
IET Circuits, Devices & Systems

Research Article

MIPSfpga: using a commercial MIPS soft-core
in computer architecture education

ISSN 1751-858X
Received on 30th September 2016
Revised 19th February 2017
Accepted on 27th February 2017
doi: 10.1049/iet-cds.2016.0383
www.ietdl.org

Sarah L. Harris1 , David M. Harris2, Daniel Chaver3, Robert Owen4, Zubair L. Kakakhel4, Enrique
Sedano4, Yuri Panchul4, Bruce Ableidinger4

1Department of Electrical and Computer Engineering, University of Nevada Las Vegas, Las Vegas, NV, USA
2Department of Engineering, Harvey Mudd College, Claremont, CA, USA
3Department of Computer Architecture and Automation, Complutense University of Madrid, Madrid, Spain
4Imagination Technologies Ltd., Kings Langley, Hertfordshire WD4 8LZ, UK

 E-mail: Sarah.Harris@unlv.edu

Abstract: In this study, the authors introduce MIPSfpga and its accompanying set of learning materials. MIPSfpga is a teaching
infrastructure that offers access to the non-obfuscated Register-Transfer Level (RTL) source code of the MIPS microAptiv UP
processor. The core is made available by Imagination Technologies for academic use and is targeted to a field-programmable
gate array (FPGA), making it ideal for both the classroom and research. The supporting materials and labs focus on hands-on
learning that emphasises computer architecture, system on chip (SoC) design and hardware–software codesign. Among other
things, students learn to set up the MIPS soft-core processor on an FPGA, run and debug programs on the core in simulation
and in hardware, add new peripherals to the system, understand the microarchitecture and extend it to support new features,
experiment with different cache sizes and content management policies, add new instructions using the CorExtend interface
available in MIPS processors, and understand SoCs in embedded systems and how they are designed and built up in layers to
run complex software such as Linux.

1 Introduction
The recent availability of MIPSfpga, a teaching infrastructure
based on a soft-core processor provided by Imagination
Technologies under a free license, enables students to learn about
computer architecture and hardware–software codesign on a
commercial MIPS core. Students can use the same hardware tool, a
field-programmable gate array (FPGA), to experiment with both
digital design and computer architecture.

While soft-core processors have been available for several
decades, MIPSfpga is the first commercial MIPS core openly
available to academics. Many colleges and universities, including
ours, use MIPS to teach computer architecture. The availability of
the MIPSfpga core bridges the gap between existing curricula,
which include toy MIPS processors, and industrial-level work with
a real MIPS processor and its supporting tools.

The MIPSfpga project encompasses three main sets of
materials, available through [1], which we present in the remainder
of the paper: MIPSfpga Getting Started Guide (GSG), MIPSfpga
Labs, and MIPSfpga-SoC. We begin with an overview of the
MIPSfpga core as described in the GSG package (Section 2), given
that it is the foundation of the other two sets of materials. We then
introduce the MIPSfpga Labs package (Section 3), which includes
25 labs. These labs explain, among other things, how to set up the
microAptiv core on an FPGA and how to run and debug programs
on the core, how to expand MIPSfpga to add new peripherals and
communicate with them via interrupts or direct memory access
(DMA), how to expand the core with new instructions, both using
the CorExtend feature and by modifying the core's hardware itself,
and how to use the Performance Counters for experimenting with
different memory hierarchies, cache sizes, associativities and
content management policies. Once students are familiar with the
functioning of the industrial-level core, the final set of materials,
MIPSfpga-SoC (system on chip), shows how to design, synthesise
and load an SoC design around the MIPSfpga core and port and
run the Linux kernel on it (Section 4). In the final sections, we
discuss other existing soft-core options (Section 5) and conclude
(Section 6).

2 MIPSfpga overview
MIPSfpga offers access to an unobfuscated commercial MIPS soft-
core processor targeted to an FPGA. This soft-core is provided as a
set of Verilog hardware description language (HDL) files as part of
the MIPSfpga Getting Started package [1], which is freely
available to academics from Imagination Technologies after
registration. The package also includes the installers for the
programming and debugging tools (Codescape MIPS SDK
(software development kit) Essentials and OpenOCD), a thorough
GSG, and a set of scripts and examples. This section gives an
overview of the MIPSfpga core and system and describes the
hardware and software required to run MIPSfpga.

