SRT Division: Architectures, M odels, and | mplementations

David L. Harris, Stuart F. Oberman, and Mark A. Horowitz

Computer Systems L aboratory
Stanford University
Stanford, CA 94305
{harrisd, horowitz} @l eland.stanford.edu, oberman@umunhum.stanford.edu

September 9, 1998

Abstract

SRT dividers are common in modern floating point units. Higher division performance is achieved by
retiring more quotient bitsin each cycle. Previous research has shown that realistic stages are limited to
radix-2 and radix-4. Higher radix dividers are therefore formed by a combination of low-radix stages.
In this paper, we present an analysis of the effects of radix-2 and radix-4 SRT divider architectures
and circuit families on divider area and performance. Using analytical modeling and simulation, we
evaluate the performance and area of a wide variety of divider architectures and implementations. e
conclude that divider performance is only weakly sensitive to reasonable choices of architecture but is
significantly improved by aggressive circuit techniques.

1 Introduction

A simple and widely implemented class of division algorithm is digit recurrence. The most common
implementation of digit recurrence division in modern microprocessorsis SRT division, taking its name
from theinitials of Sweeney, Robertson [1] and Tocher [2], who devel oped the agorithm independently
at approximately the same time. SRT division uses subtraction as the fundamental operator to retire
a fixed number of quotient bits in each iteration. Two fundamental works on SRT division are those
of Atkins [3], the first mgjor analysis of SRT algorithms, and Tan [4], a derivation of high-radix SRT
division and an analytic method of implementing SRT |ook-up tables. Ercegovac and Lang [5] provide a
comprehensivetreatment of the theory of SRT division and squareroot. Although divisionistypically an
infrequent operation, ignoring its implementation significantly degrades system performance for many
applications [6].

Various techniques have been proposed for increasing division performance, including cascading sim-
ple low-radix stages, overlapping sections of one stage with another stage, and prescaling the input
operands [7]. All of these methods introduce area-performance tradeoffs. Ercegovac and Lang [5] ana-
lyze the tradeoffs of using several of these optimizations in the context of static CMOS standard-cells.
Williams [8] presents a self-timed dynamic CMOS divider comprising aring of five radix-2 stages that
incorporates several of these techniques, and he aso presents an analysis of the performance and area
effects of the architectural components. Prabhu [9] presents the tradeoffs encountered when designing

the Sun UltraSparc radix-8 divider.

In contrast to previous works, this paper analyzesin detail the effects of both circuit style and divider
architecture on the performance and area of divider implementations. We present the performance re-
sults using the technol ogy-independent metric of fanout-of-4 inverter delay. We therefore are able to
extrapolate our results to future process technologies. While the discussion here is devoted to division,
the theory of square root computation is an extension of the theory of division. Accordingly, most of the
analyses presented here can also be applied to the design of square root units.

We survey the fundamental design parameters of SRT division and present the most common tech-
niquesfor achieving higher performancein Section 2. Realizing the performance benefits of good circuit
techniques, we examine circuit issues relating to dual-rail domino divider implementationsin Section 3.
Using the principles of logical effort, we develop in Section 4 an analytical model of divider speed that
includes both intrinsic gate delays and the branching effort of parallel architectures. The model shows
that some amount of quotient selection overlap is important, but that other architectural choices such
as radix make little difference. Area and simulated performance results for a wide variety of divider
architectures and circuit styles in Section 5 confirm the model’s predictions. We conclude in Section 6
that fast SRT dividers should be built from domino circuits using any of several reasonable architectures

to achieve speeds of 3.5-5 fanout-of-4 inverter delays per quotient bit.

2 Architectures

2.1 Definitions

Computer division by digit recurrence is similar to long division learned in elementary school. The
partial remainder is initially set to the dividend. On each step, the divisor is compared to the partial
remainder to produce a quotient digit. The quotient digit is multiplied by the divisor and subtracted
from the partial remainder; the result is then shifted by one position to form a new partial remainder.
Elementary school students use the quotient digit set {0, ..., 9}, corresponding to radix 10. Computers
often use radix 2 or radix 4. One step is required for each quotient digit. To analyze the latency of
division, we must define the format of the operands and the range of each quotient digit.

Inthisanalysis, the input operands are assumed to be represented in anormalized floating point format

2

with n bit significandsin sign-and-magnitude representation. The algorithms presented here are applied
only to the magnitudes of the significands of the input operands. Computing the resulting exponent and
signis straightforward. The most common format found in modern computersisthe IEEE 754 standard
for floating point arithmetic. This standard defines single and double precision formats, where n=24
for single precision and n=53 for double precision. The significand consists of a normalized quantity,
with an explicit or implicit leading bit to the left of the implied binary point, and the magnitude of the
significand isin the range [1,2). However, to simplify the presentation, this analysis assumes fractional
quotients normalized to the range [0.5,1).

A division step which produces b bits of quotient is defined to be radix-r where:
ro= 2 (D)
Therefore, an n bit division using radix-r requires k steps:
k= 2

If each step takes one cycle, such an agorithm has a latency of £ cycles. The cycle time of the
divider is defined as the maximum time to compute one iteration of the algorithm. Depending upon the
implementation, this may or may not be the same as the cycle time of the processor.

