
Quotient Pipelined Very High Radix Scalable
Montgomery Multipliers

Nan Jiang and David Harris

Harvey Mudd College
301 E. Twelfth St. Claremont, CA 91711

{Nan_Jiang, David_Harris}@hmc.edu

Abstract— This paper describes the FPGA implementation of a
scalable very high radix Montgomery multiplier using quotient
pipelining. It improves upon previous designs by removing
critical dependencies between successive processing elements.
This design can perform 1024-bit modular exponentiation in 5.1
ms using 3825 4-input lookup tables and 32 18×18 multipliers, a
20% speed increase over a comparable design without quotient
pipelining.

I. INTRODUCTION

Modular exponentiation is widely used in modern

cryptography algorithms, such as RSA and digital signatures.
However the operation usually involves 256 to 2048-bit
numbers and is time-consuming due to the long divisions
involved in the modulo calculation. Montgomery
multiplication transforms this difficult division into a simple
bit shift, and is therefore more attractive for hardware
implementation.

 Since the advent of Montgomery’s algorithm in [4], there
have been many implementations of the Montgomery
multiplier. In a conventional radix-2 implementation, an n-bit
multiplication is performed using n steps, each acting on 1 bit
of the multiplier and all n bits of the multiplicand. These
designs only support one choice of n. Scalable radix-2 designs
[6, 2] break the multiplicand into w-bit chunks. They contain
processing elements (PEs) organized in a systolic array. Each
PE handles 1 bit of the multiplier and w bits of the
multiplicand at a time. The scalable multiplier iterates until
the entire multiplication completes. We have recently
proposed scalable very high radix designs [3, 1] that handle v
bits of the multiplier and w bits of the multiplicand in each PE.
These designs require w×v bit multiplication in each PE and
are well suited to FPGAs containing dedicated multipliers.

One major delay that exists in very high radix Montgomery
multiplication is the calculation of reduce. Reduce is the
crucial value that transforms the long division into a simple
shift. Past implementations such as [3] required two extra
cycles per PE to handle the reduce calculation. Reference [5]
proposed several variations of Montgomery’s algorithm that
decreased the delay caused by reduce. In particular, the
parallel algorithm was implemented in [1], eliminating the two

extra cycles that were present in [3]. This paper intends to
further improve the reduce calculation through the quotient
pipelining algorithm presented in [5] and completely eliminate
the reduce dependency between successive PEs.

II. BACKGROUND

The basic Montgomery multiplication algorithm is

Z = (XYR-1) mod M (1)

With the notation

X: n-bit multiplier
Y: n-bit multiplicand
M: n-bit odd modulus, typically prime
R: 2n

R-1: modular multiplicative inverse of R
(RR-1) mod M = 1

M′: n-bit integer satisfying RR-1 – MM′ = 1

Montgomery showed how to perform this multiplication
without dividing by M in [4]:

Multiply: Z = X × Y
Reduce: reduce = Z × M′ mod R
 Z = [Z + reduce × M] / R
Normalize: if Z ≥ M then Z = Z - M

The reduce term has the property such that it forces the
numerator of the reduce step’s second equation to be divisible
by R, simplifying the division to a shift.

A. Parallelized very high radix design

In [1], an alternative implementation of the Montgomery
algorithm based on [5] is discussed. This parallel algorithm,
which prescales X by 2v and uses a pre-calculated value of M̂ ,
allows the reduce and multiply steps to occur simultaneously.

Each PE has a two-cycle latency, which is half the latency
of the previous implementation [3]. The block diagram of the
PE is shown in Fig. 1.

*

X

C

w

w

first
first to

next PE

*

w v

w-v
v+1

Z to next
PE

Y

Z

M
YM to

next PE

reduce v

v

v reduce to
next PE

3:2 C
SA

3:2 C
SA

upper
low

er

Fig. 1: Parallel Design Processing Element

The critical path for this design is from the reduce input to the
reduce output and consists of a register delay, a multiplier,
two carry save adders and a carry propagation adder. The
CPA is necessary in the design, because the reduce output of a
PE must be in non-redundant form for the
reduce× M̂ calculation of the next PE. Removing this CPA
from the critical path will be at the core of the speed increase
offered by quotient pipelining.