2.1 MIPSfpga core

The MIPS soft-core used in MIPSfpga is a version of the
microAptiv UP core used in the popular Microchip PIC32MZ
microcontroller. The soft-core is composed of a set of Verilog HDL
files that implement the MIPS32r3 instruction set architecture
(ISA) in a 5-stage pipeline [2]. The released core includes a
memory management unit (MMU) with translation lookaside
buffer, instruction and data caches, and several interfaces (such as
EJTAG), as shown in Fig. 1. The bus interface unit supports the
Advanced Microcontroller Bus Architecture (AMBA) 3 Advanced
High-performance Bus (AHB)-Lite protocol [3]. Detailed
specifications of the full core can be found in the datasheet [2].

2.2 MIPSfpga system

The MIPSfpga system [4], as shown in Fig. 2, includes the MIPS
core and peripherals that communicate with the core via the AHB-
Lite Interface. As stated above, the MIPSfpga core is provided in
Verilog HDL (VHDL) only. However, given that many universities
around the world opt to use VHDL in their curricula, the GSG
includes both Verilog and VHDL versions of MIPSfpga system
top-level modules.

The peripherals include memory, implemented as block RAM
on the FPGA, and general-purpose I/O (GPIO) that interacts with

IET Circuits Devices Syst.
© The Institution of Engineering and Technology 2017

1

the LEDs and switches on an FPGA board. The system requires at
a minimum a system clock (SI_ClkIn) and a low-asserted reset
signal (S_Reset_N) to run. While not fundamentally required, the
EJTAG interface facilitates development and testing of the system
by enabling users to easily download and debug programs on the
MIPSfpga system.

The physical memory map for the MIPSfpga system has two
populated blocks, one starting at address 0×0 and the other starting
at address 0×1fc00000, as shown in Fig. 3. Upon reset, the MIPS
processor begins fetching instructions at physical address
0×1fc00000. So, at a minimum, memory at that address must be

populated. Typically, instructions starting at that address contain
boot code that initialises the system and then jumps to the user
code located in the lower memory block, labelled Code/Data RAM
in Fig. 3. However, as described in the MIPSfpga GSG, simple
programs that do not take advantage of system features such as
caching can be placed directly at physical address 0×1fc00000
and run immediately upon reset.

The MIPSfpga system has 1 KB of boot RAM (labelled Reset
RAM in Fig. 3) and 256 KB of program RAM (labelled Code/Data
RAM) by default. This amount of memory fits well when the
MIPSfpga system is targeted to FPGA boards such as the Nexys4

Fig. 1  MIPSfpga core

Fig. 2  MIPSfpga system

2 IET Circuits Devices Syst.
© The Institution of Engineering and Technology 2017

DDR or DE2-115 FPGA boards. However, the system can also run
with different amounts of memory, e.g. smaller amounts of code/

data memory when targeting smaller FPGAs (such as Basys3 and
DE0), as described in the next section.

2.3 Hardware requirements

While MIPSfpga could be explored in simulation only,
understanding the MIPSfpga system is most effective when using a
combination of simulation and hardware implementation. The
hardware required to complete the labs are an FPGA board and a
Bus Blaster probe (Table 1 lists details about this hardware).

Among the four FPGA boards shown in Table 1, the Nexys4
DDR [5] and the DE2-115 [6] are the ones used as the example
FPGA targets. The other two boards included in the table (Basys3
and DE0), constitute lower-cost alternatives that are, however,
large enough to hold the MIPSfpga system. A detailed guide is
provided for those who wish to retarget the MIPSfpga system to
such smaller boards (actually, the process described may be applied
to any other FPGA board as well). The base MIPSfpga system uses
15, 42, 13 and 98% of the logic on the Nexys4 DDR, Basys3,
DE2-115 and DE0-CV FPGA boards, respectively. The remaining
logic may be used for custom hardware or extensions to the
MIPSfpga system.

The Bus Blaster probe, available from SEEED Technology,
enables downloading and debugging programs in hardware on the
MIPSfpga system, as described in the MIPSfpga GSG. As an
alternative to the Bus Blaster probe, programs may also be
downloaded using a USB to Universal Asynchronous Receiver-
Transmitter (UART) connection such as an existing FPGA
programming cable or an FTDI cable. This alternative reduces the
hardware requirements and thus lowers the costs for using
MIPSfpga. Note, however, that debugging programs in real-time
on the MIPSfpga system requires the Bus Blaster probe.