We can now formally define the steps of division. We set the initia partial remainder P, to the
dividend. On step j, we compute the next quotient digit ¢, by comparing multiples of the divisor D to

the current partial remainder:
¢j+1 = SEL(P;, D) ©)

We then find the next partial remainder P, by subtracting the selected divisor multiple from the current

partial remainder and shifting the difference:

Piy1 = r(Pj—qjD) (4)

Thefina quotient after k iterationsis the weighted sum of the quotient digits:

k
¢ = 2 g’ ©)
j=1
2.2 SRT Divider Parameters

To perform fast division, we would like an algorithm which has a low latency (in cycles) and a short
cycletime. The latency is set by the radix r; higher radicies offer lower latencies. The cycle timeis
set by the operations occurring in each cycle: quotient digit selection and partial remainder generation.
The simplest form of division, like that taught in elementary school, uses nonredundant quotient digits
and partial remainder representations. This technique requires the quotient selection logic to exactly
compare the partial remainder and divisor using a slow n-bit subtraction. An n-bit subtraction is aso
required to find the next partial remainder.

The key idea of SRT division is to guess the quotient digit based on a few of the most significant
divisor and partial remainder bits, rather than computing it exactly. Aslong asthe guessis close enough,
the algorithm can correct on subsequent steps using redundant quotient digits. For example, a radix 2
quotient selection function could be built which guesses digitsthat are either correct or slightly too high.
If a quotient digit set of {—1,0,1} instead of just {0, 1} is used, the -1 digit can correct on a later step
for an incorrect guessin a previous step.

Now quotient digit selection isfaster because it only involves afew most significant bitsrather than all
n. To take advantage of this speedup, we must also improve partial remainder formation so that an n-bit
subtraction is not required on each step. This can be done by keeping the partial remainder in redundant
formsuch as P = P, + P.. The next redundant partial remainder can then be computed in a single gate
delay using a (3,2) carry-save adder which sums P;, P,., and —q¢D.

We will consider SRT division agorithms which use redundant quotient digits and partial remainder
representations to avoid the slow n-bit subtractions. The two important divider parameters are the radix

and the set of redundant quotient digits.

2.2.1 Choiceof Radix

To minimize latency, as measured in cycles, we would like to use a high radix . However, low latency
does not come for free. Asthe radix increases, the quotient-digit selection becomes more complicated,
which may increase the cycle time. Moreover, the generation of all required divisor multiples may
become impractical for higher radices. Oberman [10] shows that the delay of quotient selection tables
increases linearly with increasing radix, while the area increases quadratically. While prescaling of
the input operands [11] reduces table complexity at the expense of additional latency, the difficulty in
generating all divisor multiplesfor radix-8 and higher limits practical divider implementationsto radix-2

and radix-4.

2.2.2 Choice of Quotient Digit Set

For a given choice of radix r, some range of digitsis chosen for the allowed values of the quotient in
each iteration. The nonredundant case is where, for radix r, there are exactly r allowed values of the
guotient. However, to increase the performance of the algorithm, a redundant digit set is used. Such
a digit set is composed of symmetric signed-digit consecutive integers, where the maximum digit is
a. The digit set is made redundant by having more than r digitsin the set. By using a larger number
of alowed quotient digits, the complexity and latency of the quotient selection function is reduced
because the later steps can correct for larger inaccuracies in the guess of the quotient digit. However,
choosing asmaller number of allowed digitsfor the quotient simplifies generation of the multiples of the
divisor. Specificaly, for radix-2, the digit setis{—1, 0, 1}. For radix-4, there are two typical choicesfor
the digit set: minimally redundant {—2, —1,0, 1,2} and maximally redundant {—3, —2, —1,0, 1, 2, 3}.
The quotient selection logic for a maximally-redundant radix-4 digit set is about 20% faster and 50%
smaller than for a minimally-redundant digit set [10]. However, maximally-redundant radix-4 requires

the computation of the 3x divisor multiple, which typically requires extrainitial delay and area.

_g Block 1 Block m Control
=4 Control Control ontro
<

c

x

'9_" Block 1 Block m | Datapath
o Datapath Datapath

(o]

>

Figure 1. SRT divider block diagram

2.3 Higher Performance

Several techniques have been proposed for improving the performance of SRT division, but most in-
volve cascading low-radix stages to form a higher radix divider. The primary problem with a cascade
of stagesis the proportional increase in cycle time. To avoid this increase, some computation can pro-
ceed in parallel at the expense of area. Taylor [12] proposes overlapping the quotient-digit selection of
consecutive stages. Oberman [10] and Quach [13] discuss overlapping remainder computation. Fan-
drianto [14] discusses a cascade of lower radix segments in which there is no shifting of the partial
remainder between the segments through the use of range reduction. In this study, we analyze the effects
of five overlap schemes. no overlap, overlapped quotient selection, overlapped remainder computation,
overlapped quotient and remainder computation, and a hybrid overlap scheme.

A genera divider organization using overlapping is shown in Fig. 1. This floorplan is divided into
a control section for quotient digit computation that typically operates on a small number of the most
significant bits (about 4 for radix-2 and 8 for radix-4), and a datapath section for partia remainder
formation of the remaining significand bits.

The divider is defined to comprise a cascade of m blocks, where each block has adelay of ¢;,... Each
block is composed of s overlapped radix-r stages. The divider therefore retires b’ = m x s x b bitsin
each cycle, with atotal cycle time of m X tyocr + toverheads WHEIe toperneaq iNCludes latch delay, clock
skew, and the input multiplexor for injecting new operands. Such an overlapped scheme produces &'

radix-r' digitswith

ro= 2" (6)
’ n
Ko=)

PRI

|1 Datapath
QsLC| |

I

I

I

I I
|1 {aD, ..., -aD} |
I

I

I

I

qfi+1]

|1
Il]csA

(
I
I
I
|
I
I
I
|

\ Control N I PR[i+1]
— N

Figure 2. Non-overlapped design

The overlap schemeswe consider areillustrated in Figs. 2 through 6. The critical path(s) are indicated
by the heavy black lines. Although partial remainders are stored in carry-save form, they are drawn with
asingleline for simplicity. The architectures are shown overlapping two stages, but can be generalized

to higher overlap [9].

