
Parallelized Very High Radix Scalable
Montgomery Multipliers

Kyle Kelley and David Harris

Harvey Mudd College
301 E. Twelfth St. Claremont, CA 91711
{Kyle_Kelley, David_Harris}@hmc.edu

 Abstract — This paper describes a parallelized very high radix
scalable Montgomery multiplier designed for non-redundant
FPGA implementations. It improves on the very high radix
scalable architecture by using techniques to parallelize the two
multiplications within each processing element. The new design
can perform 1024-bit modular exponentiation in 5.0 ms and 256-
bit modular exponentiation in 0.20 ms using 2593 4-input lookup
tables and 32 16 × 16 multipliers, improving the fastest scalable
design yet reported.

I. INTRODUCTION

Many modern cryptographic techniques rely on modular
exponentiation as the fundamental operation. Montgomery’s
modular multiplication algorithm [8] is attractive for hardware
implementations of cryptographic accelerators because it can
perform modular exponentiation without needing costly
division steps.

There have been many implementations of Montgomery
multipliers. Scalable designs are attractive because they allow
a variable number of fixed-width processing elements to
operate on n-bit operands. [13] presents a scalable radix-2
design based on a kernel of p processing elements, each w × 1
– bit wide. [4] improves on this design by reducing the
latency between processing elements. [5] presents a scalable
radix 2v design optimized for implementation on an FPGA,
using w × v – bit processing elements.

This paper improves on the scalable radix-2v design in [5]
by transforming the modulus to avoid multiplication in the
calculation of reduce [7] and by pre-scaling X by 2v to allow
the processing element multiplications to occur in parallel [2]
and [6]. These improvements come at the expense of a single
pre-computation for the new modulus and an extra iteration
because of the additional factor of 2v.

II. MONTGOMERY MULTIPLICATION

Montgomery multiplication is defined as

Z = (XYR-1) mod M (1)
with the notation

X: n-bit multiplier
Y: n-bit multiplicand
M: n-bit odd modulus, typically prime

M’: n-bit integer satisfying RR-1 – MM’ = 1
R: the radix, 2n

R-1: modular multiplicative inverse of R
(RR-1) mod M = 1

It is performed with the following steps [8]:

Multiply: Z = X × Y
Reduce: reduce = Z × M’ mod R
 Z = [Z + reduce × M] / R
Normalize: if Z ≥ M then Z = Z - M

reduce has the important property that Z + reduce × M has
0’s in the n least significant positions. The mod R and divide
by R steps are trivial because R is a power of 2, so
Montgomery multiplication avoids difficult divisions. The
normalize step can be skipped in certain repeated
Montgomery multiplies, and so we ignore it for the rest of this
paper.

A. Parallelized very high radix

The Montgomery multiplication algorithm above can be
rewritten to allow a hardware implementation using v × n - bit
multipliers instead of n × n - bit multipliers [10].
Multiplication in the calculation of reduce can be avoided by
transforming the modulus M to M̂ at the expense of a single
precomputation. Furthermore, the multiplication and
reduction steps can occur in parallel if X is prescaled by 2v.
The tradeoff here is that the result Z can now be up to 2v times
larger than M, so the normalization step is no longer a single
subtraction. However, it can still be skipped in certain
repeated Montgomery multiplies, and so we ignore it for the
rest of this paper.

The following notation is used to describe this parallelized
very high radix Montgomery multiplication. Fig. 1 is
equivalent to Algorithm 4 with zero stages of delay [11].

v: outer digit length, radix = 2v
M: n-bit odd modulus
M’: n-bit integer satisfying (-MM’) mod 2n = 1

 M~ : (M' mod 2v)M
n’: n + v, length of prescaled X
Y: n’-bit multiplicand
R: 2n’

R-1: modular multiplicative inverse of R,
 (RR-1) mod M = 1

v
MM

2
1~

:ˆ +

⎥⎥
⎤

⎢⎢
⎡

v
nf ':

Z = 0
for i = 0 to f
 reduce = Zv-1:0

 Z = (Z >> v) + reduce × M̂ + X(i+1)v-1:iv × Y

Fig. 1. Parallelized radix-2v algorithm

B. Parallelized very high radix scalable design

The algorithm in Fig. 1 can be rewritten to perform v × w –
bit multiplication instead of v × n – bit, making it a scalable
design. The following additional notation will be used to
describe the parallelized very high radix scalable Montgomery
multiplication algorithm.

w: inner word length

⎥⎥
⎤

⎢⎢
⎡

w
ne : +1

C: (v+1)-bit carry digit

Note that very high radix designs should use w ≥ v because
each w-bit word is right-shifted by v bits in the reduction step.