III. QUOTIENT PIPELINING

The cycle time of the parallel design could be significantly
improved by removing the CPA from the critical path.
However, since the reduce output of each PE is immediately
used in the successive PE, the CPA is required for the
conversion to non-redundant form. This problem would be
trivial if the reduce output is not immediately used, and an
entire PE cycle could be dedicated for the conversion to non-
redundant form.

 Quotient pipelining accomplishes exactly this task. A d-
stage quotient pipeline design lets the reduce output of a PE to
be used d+1 PEs later, allowing d PE cycles to be used for
non-redundant conversion. Since CPA delay is always less
than that of a PE cycle, d is set to 1 for the reminder of the
paper. The general quotient pipeline algorithm and its proof
of correctness are presented in Algorithm 4 of [5]. Its
operation is very similar to the parallel algorithm, except that
X is now prescaled by 2(d+1)v and the reduce values are now
stored and used d PEs later. In addition, this algorithm is one
PE cycle longer than the parallel algorithm due to the delay in
reduce utilization. In fact, the parallel design is the d = 0-
stage implementation of the quotient pipeline algorithm.

 The 1-stage quotient pipelined scalable very high radix
algorithm is shown in Fig. 2.

v: outer digit length, radix = 2v
d: stages of delay
M: n-bit odd modulus
M′: n-bit integer satisfying (-MM’) mod 2n = 1

 M~ : (M′ mod 2v(d+1))M
n′: n + (d+1)v, length of prescaled X
Y: n′-bit multiplicand
R: 2n’

R-1: modular multiplicative inverse of R,
 (RR-1) mod M = 1

)1(2
1~

:ˆ
+

+
dv

MM

v
nf ':

Z = 0
oldreduce = 0
for i = 0 to f

reduce = Z0
Z = Z >> v + oldreduce × M̂ + Xi × Y

 oldreduce = reduce
Z = Z << v + oldreduce

Fig. 2: Quotient Pipelined Algorithm

The idea that makes delaying reduce possible is the new
method from which M̂ is calculated. M~ is now d×v bits
longer, but later is right shifted by d×v, resulting in
M̂ remaining the same length. But the value of M̂ is now
different, and can be multiplied with reduce d PEs later to
yield the correct result. A rigorous proof is provided in [5].

The very high radix quotient pipelined algorithm can be
easily converted into a scalable design show in Fig. 3 by
iterating over w-bit words of Y and M:

w: inner word length

w
ne : +1

C: (v+1)-bit carry digit
 All other notations are defined on Fig. 3

Z = 0
oldreduce = 0
for i = 0 to f
 C = 0
 reduce = Z0
 for j = 0 to e
 (C, Zj) = (Zj

v-1:0, Zj-1
w- 1:v) + oldreduce × Mj +

 Xi × Yj + C
 oldreduce = reduce
Z = Z << v + oldreduce

Fig. 3: Scalable Quotient Pipeline Algorithm

IV. HARDWARE IMPLEMENTATION

The overall hardware architecture of the scalable 1-stage

quotient pipelined multiplier is similar to those presented in
[1], [2], [3], and [6]. Fig. 4 provides the overview architecture
of a scalable Montgomery multiplier using p PEs. Every PE
receives v bits of X and w bits of M̂ , Y, and Z on each step,

and also receives the reduce× M̂ product from two PEs
earlier. In one kernel cycle, p×v digits of X are processed.
Hence, k = n′/pv full kernel cycles are necessary to process all
the bits of X, with an additional partial kernel cycle to account
for the X scaling factor of 2(d+1)v and the extra stage of reduce
delay. A tristate bus allows the output of any PE to be written
to the result.

