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Abstract— This paper describes the FPGA implementation of a 
scalable very high radix Montgomery multiplier using quotient 
pipelining.  It improves upon previous designs by removing 
critical dependencies between successive processing elements.  
This design can perform 1024-bit modular exponentiation in 5.1 
ms using 3825 4-input lookup tables and 32 18×18 multipliers, a 
20% speed increase over a comparable design without quotient 
pipelining.   

 
I. INTRODUCTION 

 
Modular exponentiation is widely used in modern 

cryptography algorithms, such as RSA and digital signatures.  
However the operation usually involves 256 to 2048-bit 
numbers and is time-consuming due to the long divisions 
involved in the modulo calculation. Montgomery 
multiplication transforms this difficult division into a simple 
bit shift, and is therefore more attractive for hardware 
implementation. 

 Since the advent of Montgomery’s algorithm in [4], there 
have been many implementations of the Montgomery 
multiplier.  In a conventional radix-2 implementation, an n-bit 
multiplication is performed using n steps, each acting on 1 bit 
of the multiplier and all n bits of the multiplicand.  These 
designs only support one choice of n.  Scalable radix-2 designs 
[6, 2] break the multiplicand into w-bit chunks.  They contain 
processing elements (PEs) organized in a systolic array.  Each 
PE handles 1 bit of the multiplier and w bits of the 
multiplicand at a time.  The scalable multiplier iterates until 
the entire multiplication completes.  We have recently 
proposed scalable very high radix designs [3, 1] that handle v 
bits of the multiplier and w bits of the multiplicand in each PE.  
These designs require w×v bit multiplication in each PE and 
are well suited to FPGAs containing dedicated multipliers. 

One major delay that exists in very high radix Montgomery 
multiplication is the calculation of reduce.  Reduce is the 
crucial value that transforms the long division into a simple 
shift.  Past implementations such as [3] required two extra 
cycles per PE to handle the reduce calculation.  Reference [5] 
proposed several variations of Montgomery’s algorithm that 
decreased the delay caused by reduce.  In particular, the 
parallel algorithm was implemented in [1], eliminating the two 

extra cycles that were present in [3].  This paper intends to 
further improve the reduce calculation through the quotient 
pipelining algorithm presented in [5] and completely eliminate 
the reduce dependency between successive PEs.  

 
II. BACKGROUND 

 
The basic Montgomery multiplication algorithm is  
 

Z = (XYR-1) mod M                (1) 
 
With the notation 
 
X: n-bit multiplier 
Y: n-bit multiplicand 
M: n-bit odd modulus, typically prime 
R: 2n 

R-1:   modular multiplicative inverse of R 
(RR-1) mod M = 1 

M′: n-bit integer satisfying RR-1 – MM′ = 1 
 

Montgomery showed how to perform this multiplication 
without dividing by M in [4]: 

Multiply: Z = X × Y 
Reduce: reduce = Z × M′ mod R 
  Z = [Z + reduce × M] / R 
Normalize: if Z ≥ M then Z = Z - M 

The reduce term has the property such that it forces the 
numerator of the reduce step’s second equation to be divisible 
by R, simplifying the division to a shift.  
 
A. Parallelized very high radix design 

In [1], an alternative implementation of the Montgomery 
algorithm based on [5] is discussed.  This parallel algorithm, 
which prescales X by 2v and uses a pre-calculated value of M̂ , 
allows the reduce and multiply steps to occur simultaneously. 

Each PE has a two-cycle latency, which is half the latency 
of the previous implementation [3].  The block diagram of the 
PE is shown in Fig. 1.  
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Fig. 1: Parallel Design Processing Element 

The critical path for this design is from the reduce input to the 
reduce output and consists of a register delay, a multiplier, 
two carry save adders and a carry propagation adder.  The 
CPA is necessary in the design, because the reduce output of a 
PE must be in non-redundant form for the 
reduce× M̂ calculation of the next PE.  Removing this CPA 
from the critical path will be at the core of the speed increase 
offered by quotient pipelining.   
  

III. QUOTIENT PIPELINING 
 

The cycle time of the parallel design could be significantly 
improved by removing the CPA from the critical path.  
However, since the reduce output of each PE is immediately 
used in the successive PE, the CPA is required for the 
conversion to non-redundant form.  This problem would be 
trivial if the reduce output is not immediately used, and an 
entire PE cycle could be dedicated for the conversion to non-
redundant form. 

 Quotient pipelining accomplishes exactly this task.  A d-
stage quotient pipeline design lets the reduce output of a PE to 
be used d+1 PEs later, allowing d PE cycles to be used for 
non-redundant conversion.  Since CPA delay is always less 
than that of a PE cycle, d is set to 1 for the reminder of the 
paper.  The general quotient pipeline algorithm and its proof 
of correctness are presented in Algorithm 4 of [5].  Its 
operation is very similar to the parallel algorithm, except that 
X is now prescaled by 2(d+1)v and the reduce values are now 
stored and used d PEs later.  In addition, this algorithm is one 
PE cycle longer than the parallel algorithm due to the delay in 
reduce utilization.  In fact, the parallel design is the d = 0-
stage implementation of the quotient pipeline algorithm. 