Z = 0
for i = 0 to f
 C = 0
 reduce = Zv-1:0

 for j = 0 to e - 1 +
 (C, Z(j+1)w-1:jw) = (Z(j+1)w+v-1:(j+1)w, Z(j+1)w-1:jw+v)+

reduce × M̂ (j+1)w-1:jw +

 X(i+1)v-1:iv × Y(j+1)w-1:jw + C

Fig. 2. Parallelized scalable radix-2v algorithm

III. HARDWARE IMPLEMENTATION

This improved algorithm allows similar hardware
architectures to those presented in [4], [5], and [13]. Fig. 3
shows the architecture of a scalable Montgomery multiplier
with a kernel of p PEs. Each PE receives v bits of X and
reduce and w bits of M̂ , Y, and Z on each step. In one kernel
cycle, p v-bit digits of X are processed. Hence, k = n’/pv full
kernel cycles are necessary to process all the bits of X, with an
additional partial kernel cycle to account for the factor of 2v.
A tristate bus allows the output of any PE to be written to the
result.

Fig. 3. Scalable very high radix Montgomery multiplier architecture

A. Processing elements

Fig. 4 shows the implementation of a processing element.
The weights of the lines indicate the bus widths. The PE
contains a pair of w × v - bit multipliers, a pair of 3:2 carry-
save adders, and one w + v – bit carry-propagate adder. A
feedback register holds the running carry C. A control path at
the top of the PE indicates when X and reduce should be
latched. Compared to [5], the pre-computation of M̂ allows
two multiplexers to be removed from the PE, one of which
was in the critical path.

The PE is pipelined to offer single-cycle throughput but
two-cycle latency, compared to four-cycle latency in [5]. This
latency improvement further decreases the area of each PE by
removing pipeline registers.

B. Latencies

Fig. 5 shows the pipeline timing for a system with four
processing elements. The vertical axis represents time and the
horizontal represents PEs. On cycle 1, PE 1 computes Zw-1:0 =
X(i+1)v-1:iv × Y(j+1)w-1:jw. On each of the e-1 subsequent cycles, it
processes the same digit of X but the next words of Y, Z,
and M̂ . For example, on cycle 2, PE 1 computes Z2w-1:w and
right shifts Z by v bits to produce the new least significant
word of Z. On cycle 3, PE 2 can begin using this least
significant word of Z.

