believe that systems operating in the multi-GHz regime
will be unable to achieve acceptably low global clock skews
across the entire die. Instead of abandoning the synchronous
paradigm for a fully asynchronous design, designers will
divide the die into local clock domains offering smaller
amounts of skew within each domain. Timing analyzers will
need to recognize these domains and only budget the
appropriate amount of clock skew.

We have extended the latch-based timing analysis
formulation of Sakallah, Mudge, and Olukotun to handle
clock skew, especially different amounts of clock skew
between different elements. Allowing a single amount of
clock skew everywhere effectively increases the setup time
of each latch. An exact analysis allowing different amounts
of skew between different elements involves tracking the
clock which launched each path so that paths which leave a
local skew domain and then return only budget the local
skew. This leads to a multiplication of constraints
proportional to the number of clocks. Fortunately, most
constraints are not tight and can be dynamically pruned with
an relaxation timing verification algorithm. Min-delay
checks are simpler, effectively increasing the hold time by
the clock skew. With the less conservative skew budgets
enabled by better timing analysis, we expect clocked
systems will remain viable to extremely high frequencies.

Acknowledgments

The authors wish to thank O. Olukotun, N. Shenoy, J.
Avidan, R. McGowen, and M. Greenstreet for fruitful
discussions about timing analysis.

8. Bibliography
[1] Burks, T., Sakallah, K., and Mudge, T., “Critical Paths

in Circuits with Level-Sensitive Latches,” IEEE Trans.
VLSI Sys., vol. 3, no. 2, pp. 273-291, June 1995.

[2] Champernowne, A., Bushard, L., Rusterholtz, J., and
Schomburg, J., “Latch-to-Latch Timing Rules,” IEEE
Trans. Comput., vol. 39, no. 6, pp. 798-808, June 1990.

[3] Gronowski, P., et al., “A 433-MHz 64-b Quad-Issue
RISC Microprocessor,” IEEE J. Solid-State Circuits,
vol. 31, no. 11, pp. 1687-1696, Nov. 1996.

[4] Harris, D., and Horowitz, M., “Skew-Tolerant Domino
Circuits,” IEEE J. Solid-State Circuits, vol. 32, no. 1,
pp. 1702-1711, Nov. 1997.

[5] Ishii, A., Leiserson, C., and Papaefthymiou, M., “Opti-
mizing Two-Phase, Level-Clocked Circuitry,” in J.
ACM, vol. 44, no. 1, pp. 148-199, Jan. 1997.

[6] Jouppi, N., Timing Verification and Performance
Improvement of MOS VLSI Designs, Ph.D. thesis, Stan-
ford University, 1984.

[7] Kuskin, J., et al., “The Stanford FLASH Multiproces-
sor,” in Proc. Intl. Symp. Comp. Arch., pp. 302-313,
Apr. 1994.

[8] Ousterhout, J., “A Switch-Level Timing Verifier for
Digital MOS VLSI,” IEEE Trans. Computer-Aided
Design, vol. CAD-4, no. 3, pp. 336-349, July 1985.

[9] Sakallah, K., Mudge, T., and Olukotun, O., “Analysis
and Design of Latch-Controlled Synchronous Digital
Circuits,” IEEE Trans. Computer-Aided Design, vol.
11, no. 3, pp. 322-333, March 1992.

[10]Shenoy, N., Brayton, R., and Sangiovanni-Vincentelli,
A., “A Pseudo-Polynomial Algorithm for Verification
of Clocking Schemes,” in Tau 92, 1992.

[11]Szymanski, T. and Shenoy, N., “Verifying clock sched-
ules,” in ICCAD Tech. Papers, pp. 124-131, Nov. 1992.

[12]Szymanski, T., “LEADOUT: A Static Timing Analyzer
for MOS Circuits,” in ICCAD-86 Dig. Tech. Papers,
1986, pp. 130-133.

[13]Szymanski, T., “Computing Optimal Clock Schedules,”
in Proc. 29th Design Autom. Conf., pp. 399-404, 1992.

[14]Unger, S. and Tan, C., “Clocking Schemes for High-
speed Digital Systems,” IEEE Trans. Comput., vol. C-
35, pp. 880-895, Oct 1986.

[15]Weste, N., and Eshraghian, K., Principles of CMOS
VLSI Design, Reading, MA: Addison-Wesley, 1993.

Model A Model B

Single Skew 9.43 ns
3866 departures

8.05 ns
24995 departures

Exact Skew 9.38 ns
4009 departures

7.96 ns
25328 departures

Table 1: Comparison of single and exact skew formulations