2.3.1 Non-overlapped

A simple non-overlapped design is common in low-cost applications, such as the Intel Pentium Proces-
sor [15]. A block diagram is shown in Fig. 2. The quotient selection logic (QSL C) guesses the quotient
digit g[i+1] based on the most significant bits of the current partial remainder PR[i] and the divisor. The
result is buffered and driven across the datapath to select the appropriate divisor multiple, which is then
subtracted from the partial remainder and shifted to form the next partia remainder PR[i+1]. Subtrac-
tionis performed in redundant form using the carry-save adder (CSA). Since the fixed shift involvesonly

wire, the critical path delay is:

Lhlock = 2tqslc + 2fbuf + tuz + tesa (8)

2.3.2 Overlapping Quotient Selection

Overlapping quotient selection (Fig. 3) requires additional control logic but no additional datapath ele-
ments. This technique was demonstrated by Taylor [12]. The critical path involves speculatively gener-

7

Control I Datapathl PR[i+2]

AN

Figure 4. Overlapped remainder formation

ating all possible second quotient digits, then choosing among them given the first quotient digit. The
results are used to select the appropriate divisor multiple to subtract from the partial remainder. The

datapath CSAs may be optimized for asingle late input. The critical path for s = 2 isto:

Lhock = tqslc + tbuf + 2l mur + 2tesa (9)

2.3.3 Overlapping Remainder For mation

Overlapping partial remainder computation (Fig. 4) speculatively computes all of the next partial re-
mainders, then selects the appropriate one based on the actual quotient digit. The critical path delay for

s=2Is

thlock = 2(tqslc + tbuf + tmux) (10)

Figure 6. Hybrid overlapping

2.3.4 Overlapping Quotient Selection and Remainder Formation

The previous two schemes can be combined (Fig. 5) such that both the quotient selection and partia
remainder formation are overlapped. The Sun UltraSparc [9] implements such a combination. This
design hastwo equally critical paths, one through the quotient digit selection logic, and the other through
the speculative partial remainder formation. The critical path delay for s = 2 is:

Lhlock = 2tqslc + 2fbuf + 2tue + tesa (11)

2.3.5 Hybrid Overlap

Closer examination showsthat only the most significant bits of the next partial remainder are critical. We
can exploit this fact in two ways. One isto buffer the quotient digits before driving the low-order mux
selects. Thisoptimization is applicable to all architectures. Another isto only overlap partial remainder

formation of the critical high-order bits to save area. These techniques are combined in Fig. 6.

This architecture is a hybrid of the overlapped quotient selection and remainder formation design for
the critical bits and the overlapped quotient selection design for the non-critical bits. The quotient digits
are buffered before driving the non-critical least significant bits in the datapath. This eliminates the
buffer delay from the critical path to the high order bits. The critical path delay for s = 2 is:

Lhtock = tqslc + 2tz + tesa (12)

Hardware is saved relative to designs which overlap partial remainder formation because no specula
tive adders are needed in the datapath for partial remainder formation. The non-critical partial remainder
bits lag behind the critical bits by the delay of a buffer plus CSA. This may dlightly increase the time
required for rounding and normalization at the end of a divide. More importantly, the non-critical bits
must catch up before they are required by quotient selection. Therefore, the speculative partial remain-
der formation must operate on s x b extra bits to catch these bits up before they become critical. The
lag of the non-critical bits plus the delay through the partial remainder formation must be less than the
delay of the critical quotient selection path so that the non-critical bits catch up as they are shifted into
the critical portion. Specificaly, the critical path delay from q[i+2] to PR[i+4] through the quotient digit

logic to generate the next set of most-significant partial remainder bitsis:

tcrit = tmux + (tcsa + tqslc + tmua: + tmua:) (13)

while the sum of the lagging path delay and partial remainder formation delay is:

tnonerit = (tbuf + tue + tcsa) + (14)

(tcsa + tmux + tcsa + tmua:)

Simplifying, to Keep t,onerit < terit,

tbuf + 2tcsa < tqslc (15)

10

#Wide | #Wide #
Architecture Block Latency #QSLC | CSAs | MUXes | Bitlines
Non-overlapped S(tgset + tous + tmus + tesa) s s s 5+a
Overlap PR $(tgset + touf + tmuz) s 2as s 6+a
Overlap QS tysel + touf + Stmuz + Stesa see Table 2 S S 54+a
Overlap PRQS || tyser + tous + Stimue + (5 — 1)tesq | SEETADIE2 | 205 s 6+a
Hybrid overlap tgset + Stmuz + (5 — D)tesq see Table 2 S S 54a

Table 1. Comparison of architectures

As we show later, quotient selection is the most time consuming component, especially for radix-4
designs. Therefore, it isreasonable to expect this constraint to be satisfied, especially since the datapath
CSA may be optimized for asingle lateinput. If quotient selection istoo fast, thefinal partial remainder
formation can be overlapped in the datapath, adding more CSASs, but relaxing the timing constraint from

Eq 15to tbuf F tesa < tqslc-

2.4 Comparison

Table 1 compares the latency, hardware cost, and wiring of each architecture. The number of QSLCs,
which dominate control area, and number of CSAs and MUXes in the datapath are listed. Also, the
number of metal tracks required is computed (see Fig. 7). Overlapping quotient digit selection saves
s — 1 quotient selection and buffer delays at the expense of additional quotient selection logic blocks.
Overlapping partial remainder formation savesthe delay of one CSA at the expense of many more CSAs
performing speculative computation. Finaly, the hybrid scheme eliminates the buffer delay and also
avoids alarge number of speculative CSAs. From Table 1, the hybrid overlapping scheme has the lowest
latency and also saves hardware relative to the next fastest scheme. However, the performances of other
architectures that overlap quotient selection are within a CSA and buffer delay of the hybrid scheme,
and as discussed previously, the buffer may be optimized out of the critical path.