*

X

C

w

w

first
first to

next PE

*

w v

w-v
v+1

Z to next
PE

Y

Z

M
YM to

next PE

reduce v

v

v reduce to
next PE

Fig. 4. Processing element

⎥⎦
⎥

⎢⎣
⎢
w
v

Xv-1:0

Yw-1:0

Zw-1:0

Y2w-1:w

Z2w-1:w

Y3w-1:2w

Z3w-1:2w

Y4w-1:3w

Z4w-1:3w

Y5w-1:4w

Z5w-1:4w

Y6w-1:5w

Z6w-1:5w

Yw-1:0

Zw-1:0

Y2w-1:w

Z2w-1:w

Y3w-1:2w

Z3w-1:2w

Y4w-1:3w

Z4w-1:3w

Y5w-1:4w

Z5w-1:4w

Ke
rn

el
 S

ta
ll

PE 1 PE 2 PE 3

Ke
rn

el
 C

yc
le

 1
Ke

rn
el

 C
yc

le
 2

X5v-1:4v

… … … …

1

Cycle #

2

3

4

5

6

7

8

9

10

11

12

13

14

15

X2v-1:v

Yw-1:0

Zw-1:0

Y2w-1:w

Z2w-1:w

Y3w-1:2w

Z3w-1:2w

Y4w-1:3w

Z4w-1:3w

Y5w-1:4w

Z5w-1:4w

Y6w-1:5w

Z6w-1:5w

X3v-1:2v

Yw-1:0

Zw-1:0

Z3w-1:2w

Y4w-1:3w

Z4w-1:3w

Y5w-1:4w

Y6w-1:5w

Z6w-1:5w

X4v-1:3v

Yw-1:0

Zw-1:0

Y2w-1:w

Z2w-1:w

Y3w-1:2w

Z3w-1:2w

Y4w-1:3w

Z4w-1:3w

Y5w-1:4w

Z5w-1:4w

Y6w-1:5w

Z6w-1:5w

PE 4

Y2w-1:w

Z2w-1:w

Y3w-1:2w

Z5w-1:4w

X6v-1:5v

Yw-1:0

Zw-1:0

Y2w-1:w

Z2w-1:w

Y3w-1:2w

Z3w-1:2w

X7v-1:6v

Yw-1:0

Zw-1:0

Fig. 5. Hardware pipeline diagram p=4, e=5

Recall that an entire multiplication requires k = n’/pv full

kernel cycles, plus a partial cycle. The kernel cycle time is the
number of clock cycles until PE 1 can begin processing the
next digit of X. PE 1 cannot begin the next kernel cycle until
it has processed all the words of Z and until PE p has
produced the first word of Z. The output of PE p is bypassed
back to PE 1 through a FIFO, adding one cycle of latency.
This leads to two cases to determine the multiplication
latency. Case I corresponds to a large number of words, e,
relative to the number of processing elements, p. Here there is
no stall between kernel cycles, and so the PE hardware is used
with maximal efficiency. Case II corresponds to a large
number of processing elements relative to the number of
words. As shown in Fig. 5, the first PE must be stalled until
the last PE finishes calculating the first word of Z.

In general, to handle all the words of Y, a particular PE
must perform (e) clock cycles in one kernel cycle (or in one
iteration of the outer loop).

Note that in cases where w=v, this (e) is replaced with
(e+1) because an additional cycle is then necessary to handle
the v+1 carry bits. There is a 2 clock cycle latency between
PEs. Thus, with p PEs, there is a 2p delay before the first PE
may begin processing again.

Therefore Case I occurs when (e)>=2p+1 and Case II
occurs when (e)< 2p+1.

Case I: The first PE is used continuously (e) times per
kernel cycle for k full kernel cycles. The length of the final
partial kernel cycle depends on f and p. Assuming f is evenly
divisible by p, the output of PE 1 during the additional kernel
cycle is the final result, and so the partial kernel cycle is (e)
clock cycles. Otherwise (e) + 2*(f mod p) additional clock
cycles are necessary. Therefore the total delay dI is

 dI = k(e) + (e) + 2*(f mod p) (2)

Case II: Each kernel cycle takes 2p clock cycles until the
first word of Z is ready, plus 1 to bypass the result back to the
first PE through the queue. Thus k(2p+1) full kernel cycles
are needed. Again, the last partial kernel cycle has an
additional delay of (e) + 2*(f mod p) clock cycles. Therefore
the total delay dII is

dII = k(2p+1) + (e) + 2*(f mod p) (3)
Rewriting these delays in terms of the design parameters n,

w, v, and p, and assuming integer divisibility, we obtain

w
vn

pw
vn

pwv
nd I

++++= 22
 for vpwn −> 2 (4)

212 +++++=
pw

vn
vp
n

v
nd II

 for vpwn −≤ 2 (5)

These delays are similar those in [5], except the 4 cycle
latency between processing elements is now 2 because
multiplication and reduction take place in parallel. The area
grows as the product pwv. When there are relatively few
small PEs, the area-delay product is approximately n2, and so
this design is efficient. In Case II the latency approaches
n(2/v + 1/w) with large amounts of hardware, and so the area-
delay product is approximately np(2w+v). This parallelized
design performs comparably to the old design when the
number of words dominates (Case I), and outperforms
significantly (approaching a factor of 2 speedup) when a large
amount of hardware is available (Case II).