2.4 Software requirements

The software required to simulate and run the MIPSfpga system is:
(i) A Windows or Linux-based operating system (OS), (ii) a CAD
tool for simulating and loading the MIPSfpga system onto an
FPGA, (iii) programming tools and (iv) software for loading and
debugging programs on the core, as shown in Table 2. Vivado or
Quartus II, respectively, are Xilinx or Altera's CAD tools for
loading a hardware design, in this case the MIPSfpga system, onto
an FPGA. Imagination Technologies provides the Codescape SDK
for compiling and debugging C and MIPS assembly programs.
OpenOCD is an open-source in-circuit debugger used with the Bus
Blaster probe to load and debug programs on the MIPSfpga
system. As an alternative to the Bus Blaster probe, programs can be
downloaded onto the MIPSfpga system using the existing
programming cable or an inexpensive FTDI cable.

In addition to the main instructions available for a Windows
platform, the MIPSfpga GSG shows how to run MIPSfpga under a
Linux OS. This extended capability can be useful not only for
teachers and students using a Linux OS, but also for MacOS/OS-X
users, who can run MIPSfpga on a virtual machine with Linux. The
GSG shows how to install and use all of the software and drivers
needed to run and use MIPSfpga.

3 MIPSfpga Labs
The second package within the MIPSfpga infrastructure uses the
system described in the previous section to teach students computer
architecture and SoC design through hands-on learning. Some prior
knowledge of digital design, computer architecture, and the MIPS
ISA, e.g. the topics taught in [7], is required. As a suggested
option, students could also build their own minimally functional
MIPS processor using the labs accompanying [7] before
completing the exercises found in MIPSfpga Labs. Prior software
programming experience is useful, but it can be taught
concurrently if necessary.

After studying the digital design and computer architecture
topics in [7] and completing the Getting Started package, the
students complete 25 labs that guide them through the underlying
MIPSfpga setup and increasingly complex interactions with and
extensions of the MIPSfpga core and system. The labs guide

Fig. 3  MIPSfpga physical memory map

Table 1 MIPSfpga hardware requirements
Name FPGA board options

FPGA Cost Website
Nexys 4
DDR

Xilinx
Artix-7

$159
(academic)

www.digilentinc.com

$320 (non-
academic)

Basys 3 Xilinx
Artix-7

$79 (academic) www.digilentinc.com
$149 (non-
academic)

DE2-115 Altera
Cyclone IV

$309
(academic)

www.de2-115.terasic.com

$595 (non-
academic)

DE0 Altera
Cyclone III

$81 (academic) www.de0.terasic.com
$119 (non-
academic)

Name MIPSfpga programming probe
Cost Website

bus blaster $43.95 www.seeedstudio.com/Bus-Blaster-V3c-for-
MIPS-Kit-p-2258.html

Table 2 MIPSfpga software requirements
Name CAD tools

Description Website
Xilinx Vivado
Webpack

Software for simulation
and programming

www.xilinx.com/support/
download.html

Xilinx-based FPGA
boards. (cost: free)

Altera Quartus
II

Software for simulation
and programming

dl.altera.com/?
edition=web

Web Edition Altera-based FPGA
boards. (cost: free)

Codescape
MIPS

Software development
toolkit provided by

Installer available as part
of the MIPSfpga Getting

Started package.SDK
Essentials

Imagination Technologies
for programming and

debugging MIPSfpga. It
includes gcc and gdb.

(cost: free)
OpenOCD Open Source in-circuit

debugger that enables
loading and debugging
programs on the MIPS

core. (cost: free)

Installer available as part
of the MIPSfpga Getting

Started package.

IET Circuits Devices Syst.
© The Institution of Engineering and Technology 2017

3

students to, first, set up the MIPSfpga hardware and program and
debug the MIPS soft-core processor (Part 1 – Introduction, Labs 1–
4). They then extend the system to interact with new peripherals
(Part 2 – Input/output, Labs 5–13). The third group of labs delves
into the microarchitectural details of the 5-stage pipeline of the
microAptiv core at the heart of MIPSfpga (Part 3 – Pipeline and
Instructions, Labs 14–19). Finally, the memory hierarchy is
analysed and modified (Part 4 – The Memory System, Labs 20–
25). Table 3 gives a brief description of each lab, and further details
are given below.