The number of quotient selection blocks increases sharply when moving from radix-2 to radix-4 and
for increasing s, as shown in Table 2. Due to the exponentia area increase with degree of overlap,

reasonable designs are limited to an overlap of s = 2 or possibly s = 3.

11

s{|lr=2a=1|r=4a=2|r=4a=3
1 1 1 1
2 4 6 8
3 11 27 39
4 26 112 166

Table 2. QSLCs for overlapped architectures

3 Circuits

Overlapping stagesisimportant, but Table 1 showsthat the incremental improvement of better overlap
techniquesis small. Execution unit designers are therefore turning to more aggressive circuit techniques,
especially domino circuits, to greatly reduce latency [16].

Three key circuit issues which impact architectural choices are domino monotonicity requirements,
wiring cost, and clocking overhead. Designers accustomed to static logic must remember that domino
circuits require monotonically rising inputs during evaluation. Since single-rail domino circuits are not
a functionally complete logic family, non-monotonic gates such as CSAs require dual-rail inputs and
outputs to code both true and complementary signals. This increases the area of logic gates and the
amount of interconnect. Radix-4 quotient selection logic is especially impacted because it is relatively
large. Fortunately, the quotient digits are consumed only by multiplexors, so they can be computed in
single-rail 1-hot form. Two optionsfor fast QSL Cs are domino gates and dynamic self-timed PLAs. We
found that radix-4 minimally/maximally redundant 1-hot PLAs have 50/25 minterms respectively, while
according to [10] minimally/maximally redundant Gray-encoded PLAs have only 25/14 minterms. Static
designs can implement either a1-hot PLA or an encoded PLA to save area, but domino implementations
require the larger 1-hot design.

The datapath dominates the area of most dividers, so we must examine the number of bitlines running
between elements within a bitslice. Dynamic designs double the wire count because dual-rail signals
are needed. All floating point blocks have fixed overhead of power, ground, and three data busses: two
inputs and one output. Dividers have many additional bitlines because partial remainders are kept in

redundant form.

12

Non-Overlap (s=1) Overlap QS / Hybrid (s=2)

:] . PR[i+1]]
PRIi] .2 PY .___ZAPR[HI] PRIi] .2 PRPS > ° ._4PR[I+2]
PR feedback , 2 PR feedback 2
{D, 2D, ...,aD}_ a| o {D, 2D, ...,aD}_ a| o -
qD q[i+1]D q[it-2]D
oo j oo oo
MUX CSA MUX CSA MUX CSA

Overlap PRF / Overlap QS & PRF (s=2)

PRIi+1]

PRI 2| o | o o0 o o>

PR feedback 2
{D, 2D, .., aD} a| o °
qli+1D | 2

| 2, PRE+2]

0 @

afi+2ID [2

CSA MORE CSA MUX CSA MORE CSA MUX
CSAs CSAs

Figure 7. SRT datapath floorplan for one block

Fig. 7 illustrates wiring requirements on a floorplan of a block for various architectures. A dot on a
wire over an element indicates that the signal is used in that element. On all architectures, two lines are
required for driving the redundant partial remainder along the path and another two lines are required
for feeding the result back to the next iteration. Furthermore, divisor multiples must be driven to al of
the blocks. Although there are 2a + 1 divisor multiples, we must only transmit the a positive multiples
and can generate the negative multiples with a local inversion. Finally, the appropriate divisor must
be selected. In architectures which do not speculatively generate partial remainders, only one wire
is required to drive the divisor mux output to the CSA which generates the next partial remainder. In
speculative architectures, 2a CSAs generate two bits of output each. It would seem 4a wires are required
as input to the divisor mux. However, by distributing the multiplexor legs across the adders, only two
wires are needed for the redundant result.

A static divider requires either 5 + a or 6 + a bitlines, which poses ittle difficulty. A dual-rail domino
divider requires twice as many bitlines. These hitlines can be accommodated in a bit pitch of about
120, where)\ is half of the minimum drawn transistor length. Cells can be efficiently laid out at this
pitch, so wire limitations are not expected to increase divider area significantly in a process with 3 or 4
metal layers. Thisis consistent with [8] which reports only a 15% area penalty for dual-rail dominoin a
2 layer process.

Clocking overhead is important in both static and dynamic designs. Static designs conventionally use
a flip-flop with a multiplexor at the beginning of the cycle to capture either a new divider input or the

result of the previous iteration. The flip-flop adds a delay of ¢./x—q + tsetup + tskew 1O the path, which

13

can be large. Textbook domino designs require latches between phases of domino logic and are also
sensitive to clock skew, but skew-tolerant domino techniques [17] make domino much more attractive
by eliminating latch delays and clock skew from the critical path. Good domino designs must only pay
the cost of one 2:1 multiplexor at the beginning of each cycle. This cost may be amortized over many
bits produced in the cycle.

Since the areais proportional to the number of blocks, area can be reduced without impacting latency
by clocking the divider at ahigher frequency than the rest of the processor. For example, the HP-PA7100
[18] achieves higher radix by clocking a lower radix core at double frequency. This technique improves
area at the expense of the complexity of generating a higher frequency clock.

In summary, domino is an attractive approach for high-performance dividers. It greatly reduces gate
delays and eliminates much of the clocking overhead found in flip-flop-based static designs. The domino
wiring requirements do not significantly increase areain processes with 3 or more metal layers. Thus, the
primary costs of domino designs are the extra area consumed by quotient selection logic, the increased

power consumption while the divider is active, and the necessary circuit design expertise.

