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     Abstract — This paper describes a parallelized very high radix 
scalable Montgomery multiplier designed for non-redundant 
FPGA implementations.  It improves on the very high radix 
scalable architecture by using techniques to parallelize the two 
multiplications within each processing element. The new design 
can perform 1024-bit modular exponentiation in 5.0 ms and 256-
bit modular exponentiation in 0.20 ms using 2593 4-input lookup 
tables and 32 16 × 16 multipliers, improving the fastest scalable 
design yet reported. 

I. INTRODUCTION 

Many modern cryptographic techniques rely on modular 
exponentiation as the fundamental operation.  Montgomery’s 
modular multiplication algorithm [8] is attractive for hardware 
implementations of cryptographic accelerators because it can 
perform modular exponentiation without needing costly 
division steps.   

There have been many implementations of Montgomery 
multipliers.  Scalable designs are attractive because they allow 
a variable number of fixed-width processing elements to 
operate on n-bit operands.  [13] presents a scalable radix-2 
design based on a kernel of p processing elements, each w × 1 
– bit wide.  [4] improves on this design by reducing the 
latency between processing elements.  [5] presents a scalable 
radix 2v design optimized for implementation on an FPGA, 
using w × v – bit processing elements.   

This paper improves on the scalable radix-2v design in [5] 
by transforming the modulus to avoid multiplication in the 
calculation of reduce [7] and by pre-scaling X by 2v to allow 
the processing element multiplications to occur in parallel [2] 
and [6].  These improvements come at the expense of a single 
pre-computation for the new modulus and an extra iteration 
because of the additional factor of 2v.  

II. MONTGOMERY MULTIPLICATION 

Montgomery multiplication is defined as 
 

Z = (XYR-1) mod M            (1) 
with the notation 
 

X: n-bit multiplier 
Y: n-bit multiplicand 
M: n-bit odd modulus, typically prime 

M’: n-bit integer satisfying RR-1 – MM’ = 1 
R: the radix, 2n 

R-1:   modular multiplicative inverse of R 
(RR-1) mod M = 1 

 
 

It is performed with the following steps [8]: 
 

Multiply: Z = X × Y 
Reduce: reduce = Z × M’ mod R 
  Z = [Z + reduce × M] / R 
Normalize: if Z ≥ M then Z = Z - M 
 

reduce has the important property that Z + reduce × M has 
0’s in the n least significant positions.  The mod R and divide 
by R steps are trivial because R is a power of 2, so 
Montgomery multiplication avoids difficult divisions.  The 
normalize step can be skipped in certain repeated 
Montgomery multiplies, and so we ignore it for the rest of this 
paper. 
 
A.  Parallelized very high radix 

The Montgomery multiplication algorithm above can be 
rewritten to allow a hardware implementation using v × n - bit 
multipliers instead of n × n - bit multipliers [10].  
Multiplication in the calculation of reduce can be avoided by 
transforming the modulus M to M̂  at the expense of a single 
precomputation.  Furthermore, the multiplication and 
reduction steps can occur in parallel if X is prescaled by 2v.  
The tradeoff here is that the result Z can now be up to 2v times 
larger than M, so the normalization step is no longer a single 
subtraction.  However, it can still be skipped in certain 
repeated Montgomery multiplies, and so we ignore it for the 
rest of this paper. 

The following notation is used to describe this parallelized 
very high radix Montgomery multiplication.  Fig. 1 is 
equivalent to Algorithm 4 with zero stages of delay [11]. 

 

v: outer digit length, radix = 2v 
M: n-bit odd modulus 
M’: n-bit integer satisfying (-MM’) mod 2n = 1 

    M~ : (M' mod 2v)M 
n’: n + v, length of prescaled X 
Y: n’-bit multiplicand 
R: 2n’ 



R-1:   modular multiplicative inverse of R, 
 (RR-1) mod M = 1 
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Z = 0 
for i = 0 to f 
     reduce =  Zv-1:0 

    Z = (Z >> v) + reduce × M̂  + X(i+1)v-1:iv × Y 
 

Fig. 1. Parallelized radix-2v algorithm 
 
 
B.  Parallelized very high radix scalable design 

The algorithm in Fig. 1 can be rewritten to perform v × w – 
bit multiplication instead of v × n – bit, making it a scalable 
design.  The following additional notation will be used to 
describe the parallelized very high radix scalable Montgomery 
multiplication algorithm. 

 
w: inner word length 
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C: (v+1)-bit carry digit 
 

Note that very high radix designs should use w ≥ v because 
each w-bit word is right-shifted by v bits in the reduction step. 
 