 The 1-stage quotient pipelined scalable very high radix 
algorithm is shown in Fig. 2. 
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Z = 0  
oldreduce = 0 
for i = 0 to f 

reduce = Z0 
Z = Z >> v + oldreduce × M̂  + Xi × Y 

 oldreduce = reduce 
Z = Z << v + oldreduce 

Fig. 2: Quotient Pipelined Algorithm 

 
The idea that makes delaying reduce possible is the new 
method from which M̂ is calculated.  M~ is now d×v bits 
longer, but later is right shifted by d×v, resulting in 
M̂ remaining the same length.  But the value of M̂  is now 
different, and can be multiplied with reduce d PEs later to 
yield the correct result.  A rigorous proof is provided in [5].   

The very high radix quotient pipelined algorithm can be 
easily converted into a scalable design show in Fig. 3 by 
iterating over w-bit words of Y and M: 

w: inner word length 







w
ne : +1 

C: (v+1)-bit carry digit 
 All other notations are defined on Fig. 3 

 
Z = 0  
oldreduce = 0 
for i = 0 to f 
 C = 0 
 reduce = Z0 
 for j = 0 to e  
  (C, Zj)  = (Zj

v-1:0, Zj-1
w- 1:v) + oldreduce × Mj + 

             Xi × Yj + C 
 oldreduce = reduce 
Z = Z << v + oldreduce 

Fig. 3: Scalable Quotient Pipeline Algorithm 

 
IV. HARDWARE IMPLEMENTATION 

 
The overall hardware architecture of the scalable 1-stage 

quotient pipelined multiplier is similar to those presented in 
[1], [2], [3], and [6].  Fig. 4 provides the overview architecture 
of a scalable Montgomery multiplier using p PEs.  Every PE 
receives v bits of X and w bits of M̂ , Y, and Z on each step, 



and also receives the reduce× M̂  product from two PEs 
earlier.  In one kernel cycle, p×v digits of X are processed.  
Hence, k = n′/pv full kernel cycles are necessary to process all 
the bits of X, with an additional partial kernel cycle to account 
for the X scaling factor of 2(d+1)v and the extra stage of reduce 
delay.  A tristate bus allows the output of any PE to be written 
to the result. 
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Fig. 4: Overall Scalable Montgomery Multiplier Architecture 

A. Processing Elements 
In comparison with the parallel algorithm PE diagram in 

Fig. 1, there are several significant changes in the new PE 
shown in Fig. 5.  First, notice that the reduce CPA is no longer 
in the first cycle of the PE.  The result from the last CSA is 
stored and resolved by the CPA on the next cycle.  This result 
is now labeled as the oldreduce value to be used two PEs 
down the pipeline.  In essence, two sequential tasks that used 
to be performed in one clock cycle are now distributed over 
two clock cycles.  In addition, because the reduce and M̂  bits 
for the ith PE is available at i-1th PE, the reduce× M̂  
operation has been moved up one PE cycle to further reduce 
the critical path by removing a CSA.  The final critical path of 
this PE design is a register, multiplier, and CSA, eliminating 
the CPA and one CSA from the critical path of the parallel 
design.   
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Fig. 5: Quotient Pipelined PE Architecture 

 
 
 
 

 
B. Latency 
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Fig. 6: Quotient Pipeline Latency Graph 

The latency of the quotient pipeline design is similar to that 
of [1].  One PE cycle consists of two clock cycles.  Each PE 
multiplies v bits of X with w bits of Y on the first cycle, then 
right shifts the result on the second cycle.  When a PE has 
processed all the bits of Y, a kernel cycle has completed, and it 
will wait for a new set of X bits to start the cycle all over 
again.  Modification introduced by the quotient pipelining 
algorithm shows no visible effect on the latency graph in Fig. 
6.  

An entire multiplication using p PEs  takes n′/pv kernel 
cycles plus an additional partial cycle.  When a PE has 
finished its kernel cycle, it cannot begin the next cycle until 
the last PE has completed the first word of Z.  This leaves the 
PE in two possible situations when determining overall 
latency.  Case I corresponds to a large number of words, e, 
relative to the number of processing elements, p.  In this 
situation, when the first PE has finished its kernel cycle, the 
first word of Z from the last PE is already waiting in the FIFO, 
there is no stall between kernel cycles, and the PE hardware is 
used with maximal efficiency.  Case II corresponds to a large 
number of processing elements relative to the number of 
words.  As shown in Fig. 6, the first PE must wait until the last 
PE finishes calculating the first word of Z.  

Note that in cases where w = v, this (e) is replaced with 
(e+1) because an additional cycle is then necessary to handle 
the v+1 carry bits.  There is a two-cycle latency between PEs.  
Thus, with p PEs, there is a 2p cycle delay before the first PE 
may begin processing again.   



Therefore Case I occurs when (e) ≥ 2p+1 and Case II 
occurs when (e) < 2p+1. 