4 An Analytical Model for Divider Delay

The analysis of architectures explores the elements in each critical path and suggests that certain
architectures may be faster than others because they have fewer gates in the critical paths. However,
critical path delay isastrong function of the loading each gate must drive as well as the number of gates.
This section develops a more powerful model based on the principles of logical effort to compare the
delay of dividers. The model is calibrated with simulations of a few building blocks and predicts the
performance of a wide variety of architectures. An important limitation of the model is that it neglects
wiring capacitance and thereby underestimates the delay of highly parallel architectures with lengthy

wires.

14

4.1 Logical Effort

The delay of a CMOS gate depends on the intrinsic delay of the gate driving itsinternal parasitics, on

the load that must be driven, and on the effective resistance of the gate. This can be modeled as:

t = tint+rf (16)

wheret;,; istheintrinsic delay, f isthefanout, defined as Cy.4/Ciy, and r is proportional to the effective
resistance of the gate. More complex gates have larger ¢;,; and r terms.

Sutherland [19] definesthelogical effort LE of a gate to be the ratio of its effective resistance to that
of an inverter with the same input capacitance. The gain ¢ of the gate can then be defined as the fanout

multiplied by the logical effort. Now the delay can be rewritten in terms of the gain of each gate.

LE = ryte/Tinw (a7)
g = LE-f (18)
U = tint + grine (19)

Thegain G of an entire path isthe product of the gains of each stage. Thisgain comesfrom thelogical
effort of each stage, the overall fanout of the path, and any branching within the path. The overall fanout
F isdefined as C),,4/C;,, Of the path. The branching factor B accounts for other loads within the path;
for example, a path from computing a multiplexor select to the data output of one bit of a64 bit mux has

B = 64 because 63 other multiplexor bits must be driven. In summary, a path with o stages has:

G = BF[[LE (20)

=1

It can be shown that the delay of a path is minimized when gates are sized such that each stage has
equal gain. The minimum path delay therefore is the sum of the gain-dependent delay, which is equa

15

per stage, plustheintrinsic delays of each stage.

tpath = OTinw {7/5 + Z 2tintfi (21)
i=1

4.2 Critical Paths

The delay of various architectures can now be modeled using thelogical efforts and intrinsic delays of
each stage and the branching effort and fanout of the path. Since each divider block drives an identical
divider block, path fanout is always 1 and will be ignored. This section analyzes architectures to find the
components in the critical path and the overall branching effort of the path. The next section describes
simulations used to extract logical efforts and intrinsic delays of each component.

The delay of CSAs and multiplexors depends on which inputs are critical. A CSA with a single
critical input can be fast if the sum and carry results are speculatively computed for both possible values
of the critical input, then ssimply selected when the critical input arrives. A CSA with two critical inputs
cannot use this optimization. Similarly, a multiplexor can be optimized for late control inputs, late data
inputs, or simultaneously arriving control and data. To capture these optimizations, elements are defined
as CSA1, CSA2, MUXC, MUXD, and MUXB, corresponding to CSAs with 1 and 2 late inputs and
multiplexorsthat are control-critical, data-critical, or both control and data critical.

Branching effort of a path depends on operand width, n, range of quotient digits, a, and amount
of overlapping, s. Although overlapped architectures compute with slightly more than » bits, n is a
convenient and simple estimate. Consider the fanout of each architecture in more detail.

Non-overlapped dividers have branching effort of » to drive the divisor selection mux in the datapath.

Dividers using overlapped partial remainder formation have a branching effort of n each time the
quotient bit drives the divisor selection mux. Thus, overlap by two has a branching effort of 2.

Dividers using overlapped quotient selection have a branching of » driving the divisor selection mux,
times additional branching as PR[i] drives speculative quotient selection logic. Assuming non-critical

gates can be buffered sufficiently to present negligible load, each level of speculative quotient selection

16

Architecture S B QSLC | CSA2 | CSAL1 | MUXC | MUXD | MUXB | BUF
Non-overlapped || 1 n 1 1 1 1
Overlap PR 2 n? 2 2 2
Overlap QS 2 2an 1 1 1 1 1 1
Overlap QS 3 4a*n 1 2 1 1 2 1
OverlapPRQS || 2| 2an(2a +1) | 1 1 1 1 1
Hybrid overlap || 2 | 2a2(2a + 1) 1 1 1 1

Table 3. Branching effort and component count of divider architectures

involves branching of roughly 2a. Therefore, for overlap of s the total branching effort is (2a)*~'n,
which reduces to the non-overlapped case for s=1.

Dividers using both overlapped partial remainder and quotient logic with s = 2 have three sources
of branching. Branching of 2a + 1 occurs as PR][i] drives the speculative and non-speculative quotient
selection logic. Another branching of » occurs when the g[i+1] signal drives the divisor selection mux.
Finally, a branching of 2a occurs as PR[i+1] drives the speculative partial remainder formation CSAs.
Total branching effort is therefore 2an(2a + 1).

Hybrid overlap with s = 2 isidentical to the case of overlapped partial remainder and quotient logic
except that the branching of » driving divisor selection muxesis reduced to branching of =z driving only
afew of the most critical bits. z isthe number of bits used in the control block; typical values are 6 for
radix 2, 10 for maximally redundant radix-4, and 11 for minimally redundant radix-4. Total branching
effort istherefore 2az(2a + 1).

Table 3 summarizes the branching effort and number of each component in the critical path of various

architectures.
4.3 Calibrating the M odel

Using these component counts and fanouts, the logical effort model can predict the delay of dividers.
The LE and t;,; terms in the model can be estimated by hand or measured from simulation. Table 4
lists the terms based on simulation of domino gates in the HP-CMOS26B 1 pm (drawn) process. To

normalize for process, all times are expressed as multiples of the delay of a fanout-of-4 (FO4) inverter.