3.1 Part 1 – Introduction and programming MIPSfpga

Part 1 consists of four labs that introduce the tools for working
with MIPSfpga. Lab 1 teaches how to build a MIPSfpga project
targeted to an FPGA using either Xilinx's Vivado or Altera's
Quartus II design software. The availability of the Verilog source
files for the MIPSfpga system offers students an unobfuscated view
of the design and the ability to modify, extend, and probe inside the
MIPS soft-core processor. This lab also shows how to target
MIPSfpga to other FPGA boards, using the Basys3 and DE0
boards as examples.

Labs 2 and 3 explain how to use the Codescape SDK, which
consists of gcc and gdb targeted to MIPS, and the Bus Blaster
probe to compile, download, run, and debug C and MIPS assembly
programs on the core running on an FPGA. Moreover, MIPSfpga
enables the use of I/O functions such as printf to assist debugging.
Lab 4 provides optional exercises for additional programming
practice.

3.2 Part 2 – input/output (I/O) in MIPSfpga

Part 2 begins with five memory-mapped I/O exercises (Labs 5–9)
for interfacing MIPSfpga with different peripherals. Then, Labs
10–12 analyse advanced I/O topics (interrupts and DMA). Finally,
Lab 13 explains how to use the Performance Counters available in
microAptiv.

Lab 5 is the first lab showing how to use memory-mapped I/O
to add peripherals to MIPSfpga and build an SoC design. It shows
how to memory-map signals needed to drive the eight 7-segment
displays on the FPGA boards, modify and extend the MIPSfpga
hardware to support these memory-mapped addresses, and write C
or MIPS assembly code to drive the 7-segment displays.

Labs 6–9 guide the user in adding increasingly complex
peripherals: a memory-mapped counter for timing, a buzzer to play

Table 3 MIPSfpga Labs
Part Lab Description
part 1 (programming) 1 Vivado or Quartus II Project: Create a project for the MIPSfpga system using Vivado (for the Nexys4 DDR board)

or Quartus II (for the DE2-115 board)
2 C Programming: Learn how to write, compile, debug, and run C programs on the MIPSfpga system
3 MIPS Assembly Programming: Learn how to write, compile, debug, and run MIPS assembly programs on the

MIPSfpga system
4 More Programming Practice (optional): Write two C programs that implement a pocket hypnotiser and a memory

game
part 2 (I/O) 5 Memory-Mapped I/O – 7-Segment Displays: Expand the MIPSfpga system to add access to the eight 7-segment

displays using memory-mapped I/O
6 Memory-Mapped I/O – Counter: Add a memory-mapped millisecond counter to the MIPSfpga system
7 Memory-Mapped I/O – Buzzer: Add a memory-mapped buzzer to the MIPSfpga system and write a program that

plays a song using the buzzer
8 Memory-Mapped I/O – SPI and LCD: Add a memory- mapped serial peripheral interface (SPI) port to the

MIPSfpga system to drive a liquid crystal display (LCD)
9 SPI Light Sensor: Add a memory-mapped serial peripheral interface (SPI) port to the MIPSfpga system to drive a

light sensor
10 Interrupt-driven I/O: Interact with peripherals using interrupts
11 Direct-memory-access (DMA): Build a DMA engine to drive interactions between peripherals
12 DES Encryption with DMA: Build a Data Encryption Standard (DES) encryption engine
13 Performance Counters: Learn how to configure and use the Performance Counters in microAptiv and test the

performance of different programs
part 3 (the core) 14 Basic Instruction Flow through the Pipeline. ADD instruction: Learn how an ADD instruction passes through all the

stages of the core and experiment with related arithmetic instructions
15 Basic Instruction Flow through the Pipeline. AND instruction: Analyse an AND instruction and perform related

exercises
16 Basic Instruction Flow through the Pipeline. LW instruction: Analyse a LW instruction and perform related exercises
17 Basic Instruction Flow through the Pipeline. BEQ instruction: Analyse a BEQ instruction and perform related

exercises
18 The Hazard Unit: Learn how the hazard logic is implemented in microAptiv
19 CorExtend. Adding new Instructions to MIPSfpga: Learn how to use the CorExtend interface and employ it for

adding several user defined instructions (UDIs) to the MIPS32 ISA
part 4 (memory system) 20 Basic Caching: Introduction to the caches available in the MIPSfpga microprocessor (microAptiv UP)