4. RESULTS

The very high radix Montgomery multiplier was coded in
Verilog parameterized by p, w, and v, and verified against a C
reference model. It was synthesized using Synplicity Pro
targeting a Xilinx Virtex-II speed grade 6 XC2V2000-6
FPGA [16]. The results were not verified on an actual chip.
Each PE uses two dedicated 18×18 block multipliers, two
carry-save adders, and one carry-propagate adder. The
intrinsic size of the multipliers makes w = v = 16 a sweet spot
for this design.

The complete 16-PE radix 216 Montgomery multiplier
(including sequencing hardware) contains 2593 LUTs, 32
multipliers, and approximately 5n bits of RAM for the FIFO
and operand storage. It operates at a worst-case 135 MHz,
limited by the critical path through the multiplier and adders.

Table I compares the times for 256-bit and 1024-bit
modular exponentiations for various Montgomery multiplier
hardware implementations. The exponentiation times are 2n +
2 times that of a single modular multiplication.

The scalable 16 PE design from this work consumes about
10% fewer Virtex II LUTs than the equivalent design from
[5], and performs 1024-bit modular exponentiation in 5.0 ms
as compared to 6.6 ms. It performs 256-bit modular
exponentiation in 0.20 ms as compared to 0.40 ms. Thus, the
parallelized very high radix scalable Montgomery multiplier
performs significantly faster when there are many PEs relative
to the number of words. The speedup observed in the 1024-
bit case can be attributed to the faster clock frequency, which
was the result of a shorter critical path in the processing
elements. These simplifications within each PE further allow
a reduced kernel area.

5. CONCLUSIONS

In summary, this paper has improved the scalable very high
radix Montgomery multiplier by replacing X by 2vX to allow
the multiplication and reduction steps to occur in parallel
within each processing element and by a modulus
transformation. The parallel operation reduces latency from 4
cycles to 2 between PEs and saves pipeline registers at the
expense of extra postcomputation cycles. The reduction
modification eliminates a multipliexer from the critical path.
Using a tristate bus within the kernel was a further
improvement, allowing the design to work with any choice of
p. This design was targeted for a non-redundant FPGA

implementation. An implementation with 16 16×16 PEs uses
32 dedicated 18×18 block multipliers and 2593 lookup tables
to perform 1024-bit modular exponentiation in 5.0 ms and
256-bit modular exponentiation in 0.20 ms.

There remain several opportunities for investigation of
very high radix design Montgomery multiplication. If v < w, a
subsequent PE may begin operating on the w-v bits that are
immediately available without waiting for a shift [4]. By
conditionally killing carries within the MAC, the algorithm
extends to unified multipliers for GF(2n) as well as GF(p). It
would also be interesting to investigate a quotient-pipelined
[11], [12] ASIC implementation in redundant form in which
tradeoffs may be made among w, v, and p to affect cycle time
and cycle count.

REFERENCES

[1] T. Blum and C. Paar, “High-radix Montgomery multiplication
on reconfigurable hardware,” IEEE Trans. Computers, vol. 50,
no. 7, pp. 759-764, July 2001.

[2] S. Eldridge and C. Walter, “Hardware implementation of
Montgomery’s modular multiplication algorithm,” IEEE Trans.
Computers, vol. 42, no. 6, pp. 693-699, June 1993.

[3] G. Gaubatz, “Versatile Montgomery multiplier architectures,”
M.S. Thesis, Worcester Polytechnic Institute, Dept of Electrical
Engineering, April 2002.