17

Component | LE | t;y

CSA1l 1.22 | 0.58
CSA2 2.16 | 1.05
MUXC3 0.59 | 0.66
MUXD3 0.61 | 0.72
MUXB3 0.92 | 0.78
MUXC5 0.59 | 0.76
MUXD5 0.62 | 0.82
MUXB5 0.93 | 0.88
MUXC7 0.60 | 0.85
MUXD7 0.63 | 0.91
MUXB7 0.94 | 0.98
BUF 0.41 | 0.35

Table 4. Component logical efforts and intrinsic delays

Note that each domino gate actually consists of adynamic gate and a static inverter, each of which may
be sized for best performance. Therefore, the domino gate counts as two stages when allocating gain per
stage. Also note that multiplexor delays depend on the number of inputs2a + 1.

Computing the logical effort of quotient select logic would be awkward because the QSL C consists of
many stages of logic. Instead, a QSLC block is designed with an overdl C,,,,/C;, of 1 and ssimulated to
produce an absolute delay. Therefore, the block can be modeled as an fixed delay, contributing nothing
to the gain-dependent delay of the path. The radix-2 QSLC is built from two complex domino gates.
The radix-4 QL SCs are built from short carry-propagate adders to sum the most significant redundant
partial remainder bits, followed by a dynamic PLA computing a 1-hot quotient digit. Table 5 lists the
QSLC delays for radix-2 and radix-4 designs. For radix-4, the adder and PLA components of the delay
are listed explicitly. PLA delay was obtained through simulation, while the 10 or 8 bit adder delay was
estimated from datain Section 5.

44 Mode Results

Table 6 lists the delays of divider architectures estimated with the logical effort model. The ¢;,;

column contains the sum of the intrinsic delays through each stage, including the QSLC. The B column

18

r=2a=1|r=4a=2|r=4a=3
tpra n/a 4.3 3.8
Ladd n/a 4.6 4.0
LQSLC—total 3.2 8.9 7.8

Table 5. Fanout-of-1 quotient select delays

liststhe total branching effort of ablock. The G column liststhetotal gain of ablock. The s columnlists
the number of stages in the block. As mentioned earlier, each domino gate represents two stages and
QSLCs are modeled as a fixed delay contributing no stages of gain. The ¢, column shows the total
delay obtained from Eq 21. Finaly, the table showsthe number of quotient bits each block produces and
the overall delay per bit.

45 Conclusions

The analytical delay model provides a simple way to compare many divider architectures. It is more
powerful than merely counting gates in the critical path because it also accounts for the fanout of the
gates. The model shows that some amount of overlapping quotient selection isimportant for good per-
formance. Aslong as quotient selection is overlapped, other architectural choices make little difference
in performance.

Two limitations of the model are that it includes neither wiring delay nor 3x divisor multiple gener-
ation. For non-overlapped designs, the only long wires are the ones which drive select lines across the
datapath and have delays dominated by gate loading. Designs with overlapped quotient selection add
long wires to distribute the speculative quotient bits and most significant partial remainder bits around
the QSLCs. These wire lengths increase exponentialy with s and thus contribute to heavier loadings
than predicted for overlapped architectures. Radix-4 maximally redundant divider delays also are longer
than predicted because timeis required in advance for 3x divisor multiple generation.

The consequence of these limitations is that the architectures predicted to be fastest are those for
which the model is most optimistic. Radix-4 maximally redundant designs are predicted to be fastest,
but neglect the extra latency required for 3x divisor multiple generation. Overlapped quotient selection

19

| Architecture [s | tiw | B | G | o | tyoe | Bits/lblock | Delay/bit ||

r=2a=1

Non-overlapped | 1| 48 | 53 | 156 | 6 | 6.6 1 6.6
Overlap PR 2|1 84 |2809| 164 | 8 | 113 2 5.6
Overlap QS 2| 66 | 106 | 412 | 10| 93 2 4.6
Overlap QS 3|1 83| 212 | 109 |14 | 120 3 4.0
OverlapPRQS || 2| 6.0 | 318 | 153 | 8 | 89 2 4.4
Hybridoverlap || 2| 57 | 36 | 422 | 6 | 7.8 2 3.9
r=4aq=2

Non-overlapped | 1 | 10.6 | 53 | 156 | 6 | 124 2 6.2
Overlap PR 212002809 | 164 | 8 | 229 4 5.7
Overlap QS 2|125| 212 | 838 | 10| 154 4 3.8
Overlap QS 31143 | 848 | 449 | 14| 184 6 31
Overlap PRQS | 2| 11.9| 1060 | 515 | 8 | 15.2 4 3.8
Hybrid overlap || 2| 11.6 | 220 | 261 | 6 | 144 4 3.6
r=4a=3

Non-overlapped | 1| 96 | 53 | 159 | 6 | 114 2 5.7
Overlap PR 2180|2809 | 170 | 8 | 209 4 52
Overlap QS 2|115| 318 | 130 [10| 146 4 3.6
Overlap QS 3| 135 | 1908 | 1060 | 14 | 17.8 6 3.0
Overlap PRQS || 2| 11.0| 2226 | 1110 | 8 | 14.6 4 3.6
Hybrid overlap || 2| 10.7 | 420 | 512 | 6 | 139 4 35