21 Cache Structure: Analyse the structure of the data cache in detail and implement and test new configurations
22 Cache Controller. Hit and Miss analysis: Learn about the theory and practice behind hit and miss management

within the cache controller via simulation and exercises
23 Cache Controller. Management policies: Learn and test the allocation, write, and replacement policies available in

microAptiv, and implement new policies
24 Cache Controller. Store Buffer and Fill Buffer: Learn how these two buffers work and experiment with different

access patterns
25 Scratchpad RAM implementation: Implement an Instruction Scratchpad RAM in microAptiv

4 IET Circuits Devices Syst.
© The Institution of Engineering and Technology 2017

music, and two SPI devices (a liquid crystal display and a light
sensor). These labs, along with Lab 5, emphasise SoC design and
hardware–software codesign. An instructor may choose to include
all or a subset of these four labs in the course.

A few extra components are needed to complete Labs 7–9.
Table 4 provides some affordable recommendations. Basic
components typically already available in a hardware lab (wires,
capacitors and breadboards) are also needed.

Lab 10 explains the basic usage of interrupts in MIPS CPUs.
The lab also demonstrates how the interrupts can offload the
processor from constantly polling I/O ports, which increases the
number of cycles available for computation and other non-I/O
tasks. The next two labs analyse how to design, build and test a
direct-memory access (DMA) Engine (Lab 11) and a data
encryption standard (DES) Engine (Lab 12).

Finally, Lab 13 explains how to configure and use the
Performance Counters available in microAptiv. This valuable
resource can be used to test new functionality and find bottlenecks
in a system. Example code is provided that sets up and uses the
Performance Counters, and several exercises are proposed where
the user evaluates the performance of example programs using
various events. Labs 14–25 use this resource for evaluating the
program performance.

3.3 Part 3 – MIPSfpga pipeline and instructions

Part 3 of MIPSfpga Labs delves into the internals of the core by
showing how to use several microAptiv features and CorExtend, as
well as describing detailed instruction flow through the pipeline.
The first four labs (Labs 14–17) dive into the implementation of
the microAptiv core and its pipeline. Students learn how ADD,
AND, Load Word (LW) and Branch if EQual (BEQ) instructions
are handled by the pipeline. The labs first introduce the stages of
the microAptiv pipeline, showing how the analysed instruction
passes through each stage. This is followed by a step-by-step
example simulation, showing where the main signals related to the
given instruction are included in the Verilog code (RTL). Finally,
students are asked to analyse specific control signals, examine
additional instructions, and add new instructions to the ISA
supported by microAptiv.

Lab 18 explains and demonstrates microAptiv's Hazard Unit.
Two scenarios are analysed: a RAW hazard between arithmetic-
logic instructions, where the pipeline does not need to stall, and a
RAW hazard between a LW instruction and a subsequent
arithmetic-logic instruction, where a 1-cycle bubble is necessary
between the load and the dependent instruction. This lab also
introduces a switchable clock so that the system can run at a range
of frequencies, from the usual multi-megahertz frequency down to
about 1 Hz. At the slow frequency, users can explore program
behaviour in real time by connecting system signals, e.g. pipeline,
hazard control or cache eviction signals, to LEDs.

The final lab (Lab 19) shows how to use the CorExtend
Interface available in MIPS processors. This interface is a powerful
tool that allows designers to specify and implement their own
instructions (User Defined Instructions, or UDIs). Through this
interface, users can connect specialised hardware to boost the
performance of critical algorithms beyond what can be achieved
through the standard MIPS32 ISA. The lab describes the
CorExtend Interface, its capabilities and limitations, the placement
of the module within the MIPS core, its timing properties, and the
interaction of the UDI unit with the microAptiv pipeline. The lab
also shows how to use CorExtend by providing an example
instruction implemented with this interface: SELEQZ, a new

instruction introduced in MIPS32 ISA R6. Finally, students are
asked to implement their own repertoire of UDIs, with increasing
complexity. Students begin by implementing simple logical
instructions, NAND and SEQ (an instruction that is similar to
SLT). The advanced exercises implement more complex
instructions that require a floating-point unit (FPU) and a digital
signal processing (DSP) unit.