 
Z = 0 
for i = 0 to f 
   C = 0 
   reduce =  Zv-1:0 

   for j = 0 to e - 1 + 
     (C, Z(j+1)w-1:jw) =  (Z(j+1)w+v-1:(j+1)w, Z(j+1)w-1:jw+v)+  

reduce × M̂ (j+1)w-1:jw +      

                                                  X(i+1)v-1:iv × Y(j+1)w-1:jw + C 
 

Fig. 2. Parallelized scalable radix-2v algorithm 
 
 

III. HARDWARE IMPLEMENTATION 

This improved algorithm allows similar hardware 
architectures to those presented in [4], [5], and [13].  Fig. 3 
shows the architecture of a scalable Montgomery multiplier 
with a kernel of p PEs.  Each PE receives v bits of X and 
reduce and w bits of M̂ , Y, and Z on each step. In one kernel 
cycle, p v-bit digits of X are processed.  Hence, k = n’/pv full 
kernel cycles are necessary to process all the bits of X, with an 
additional partial kernel cycle to account for the factor of 2v.  
A tristate bus allows the output of any PE to be written to the 
result. 
 

 
 

Fig. 3. Scalable very high radix Montgomery multiplier architecture 
 

 
A.  Processing elements 

Fig. 4 shows the implementation of a processing element.  
The weights of the lines indicate the bus widths. The PE 
contains a pair of w × v - bit multipliers, a pair of 3:2 carry-
save adders, and one w + v – bit carry-propagate adder.  A 
feedback register holds the running carry C.  A control path at 
the top of the PE indicates when X and reduce should be 
latched.  Compared to [5], the pre-computation of M̂ allows 
two multiplexers to be removed from the PE, one of which 
was in the critical path.   

The PE is pipelined to offer single-cycle throughput but 
two-cycle latency, compared to four-cycle latency in [5].  This 
latency improvement further decreases the area of each PE by 
removing pipeline registers.  

 
B.  Latencies 

Fig. 5 shows the pipeline timing for a system with four 
processing elements.  The vertical axis represents time and the 
horizontal represents PEs.  On cycle 1, PE 1 computes Zw-1:0 = 
X(i+1)v-1:iv × Y(j+1)w-1:jw.  On each of the e-1 subsequent cycles, it 
processes the same digit of X but the next words of Y, Z, 
and M̂ .  For example, on cycle 2, PE 1 computes Z2w-1:w and 
right shifts Z by v bits to produce the new least significant 
word of Z.  On cycle 3, PE 2 can begin using this least 
significant word of Z.  
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Fig. 4. Processing element 
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Fig. 5. Hardware pipeline diagram p=4, e=5 

 
 
Recall that an entire multiplication requires k = n’/pv full 

kernel cycles, plus a partial cycle.  The kernel cycle time is the 
number of clock cycles until PE 1 can begin processing the 
next digit of X.  PE 1 cannot begin the next kernel cycle until 
it has processed all the words of Z and until PE p has 
produced the first word of Z.  The output of PE p is bypassed 
back to PE 1 through a FIFO, adding one cycle of latency.  
This leads to two cases to determine the multiplication 
latency. Case I corresponds to a large number of words, e, 
relative to the number of processing elements, p.  Here there is 
no stall between kernel cycles, and so the PE hardware is used 
with maximal efficiency.  Case II corresponds to a large 
number of processing elements relative to the number of 
words.  As shown in Fig. 5, the first PE must be stalled until 
the last PE finishes calculating the first word of Z.  

In general, to handle all the words of Y, a particular PE 
must perform (e) clock cycles in one kernel cycle (or in one 
iteration of the outer loop). 

Note that in cases where w=v, this (e) is replaced with 
(e+1) because an additional cycle is then necessary to handle 
the v+1 carry bits.  There is a 2 clock cycle latency between 
PEs.  Thus, with p PEs, there is a 2p delay before the first PE 
may begin processing again.   

Therefore Case I occurs when (e)>=2p+1 and Case II 
occurs when (e)< 2p+1. 
 