Table 6. Analytical delay model predictions

with s = 3 also appearsto be faster than overlapsof just s = 2 but does not account for greatly increased
wireloading. Hence, choice of architecture and radix makes even less difference than the model predicts.
A potential weakness of the designs is that some have many stages and a low gain per stage. Itis
possible that by combining logic into fewer stages of more complex gates, speed could be improved.
Suppose the number of stages could be adjusted without changing the intrinsic delay or total gain of the
block. It can be shown that minimal delay occurs when the number of stages is selected to provide a
gain of e per stage. Thisminimal delay isno more than 10% better for radix-2 designs and 5% better for
radix-4 designs than the results in the table, so little benefit should be expected from combining stages.
Another interesting result of the model is that increasing parallelism does not always lead to higher

speed. For example, compare overlapping either just quotient selection or both quotient selection and

20

14

12

10 A Static
¢

o]

Delay/Bit (FO4)

me

0 0.5 1
Area/Bit/Cycle (mm”2)

Figure 8. Scatter plot of results

partial remainder formation for radix-4 designs. The delays of the two designsare equal. Thisisbecause
the adder delay saved by the more parallel design is lost to the higher branching effort paid to achieve
this parallelism.

5 Simulation Results

We assigned adivider design project in an advanced VL SI circuit classat Stanford University. Twelve
teams explored awide variety of radix-2 and radix-4 double precision SRT divider designs using skew-
tolerant domino circuits. The designsreflect avariety of skill levelsand area/performance tradeoffs. The
delay results are from HSPICE simulation, and the area estimates are based upon total transistor count
and device size. We compare these results with data on static dividers extrapol ated from Ercegovac [5].

The designs are shown on a scatter plot of delay/bit vs. areal/bit/divider cycle, shown in Fig. 8. The
|abeled pointsare described further in Table 7 and represent those designs with the best performancefor a
given area. The delay/bit is measured in fanout-of-4 inverter delaysin the HP-CMOS26B process. Area
must be normalized by the number of bits produced per cycle because a divider can ssmply unroll more

blocks until the cycleisfull. Areais estimated in mm? and can be converted to \? by multiplying by

21

Design Architecture | r | a | s | Delay/bit | Arealbit/cycle QSLC Notes
(FO4) (mm?) Style

A Non-overlapped (4 | 2 | 1 9.5 0.23 synthesized | smallest static

B Hybridoverlap |4 |2 | 2 57 0.33 synthesized | fastest static

C Hybridoverlap |2 |1 |2 4.6 0.63 domino most flexible

D OverlapQS | 2|13 4.7 0.68 domino | like UltraSparc

E Hybridoverlap |4 | 3 | 2 3.7 0.86 1-hot PLA | fastest domino

Table 7. Designs with best performance for given area

4 x 10, Areareflects only the divider control and datapath components, not auxiliary circuits required
for normalizing, rounding, and exponent handling. Design E includes the area but not the additional
setup latency of afast CPA, as maximally-redundant radix-4 designs require precomputation of the 3x
divisor multiple.

The arrowheads point out two hybrid overlapped radix-2 designs. The domino design is 1.7 times
as fast but has 1.6 times as much area. The extra area is attributable to generating dual-rail outputs.
The fastest domino design is 1.5 times as fast as the fastest static design; radix-4 domino designs have
a larger area penalty because of the larger PLA required for monotonic quotient digit selection. The
skew-tolerant domino designs assume an overhead of 1 FO4 delay per 4 bits for the input mux, while
static designs use 4.4 FO4 delays per 4 bitsfor the mux and flip-flop overhead. Thisisamajor advantage
of skew-tolerant domino circuits.

The static results from [5] were normalized with the conversion that one fanout-of-3 NAND2 delay
equals 1.05 FO4 delays and has an average area of 400 pm?. Thus, the data for the static designs has
more uncertainty than for the dynamic designs. Further, some of the static resultswere extrapol ated from
element delays tabulated in [5], rather than from complete designs. The designs in [5] assume iteration
overhead of 8.4 FO4 delays in a conservative standard-cell methodology, but we use a more aggressive
4.4 FO4 delays as noted previously. The reported static quotient-selection logic delay is unexpectedly
low compared with the domino.

Table 8 lists key component delays for several designs. As expected, quotient selection delay domi-
nates the radix-4 critical path. The mux delay in design D is surprisingly low.

22

Desi gn tqslc 2tmum 2tcsa 2fbuf
AB 11.3 19 23|18

C 4.0 15 1.5 | NA
D 3.6 0.9 15| 11
E 78 | 1.7-26 | 1.7 | NA

Table 8. Selected component delays (FO4)

For comparison, Williams [8] reports delays of overlapped quotient selection for radix-2 and radix-4
stages in terms of FOL1 inverter delay. Converting these delays using 1 FO4 ~ 2.5 FO1 delays, we find
a delay per bit of 4.7 FO4 for radix-2 and 4.5 FO4 for radix-4. These are consistent with the delays
reported in this study. Comparing area is more difficult, as Williams' self-timed ring is constrained to

overlapping of s = 5 stages to hide the overhead of self-timing.

6 Conclusions

This study has investigated a wide range of SRT division designs. An analytical model based on
the principles of logical effort allows rapid comparison of many divider architectures. The model also
shows that it is essential to consider branching effort when eval uating architectures because time saved
by eliminating a gate in a parallel architecture may be lost to the increased branching effort required to
achieve the parallelism.

Simulation results are somewhat slower than the analytical model predicts, but still are within 20%
and are consistent in their conclusions. The speed differences can be attributed to the fact that the model
neglects loading from wires and from non-critical branches and that the simulations were done under
time pressure and may not be thoroughly optimized.