3.4 Part 4 – MIPSfpga memory system

The final group of labs explores the MIPSfpga memory system,
starting with the cache memories (Labs 20–24), and finishing with
the implementation of a Scratchpad RAM (Lab 25). The analysis of
MIPSfpga's cache memory system begins by demonstrating cache
hits and misses using LEDs (Lab 20) and by describing the cache
structure (Lab 21). Lab 20 is an overview lab that uses the FPGA
board's LEDs to analyse the number of hits and misses in several
example programs. Lab 21 analyses the various cache arrays that
make up the cache used by microAptiv: the Data Array, which
stores the instructions/data, the Tag Array, which holds part of the
physical addresses corresponding to the instructions/data stored in
the Data Array, and the Way Select Array, which holds information
about whether cache blocks have been written (i.e. whether they
are dirty) and replacement policy state of the cache blocks, also
called cache lines. The lab describes both the array interfaces and
their internal implementation. After these detailed explanations, the
students are asked to implement and test new cache configurations
and to test several code optimisation techniques using the
performance counters.

The next three labs (22–24) delve into the cache controller. Lab
22 analyses the management of cache hits and misses. The lab
describes the main stages, structures, and signals involved in a
cache hit/miss. Then, several simulations are provided to illustrate
the described concepts. Finally, proposed exercises explore the
cache system by, e.g. evaluating the miss penalty involved in a
cache miss. Lab 23 describes the cache management policies
supported by the microAptiv UP processor. The exercises prompt
students to evaluate the different allocation and write policies
available and also to implement a First-In First-Out (FIFO)
replacement policy sometimes used in embedded processors.
Finally, Lab 24 explains the operation of two important structures
included in the data cache controller: the Store Buffer, which
temporarily holds the data to write in the data cache by a store, and
the Fill Buffer, which temporarily holds the block to fill into the
data cache after a miss. The Store Buffer removes writing to the
cache from the critical path, allowing store instructions to be non-
blocking. Similarly, the Fill Buffer removes block filling after a
miss from the critical path, allowing the pipeline to resume
execution before the missed line has been copied into the cache.

The final lab (Lab 25) shows how to add an Instruction
Scratchpad RAM to MIPSfpga. A Scratchpad RAM is managed by
the programmer or through compiler support, as opposed to the
cache memory which is transparent to the user, and is usually
aimed at storing critical blocks of code that need to be retrieved
with a small and predictable latency. The basic MIPSfpga
configuration includes an interface (I/D-SRAM Interface in Fig. 1)
but no actual Scratchpad RAM. This lab shows how to add the
Scratchpad RAM block and how to communicate with it through
the I/D cache controller.

4 MIPSfpga-SoC
The final package in the MIPSfpga materials is the MIPSfpga-SoC
package [8], which shows how to extend MIPSfpga to build a
Linux SoC system and load the open source OS. This section
provides an overview of Linux itself and the hardware
requirements to run it and then describes the system-level design
practices that enable the rapid development of an SoC, centred
around MIPSfpga, capable of running Linux. This section also
describes the software port of the Linux kernel. MIPSfpga-SoC
targets Digilent's Nexys4 DDR board and uses Xilinx's Vivado IP
Integrator. The MIPSfpga-SoC package gives a detailed view of
how the SoC in embedded systems is designed and built up in
layers to run complex software.

Table 4 MIPSfpga Labs extra hardware requirements
Name Cost Website
buzzer (Lab 7) $2 www.digikey.com/product-search/en/audio-

products/buzzers/720967?k=102-1153-ND
LCD (Lab 8) $16 www.digikey.com/product-search/en?

keywords=1481-1063-ND
light sensor (Lab
9)

$10 http://store.digilentinc.com/pmod-als-
ambient-light-sensor/

IET Circuits Devices Syst.
© The Institution of Engineering and Technology 2017

5

4.1 Linux

Linux is one of the most popular and scalable open source OSs
used in embedded systems. Linux can be divided into two parts:
the Linux Kernel and the Linux Userspace. The Kernel interacts
directly with hardware and provides a layer of abstraction. The
Userspace interacts with the hardware via standardised system calls
provided by the Linux Kernel. Due to the abstraction by the Linux

Kernel, many different types of Linux Userspace can run on the
same hardware. MIPSfpga-SoC uses Buildroot, one of the most
scalable Linux Userspace flavours.