0

X Mem

PE1 PE2 PE3 PE p

Sequence
Control

Z

M
Y

x
Kernel

first

Oldreduce

FIFO

FIFO

0

YM
Mem

Z

Reduce *M

FIFO

0

Fig. 4: Overall Scalable Montgomery Multiplier Architecture

A. Processing Elements
In comparison with the parallel algorithm PE diagram in

Fig. 1, there are several significant changes in the new PE
shown in Fig. 5. First, notice that the reduce CPA is no longer
in the first cycle of the PE. The result from the last CSA is
stored and resolved by the CPA on the next cycle. This result
is now labeled as the oldreduce value to be used two PEs
down the pipeline. In essence, two sequential tasks that used
to be performed in one clock cycle are now distributed over
two clock cycles. In addition, because the reduce and M̂ bits
for the ith PE is available at i-1th PE, the reduce× M̂
operation has been moved up one PE cycle to further reduce
the critical path by removing a CSA. The final critical path of
this PE design is a register, multiplier, and CSA, eliminating
the CPA and one CSA from the critical path of the parallel
design.

Y

first

Z

X

*

3:2
CS

A

3:2
C

SA

3:2
C

SA

3:2
C

SA

Z

C

* OldReduce

U
pper

Lower

OldReduce

M M

Y

first

w

v+w

w
w

v

v

w

v+1

v+1

v
v

w-v
w-v

OldReduce* MOldReduce*M

v

v+w

Fig. 5: Quotient Pipelined PE Architecture

B. Latency

Xv -1: 0

Yw-1:0

Zw-1:0

Y2w-1:w

Z2w-1:w

Y3w-1: 2w

Z3w-1: 2w

Y4w-1: 3w

Z4w-1: 3w

Y5w-1: 4w

Z5w-1: 4w

Y6w-1: 5w

Z6w-1: 5w

Yw-1:0

Zw-1:0

Y2w-1:w

Z2w-1:w

Y3w-1: 2w

Z3w-1: 2w

Y4w-1: 3w

Z4w-1: 3w

Y5w-1: 4w

Z5w-1: 4w

K
er

n
el

 S
ta

ll

PE 1 PE 2 PE 3

Ke
rn

el
 C

yc
le

 1
Ke

rn
el

 C
yc

le
 2

X5v -1: 4v

… … … …

1

Cycle #

2

3

4

5

6

7

8

9

10

11

12

13

14

15

X2v-1:v

Yw-1:0

Zw-1:0

Y2w-1:w

Z2w-1:w

Y3w-1: 2w

Z3w-1: 2w

Y4w-1: 3w

Z4w-1: 3w

Y5w-1: 4w

Z5w-1: 4w

Y6w-1: 5w

Z6w-1: 5w

X3v -1: 2v

Yw-1:0

Zw-1:0

Z3w-1: 2w

Y4w-1: 3w

Z4w-1: 3w

Y5w-1: 4w

Y6w-1: 5w

Z6w-1: 5w

X4v -1: 3v

Yw-1:0

Zw-1:0

Y2w-1:w

Z2w-1:w

Y3w-1: 2w

Z3w-1: 2w

Y4w-1: 3w

Z4w-1: 3w

Y5w-1: 4w

Z5w-1: 4w

Y6w-1: 5w

Z6w-1: 5w

PE 4

Y2w-1:w

Z2w-1:w

Y3w-1: 2w

Z5w-1: 4w

X6v -1: 5v

Yw-1:0

Zw-1:0

Y2w-1:w

Z2w-1:w

Y3w-1: 2w

Z3w-1: 2w

X7v -1: 6v

Yw-1:0

Zw-1:0

Fig. 6: Quotient Pipeline Latency Graph

The latency of the quotient pipeline design is similar to that
of [1]. One PE cycle consists of two clock cycles. Each PE
multiplies v bits of X with w bits of Y on the first cycle, then
right shifts the result on the second cycle. When a PE has
processed all the bits of Y, a kernel cycle has completed, and it
will wait for a new set of X bits to start the cycle all over
again. Modification introduced by the quotient pipelining
algorithm shows no visible effect on the latency graph in Fig.
6.