Both the model and simulation results show that using an architecture which overlaps quotient se-
lection improves speed, but that other overlapping details and especialy the choice of either radix-2 or
radix-4 make little difference in overall performance. Indeed, the architectures which the model predicts
are best are also those for which the model is most optimistic. Three examples of reasonable architec-

tureswhich provide high performance with modest areas are hybrid overlapped radix-2 (s = 2), quotient

23

selection overlapped radix-2 (s = 3), and hybrid overlapped maximally-redundant radix-4 (s = 2). Al-
though the maximally-redundant radix-4 design achievesthe lowest core delay, it requires extratime and
hardware outside the iterationsfor 3x divisor multiple generation. Also, the designs producing more bits
per block (b x s) are less flexible, as an integral number of blocks must fit within a cycle. The reason-
able architectures offer a delay/bit of 3.5-5 FO4 at a cost of approximately 3M \? or 6000 transistors per
bit/cyclein the core.

The choice of circuit style has alarger effect on performance. Specifically, moving from static CMOS
to dual-rail domino reduces the delay of the individual gates. Skew-tolerant domino increases perfor-
mance further by eliminating clocking overhead. Comparing similar architectures, dual-rail domino
provides a 1.5 - 1.7x speedup over static designs. However, static designs are generally smaller than
dual-rail designs of the same architecture because only one polarity of output must be generated and be-
cause quotient selection logic can be more compactly designed with non-monotonic gates. Skew-tolerant
domino circuits provide the performance advantages of self-timed circuits without the complexity of
asynchronous design or the need to duplicate hardware to hide control overhead. For performance-

critical designs, we recommend the use of skew-tolerant dual-rail domino.

Acknowledgments

Thanks to all of the students in EE371 for excellent work on the projects. We would like to note
the designers of the “reasonable” architectures. C by Jeff Solomon and Derek Debusschere; D by Min
Xu and Mengchen Yu; and E by Peter Richards and Peter Verplaetse. Peter Verplaetse also contributed
optimized 1-hot PLA data.

Thiswork was supported by the NSF through a fellowship and grant M1P93-13701 and by Stanford’s
Center for Integrated Systems.

24

References

[1] J. E. Robertson, “A new class of digital division methods,” IRE Trans. Electronic Computers, vol.
EC-7, pp. 218-222, Sept. 1958.

[2] K.D. Tocher, “Techniques of multiplication and division for automatic binary computers,” Quart.
J. Mech. Appl. Math., vol. 11, pt. 3, pp. 364-384, 1958.

[3] D. E. Atkins, “Higher-radix division using estimates of the divisor and partial remainders,” 1EEE
Trans. Computers, vol. C-17, no. 10, Oct. 1968.

[4] K. G. Tan, “The theory and implementation of high-radix division,” in Proc. 4th IEEE Symp.
Computer Arithmetic, pp. 154-163, June 1978.

[5] M. D. Ercegovac and T. Lang, Division and Square Root: Digit-Recurrence Algorithms and Im-
plementations, Kluwer Academic Publishers, 1994.

[6] S. F. Oberman and M. J. Flynn, “Design issues in division and other floating-point operations,”
|EEE Trans. Computers, vol. 46, no. 2, pp. 154-161, Feb. 1997.

[7] S. F. Oberman and M. J. Flynn, “Division algorithms and implementations,” |EEE Trans. Com-
puters, vol. 46, no. 8, pp. 833-854, Aug. 1997.

[8] T. E. Williams and M. A. Horowitz, “A zero-overhead self-timed 160-ns 54-b CMOS divider,”
|EEE J. Solid-Sate Circuits, vol. 26, no. 11, pp. 1651-1661, Nov. 1991.

[9] J. A. Prabhu and G. B. Zyner, “167 MHz radix-8 floating point divide and sguare root using
overlapped radix-2 stages,” in Proc. 12th IEEE Symp. Computer Arithmetic, pp. 155-162, July
1995.

[10] S. F. Oberman, Design Issues in High Performance Floating Point Arithmetic Units, Ph.D. thesis,
Stanford University, Nov. 1996.

[11] M. D. Ercegovac and T. Lang, “Simple radix-4 division with operands scaling,” |EEE Trans.
Computers, vol. 39, no. 9, pp. 1204-1208, Sept. 1990.

[12] G. S Taylor, “Radix 16 SRT dividerswith overlapped quotient selection stages,” in Proc. 7th IEEE
Symp. Computer Arithmetic, pp. 64—71, June 1985.

[13] N. Quach and M. Flynn, “A radix-64 floating-point divider,” Technical Report No. CSL-TR-92-
529, Computer Systems Laboratory, Stanford University, June 1992.

[14] J. Fandrianto, “Algorithm for high-speed shared radix 8 division and radix 8 square root,” in Proc.
9th IEEE Symp. Computer Arithmetic, pp. 6875, July 1989.

[15] H. P. Sharangpani and M. L. Barton, “Statistical analysis of floating point flaw in the pentium
processor,” Intel Corporation White Paper, November 1994.

25

[16] P. Gronowski et a., “A 433-MHz 64-b quad-issue RISC microprocessor,” |EEE J. Solid-State
Circuits, vol. 31, no. 11, pp. 1687-1696, Nov. 1996.

[17] D. Harrisand M. Horowitz, “ Skew-tolerant domino circuits,” 1EEE J. Solid-Sate Circuits, vol. 32,
no. 11, pp. 1702-1711, Nov. 1997.

[18] T. Asprey, G. S. Averill, E. DeLano, R. Mason, B. Weiner, and J. Yetter, “Performance features of
the PA7100 microprocessor,” IEEE Micro, vol. 13, no. 3, pp. 2235, June 1993.

[19] I. E. Sutherland, R. F. Sproull, “Logical Effort: Designing for Speed on the Back of an Envelope,”
in Proc. 1991 Conference on Advanced Research in VLS, pp. 1-16, March 1991.

26