Case I: The first PE is used continuously (e) times per 
kernel cycle for k full kernel cycles.  The length of the final 
partial kernel cycle depends on f and p.  Assuming f is evenly 
divisible by p, the output of PE 1 during the additional kernel 
cycle is the final result, and so the partial kernel cycle is (e) 
clock cycles.  Otherwise (e) + 2 (f mod p) additional clock 
cycles are necessary.  Therefore the total delay dI is  

 

 dI = k(e) + (e) + 2(f mod p)                     (2) 
 

Case II: Each kernel cycle takes 2p clock cycles until the 
first word of Z is ready, plus 1 to bypass the result back to the 
first PE through the queue.  Thus k(2p+1) full kernel cycles are 
needed.  Again, the last partial kernel cycle has an additional 
delay of (e) + 2 (f mod p) clock cycles.  Therefore the total 
delay dII is  

dII = k(2p+1) + (e) + 2(f mod p)            (3)   

Rewriting these delays in terms of the design parameters n, 
w, v, and p, and assuming integer divisibility, we obtain 
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V. RESULTS 

 
The quotient pipelined algorithm was coded in Verilog and 

synthesized onto a Virtex II XC2V2000-6 FPGA using 
Synplify Pro.  A complete radix 216 Montgomery multiplier 
unit with 16 PEs uses 3825 LUTs and 32 18×18 multipliers.  

The synthesized unit operates at 135.7 Mhz with a critical path 
through the multiplier and CSA, matching our prediction. 

Table 1 compares the performance of the quotient pipelined 
design with that of previous scalable designs.  Eliminating the 
CPA from the critical path gives the quotient pipelined design 
a 30% faster cycle time.  Even though the quotient pipeline 
design requires a few more PE cycles to complete the overall 
multiplication, these extra clock cycles are outweighed by the 
faster clock.  For 1024-bit modular exponentiation using 16 
PEs, the quotient pipelined design is 20% faster than the 
parallel design.   

Of course, the tradeoff of the quotient pipeline design is not 
only increase in PE cycles, but also increase in hardware and 
the overall complexity of design.  Most of the temporary 
values within each PE are in redundant form and require extra 
registers and CSAs.  More registers are also needed to store 
oldreduce.  Even though these extra components do not affect 
the critical path of the design, they do increase the overall 
hardware requirement.  Comparing to the parallel design, 
Table 1 shows a 45% increase in LUTs. 
 

VI. CONCLUSIONS 
 

This paper has shown an implementation of a scalable very 
high radix quotient pipelined Montgomery multiplier.  This 
design improved upon methods used in [1] by removing the 
reduce dependency of successive PEs.  As a result, we were 
able to remove a CPA and a CSA from the critical path of [1] 
at the cost of up to one extra kernel cycle.  Synthesis results 
show that the quotient pipeline design clocks 30% faster than 
previous very high radix designs.  It performs 1024-bit 
modular exponentiation in 5.1 ms using 16 PEs, 20% faster 

Description Hardware Technology Clock Speed Reference 256-bit 
time (ms) 

1024-bit 
time (ms) 

Quotient pipeline  scalable 
radix 216 16 PEs x 16 bits  

3825 LUTs 
+ 32 mults 
+ ~5n RAM 

Xilinx Virtex II 135.7 MHz 
 

This work 0.21 5.1 

Quotient pipeline  scalable 
radix 216 4 PEs x 16 bits  

920  LUTs 
+ 8 mults 
+ ~5n RAM 

Xilinx Virtex II 135.7MHz This work 0.37 17.4 

Parallel  scalable radix 216 
16 PEs x 16 bits 

2608 LUTs 
+ 32 mults 
+ ~5n RAM 

Xilinx Virtex II 106.3MHz [1] 0.25 6.3 

Parallel scalable radix 216 4 
PEs x 16 bits 

640 LUTs 
+ 8 mults 
+ ~5n RAM 

Xilinx Virtex II 106.3 MHz [1] 0.43 21.6 

Scalable radix 216 16 PEs x 
16 bits 

2336 LUTs 
+ 32 mults 
+ ~5n RAM 

Xilinx Virtex II 106.3 MHz [3] 0.38 6.31 

Scalable radix 216 4 PEs x 16 
bits 

584 LUTs 
+ 8 mults 
+ ~5n RAM 

Xilinx Virtex II 106.3MHz [3] 0.43 21 

Improved radix 2 64 PEs x 
16 bits 

5598 LUTs 
+ ~5n RAM 

Xilinx Virtex II 144 MHz [2] 1.0 16 

Improved radix 2 16 PEs x 
16 bits 

1514 LUTs 
+ ~5n RAM 

Xilinx Virtex II 144 MHz [2] 1.1 59 

TABLE 1: SYNTHESIS PERFORMANCE COMPARISON OF VARIOUS 
MONTGOMERY MULTIPLIERS 



than the parallel design.  However, the quotient pipelined 
design uses 45% more LUTs in each PE than the parallel 
design. 

Removing the CPA from the critical path is the most 
significant modification of the quotient pipelined design.  It 
allowed more even distribution of operations over the two 
clock cycles in each PE cycle.  We are presently investigating 
other modifications of the parallel design to remove the CPA 
from the critical path without increasing the number of kernel 
cycles or the hardware requirements.   
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