TABLE I. COMPARISON OF MODULAR EXPONENTIATION TIMES

Description Technology Hardware Clock
Speed

Scalable Reference 256-bit time (ms) 1024-bit time
(ms)

Parallel scalable
radix 216 16 PEs x
16 bits

Xilinx Virtex II 2593 LUTs
+ 32 mults
+ ~5n RAM

135 MHz Yes This work 0.20 5.0

Parallel scalable
radix 216 4 PEs x
16 bits

Xilinx Virtex II 695 LUTs
+ 8 mults
+ ~5n RAM

135 MHz Yes This work 0.35 17

Scalable radix 216
16 PEs x 16 bits

Xilinx Virtex II 2847 LUTs
+ 32 mults
+ ~5n RAM

102 MHz Yes [5] 0.40 6.6

Scalable radix 216
4 PEs x 16 bits

Xilinx Virtex II 780 LUTs
+ 8 mults
+ ~5n RAM

102 MHz Yes [5] 0.45 22

Improved radix 2
64 PEs x 16 bits

Xilinx Virtex II 5598 LUTs
+ ~5n RAM

144 MHz Yes [4] 1.0 16

Improved radix 2
16 PEs x 16 bits

Xilinx Virtex II 1514 LUTs
+ ~5n RAM

144 MHz Yes [4] 1.1 59

General radix 16
1 PE x 64 bits

0.11µm CMOS
synthesized

61 Kgates 250 MHz Yes [9] n/a 7.3

Scalable radix 8
16 PEs x 16 bits

0.5µm CMOS
synthesized

28 Kgates 64 MHz Yes [15] 1.6 46

Systolic radix 16
1024-bit

Xilinx
XC40250XV

3317 LUTs 45 MHz No [1] n/a 12

Systolic radix 16
256-bit

Xilinx
XC40150XV

909 LUTs 47 MHz No [1] 0.73 n/a

Tenca-Koç radix
2 40 PEs x 8 bits

0.5µm CMOS
synthesized

28 Kgates 80 MHz Yes [13] 3.8 88

Scalable high
radix

0.5µm CMOS
estimated

33 Kgates
(estimated)

44 MHz Yes [3] 1.8 82

[4] D. Harris et al., “An improved unified scalable radix-2
Montgomery multiplier”, to appear in IEEE Symp. Computer
Arithmetic, 2005.

[5] K. Kelley and D. Harris, “Very high radix scalable Montgomery
multipliers”, to appear in IEEE IWSOC Conference, July 2005.

[6] P. Kornerup, “High-radix modular multiplication for
cryptosystems,” Proc 11th IEEE Symp. Computer Arithmetic,
pp. 277-283, 1993.

[7] P. Kornerup, “A systolic, linear-array multiplier for a class of
right-shift algorithms,” IEEE Trans. Computers, vol. 43, no. 8,
pp. 892-898, August 1994.

[8] P. Montgomery, “Modular multiplication without trial division,”
Math. Of Computation, vol. 44, no. 170, pp. 519-521, April
1985.

[9] K. Mukaida, M. Takenaka, N. Torii, and S. Masui, “Design of
high-speed and area-efficient Montgomery modular multiplier
for RSA algorithm,” IEEE Symp. VLSI Circuits, pp. 320-323,
2004.

[10] H. Orup and P. Kornerup, “A high-radix hardware algorithm for
calculating the exponential ME Modulo N,” Proc. 10th IEEE
Symp. Computer Arithmetic, pp. 51-56, 1991.

[11] H. Orup, “Simplifying quotient determination in high-radix
modular multiplication,” Proc. 12th IEEE Symp. Computer
Arithmetic, pp. 193-199, 1995.

[12] M. Shand and J. Vuillemin, “Fast implementations of RSA
cryptography,” Proc. 11th IEEE Symp. Computer Arithmetic, pp.
252-259, 1993.

[13] A. Tenca and Ç. Koç, “A scalable architecture for modular
multiplication based on Montgomery’s algorithm,” IEEE Trans.
Computers, vol. 52, no.9, pp. 1215-1221, Sept. 2003.

[14] A. Tenca and L. Tawalbeh, “An efficient and scalable radix-4
modular multiplier design using recoding techniques,” Proc
Asilomar Conf. Signals, Systems, and Computers, pp. 1445-
1450, 2003.

[15] G. Todorov, “ASIC design, implementation and analysis of a
scalable high-radix Montgomery multiplier,” M.S. Thesis,
Oregon State University, June 2001.

[16] Xilinx, Virtex-II Pro and Virtex-II Pro X Platform FPGAs
Datasheet, June 30, 2004, www.xilinx.com