An entire multiplication using p PEs takes n′/pv kernel
cycles plus an additional partial cycle. When a PE has
finished its kernel cycle, it cannot begin the next cycle until
the last PE has completed the first word of Z. This leaves the
PE in two possible situations when determining overall
latency. Case I corresponds to a large number of words, e,
relative to the number of processing elements, p. In this
situation, when the first PE has finished its kernel cycle, the
first word of Z from the last PE is already waiting in the FIFO,
there is no stall between kernel cycles, and the PE hardware is
used with maximal efficiency. Case II corresponds to a large
number of processing elements relative to the number of
words. As shown in Fig. 6, the first PE must wait until the last
PE finishes calculating the first word of Z.

Note that in cases where w = v, this (e) is replaced with
(e+1) because an additional cycle is then necessary to handle
the v+1 carry bits. There is a two-cycle latency between PEs.
Thus, with p PEs, there is a 2p cycle delay before the first PE
may begin processing again.

Therefore Case I occurs when (e) ≥ 2p+1 and Case II
occurs when (e) < 2p+1.

Case I: The first PE is used continuously (e) times per
kernel cycle for k full kernel cycles. The length of the final
partial kernel cycle depends on f and p. Assuming f is evenly
divisible by p, the output of PE 1 during the additional kernel
cycle is the final result, and so the partial kernel cycle is (e)
clock cycles. Otherwise (e) + 2 (f mod p) additional clock
cycles are necessary. Therefore the total delay dI is

 dI = k(e) + (e) + 2(f mod p) (2)

Case II: Each kernel cycle takes 2p clock cycles until the
first word of Z is ready, plus 1 to bypass the result back to the
first PE through the queue. Thus k(2p+1) full kernel cycles are
needed. Again, the last partial kernel cycle has an additional
delay of (e) + 2 (f mod p) clock cycles. Therefore the total
delay dII is

dII = k(2p+1) + (e) + 2(f mod p) (3)

Rewriting these delays in terms of the design parameters n,
w, v, and p, and assuming integer divisibility, we obtain

w
vn

pw
n

pwv
ndI

242 +++= for vpwn −> 2 (4)

422 ++++=
w

vn
vp
n

v
ndII

 for vpwn −≤ 2 (5)

V. RESULTS

The quotient pipelined algorithm was coded in Verilog and

synthesized onto a Virtex II XC2V2000-6 FPGA using
Synplify Pro. A complete radix 216 Montgomery multiplier
unit with 16 PEs uses 3825 LUTs and 32 18×18 multipliers.

The synthesized unit operates at 135.7 Mhz with a critical path
through the multiplier and CSA, matching our prediction.

Table 1 compares the performance of the quotient pipelined
design with that of previous scalable designs. Eliminating the
CPA from the critical path gives the quotient pipelined design
a 30% faster cycle time. Even though the quotient pipeline
design requires a few more PE cycles to complete the overall
multiplication, these extra clock cycles are outweighed by the
faster clock. For 1024-bit modular exponentiation using 16
PEs, the quotient pipelined design is 20% faster than the
parallel design.

Of course, the tradeoff of the quotient pipeline design is not
only increase in PE cycles, but also increase in hardware and
the overall complexity of design. Most of the temporary
values within each PE are in redundant form and require extra
registers and CSAs. More registers are also needed to store
oldreduce. Even though these extra components do not affect
the critical path of the design, they do increase the overall
hardware requirement. Comparing to the parallel design,
Table 1 shows a 45% increase in LUTs.