 
 

Case I: The first PE is used continuously (e) times per 
kernel cycle for k full kernel cycles.  The length of the final 
partial kernel cycle depends on f and p.  Assuming f is evenly 
divisible by p, the output of PE 1 during the additional kernel 
cycle is the final result, and so the partial kernel cycle is (e) 
clock cycles.  Otherwise (e) + 2*(f mod p) additional clock 
cycles are necessary.  Therefore the total delay dI is  

 dI = k(e) + (e) + 2*(f mod p)     (2)  

Case II: Each kernel cycle takes 2p clock cycles until the 
first word of Z is ready, plus 1 to bypass the result back to the 
first PE through the queue.  Thus k(2p+1) full kernel cycles 
are needed.  Again, the last partial kernel cycle has an 
additional delay of (e) + 2*(f mod p) clock cycles.  Therefore 
the total delay dII is  

dII = k(2p+1) + (e) + 2*(f mod p)             (3) 
Rewriting these delays in terms of the design parameters n, 

w, v, and p, and assuming integer divisibility, we obtain 

w
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These delays are similar those in [5], except the 4 cycle 
latency between processing elements is now 2 because 
multiplication and reduction take place in parallel.  The area 
grows as the product pwv.  When there are relatively few 
small PEs, the area-delay product is approximately n2, and so 
this design is efficient.  In Case II the latency approaches 
n(2/v + 1/w) with large amounts of hardware, and so the area-
delay product is approximately np(2w+v).  This parallelized 
design performs comparably to the old design when the 
number of words dominates (Case I), and outperforms 
significantly (approaching a factor of 2 speedup) when a large 
amount of hardware is available (Case II). 

4. RESULTS 

The very high radix Montgomery multiplier was coded in 
Verilog parameterized by p, w, and v, and verified against a C 
reference model.  It was synthesized using Synplicity Pro 
targeting a Xilinx Virtex-II speed grade 6 XC2V2000-6 
FPGA [16].  The results were not verified on an actual chip.  
Each PE uses two dedicated 18×18 block multipliers, two 
carry-save adders, and one carry-propagate adder.  The 
intrinsic size of the multipliers makes w = v = 16 a sweet spot 
for this design. 

The complete 16-PE radix 216 Montgomery multiplier 
(including sequencing hardware) contains 2593 LUTs, 32 
multipliers, and approximately 5n bits of RAM for the FIFO 
and operand storage.  It operates at a worst-case 135 MHz, 
limited by the critical path through the multiplier and adders.  

Table I compares the times for 256-bit and 1024-bit 
modular exponentiations for various Montgomery multiplier 
hardware implementations.  The exponentiation times are 2n + 
2 times that of a single modular multiplication.   



The scalable 16 PE design from this work consumes about 
10% fewer Virtex II LUTs than the equivalent design from 
[5], and performs 1024-bit modular exponentiation in 5.0 ms 
as compared to 6.6 ms.  It performs 256-bit modular 
exponentiation in 0.20 ms as compared to 0.40 ms.  Thus, the 
parallelized very high radix scalable Montgomery multiplier 
performs significantly faster when there are many PEs relative 
to the number of words.  The speedup observed in the 1024-
bit case can be attributed to the faster clock frequency, which 
was the result of a shorter critical path in the processing 
elements.  These simplifications within each PE further allow 
a reduced kernel area. 

5. CONCLUSIONS 

In summary, this paper has improved the scalable very high 
radix Montgomery multiplier by replacing X by 2vX to allow 
the multiplication and reduction steps to occur in parallel 
within each processing element and by a modulus 
transformation.  The parallel operation reduces latency from 4 
cycles to 2 between PEs and saves pipeline registers at the 
expense of extra postcomputation cycles.  The reduction 
modification eliminates a multipliexer from the critical path. 
Using a tristate bus within the kernel was a further 
improvement, allowing the design to work with any choice of 
p.  This design was targeted for a non-redundant FPGA 

implementation.  An implementation with 16 16×16 PEs uses 
32 dedicated 18×18 block multipliers and 2593 lookup tables 
to perform 1024-bit modular exponentiation in 5.0 ms and 
256-bit modular exponentiation in 0.20 ms. 

There remain several opportunities for investigation of 
very high radix design Montgomery multiplication.  If v < w, a 
subsequent PE may begin operating on the w-v bits that are 
immediately available without waiting for a shift [4].  By 
conditionally killing carries within the MAC, the algorithm 
extends to unified multipliers for GF(2n) as well as GF(p).  It 
would also be interesting to investigate a quotient-pipelined 
[11], [12] ASIC implementation in redundant form in which 
tradeoffs may be made among w, v, and p to affect cycle time 
and cycle count.   
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