VI. CONCLUSIONS

This paper has shown an implementation of a scalable very
high radix quotient pipelined Montgomery multiplier. This
design improved upon methods used in [1] by removing the
reduce dependency of successive PEs. As a result, we were
able to remove a CPA and a CSA from the critical path of [1]
at the cost of up to one extra kernel cycle. Synthesis results
show that the quotient pipeline design clocks 30% faster than
previous very high radix designs. It performs 1024-bit
modular exponentiation in 5.1 ms using 16 PEs, 20% faster

Description Hardware Technology Clock Speed Reference 256-bit
time (ms)

1024-bit
time (ms)

Quotient pipeline scalable
radix 216 16 PEs x 16 bits

3825 LUTs
+ 32 mults
+ ~5n RAM

Xilinx Virtex II 135.7 MHz

This work 0.21 5.1

Quotient pipeline scalable
radix 216 4 PEs x 16 bits

920 LUTs
+ 8 mults
+ ~5n RAM

Xilinx Virtex II 135.7MHz This work 0.37 17.4

Parallel scalable radix 216
16 PEs x 16 bits

2608 LUTs
+ 32 mults
+ ~5n RAM

Xilinx Virtex II 106.3MHz [1] 0.25 6.3

Parallel scalable radix 216 4
PEs x 16 bits

640 LUTs
+ 8 mults
+ ~5n RAM

Xilinx Virtex II 106.3 MHz [1] 0.43 21.6

Scalable radix 216 16 PEs x
16 bits

2336 LUTs
+ 32 mults
+ ~5n RAM

Xilinx Virtex II 106.3 MHz [3] 0.38 6.31

Scalable radix 216 4 PEs x 16
bits

584 LUTs
+ 8 mults
+ ~5n RAM

Xilinx Virtex II 106.3MHz [3] 0.43 21

Improved radix 2 64 PEs x
16 bits

5598 LUTs
+ ~5n RAM

Xilinx Virtex II 144 MHz [2] 1.0 16

Improved radix 2 16 PEs x
16 bits

1514 LUTs
+ ~5n RAM

Xilinx Virtex II 144 MHz [2] 1.1 59

TABLE 1: SYNTHESIS PERFORMANCE COMPARISON OF VARIOUS
MONTGOMERY MULTIPLIERS

than the parallel design. However, the quotient pipelined
design uses 45% more LUTs in each PE than the parallel
design.

Removing the CPA from the critical path is the most
significant modification of the quotient pipelined design. It
allowed more even distribution of operations over the two
clock cycles in each PE cycle. We are presently investigating
other modifications of the parallel design to remove the CPA
from the critical path without increasing the number of kernel
cycles or the hardware requirements.

REFERENCES

[1] K. Kelly and D. Harris, “Parallelized Very High Radix Scalable

Montgomery Multipliers,” Proc. Asilomar Conf. Signals, Systems, and
Computers, pp. 1196-1200, 2005.

[2] D. Harris et al., “An improved unified scalable radix-2 Montgomery
multiplier”, IEEE Symp. Computer Arithmetic, pp. 172-178, 2005.

[3] K. Kelley and D. Harris, “Very high radix scalable Montgomery
multipliers”, IEEE IWSOC Conference, pp. 400-404, July 2005.

[4] P. Montgomery, “Modular multiplication without trial division,” Math.
Of Computation, vol. 44, no. 170, pp. 519-521, April 1985.

[5] H. Orup, “Simplifying quotient determination in high-radix modular
multiplication,” Proc. 12th IEEE Symp. Computer Arithmetic, pp. 193-
199, 1995.

[6] A. Tenca and Ç. Koç, “A scalable architecture for modular
multiplication based on Montgomery’s algorithm,” IEEE Trans.
Computers, vol. 52, no.9, pp. 1215-1221, Sept. 2003.

[7] Xilinx, Virtex-II Pro and Virtex-II Pro X Platform FPGAs Datasheet,
June 30, 2004, www.xilinx.com