4.2 SoC building blocks

A Linux kernel can be implemented with the minimum hardware
support listed in Table 5. The table also lists extra features added
for increased functionality. To run Linux, the system must have a
processor with an MMU, interrupt controller, timer interrupts,
UART, memory, and an EJTAG interface. Physical memory in
embedded systems can be addressable in a fragmented manner. The
MMU is necessary to provide a consistent virtual memory map to
the CPU which then maps onto the physical memory in the
hardware. The interrupt controller is needed to receive interrupts
from multiple peripherals in the system. The timer interrupt
provides a consistent clock to Linux to schedule various processes
running in the OS. UART and e-JTAG interfaces are the primary
tools used in embedded systems for both debug and to access the
console. The Ethernet, GPIO, and I2C temperature sensor
interfaces are added for extended functionality.

MIPSfpga-SoC uses hardware, Xilinx IP (synthesised
hardware), and software to complete the connection between the
MIPS core and its peripherals. An example can be seen in Fig. 4.
The temperature sensor is a physical chip on the Nexys4 DDR
board that connects to the MIPS core through a Xilinx I2C bus to
the AXI I2C Bus Master IP core. The kernel software driver
initialises and configures the I2C bus master IP block to read the
temperature value. Another Linux kernel driver controls the
console display via the AXI UART 16550 IP core. The console is
accessible via a com port on the PC. The temperature value is
written on that port for the user to see. The MIPS core together
with the Xilinx IP becomes the SoC when the design is either
targeted to an FPGA, as in this case, or fabricated on a chip.

4.3 System-level design

The Linux SoC is built with the MIPS core as the master
controlling peripherals, acting as slaves, across the AHB-Lite bus.
The slaves are implemented mostly using Xilinx IP blocks. A
custom GPIO module is also added to demonstrate custom
peripheral integration. Using existing IP blocks, in this case
supplied by Xilinx, greatly reduces design time.

All peripherals connect to the MIPS core using the AHB-Lite
interface and memory-mapped I/O. However, because the supplied
Xilinx blocks use an Advanced eXtensible Interface (AXI), an
AHB-Lite to AXI bridge is used to connect the MIPS core with the
Xilinx-supplied IP.

Table 5 Soft-SoC requirements for running Linux
Minimum requirements for Linux
Linux
requirement

Soft-SoC IP
block

Type Comments

CPU with MMU MIPS
microAptiv

Synthesised
hardware

Wired internally

Interrupt
controller

MIPS
microAptiv

Synthesised
hardware

Wired internally

Timer interrupt MIPS
microAptiv

Synthesised
hardware

Wired internally

UART Xilinx AXI
UART16550

Synthesised
hardware +

FTDI Chip on
Nexys4 DDR

Wired to USB-
Serial chip on

Nexys4DDR for
connection to PC

Memory Xilinx Memory Synthesised
hardware +

DDR Chip on
Nexys4 DDR

DDR controller
wired to DDR2

chips on Nexys4
DDR

Interface
Generator

(MIG)
e-JTAG MIPS

microAptiv
Synthesised

hardware
JTAG wired to
external probe

such as
BusBlaster

Extra functionality
Ethernet for
connecting to
Internet

Xilinx Ethernet
MAC

Synthesised
hardware + PHY
on Nexys4 DDR

MAC and PHY
wired to RJ45

Ethernet port on
Nexys4 DDR

GPIO for
switches/LEDs

Xilinx GPIO
controller and
Custom GPIO

controller

Synthesised
hardware

GPIO controllers
I/O wired to

switches/leds on
Nexys4 DDR

I2C for
temperature
sensor

Xilinx I2C bus
master

Synthesised
hardware for
bus master

I2C bus
connected to
temperature

sensor chip on
Nexys4 DDR

Fig. 4  Simplified flow of data when reading from a temperature sensor

6 IET Circuits Devices Syst.
© The Institution of Engineering and Technology 2017

Fig. 5 shows a block diagram of the system. The MIPS core
connects to the peripherals through the AHB-Lite to AXI bridge
and AXI interface. The AXI interconnect allows the MIPS master
to connect to several slaves using memory-mapped I/O. The slave
peripherals are block ram controllers, Ethernet MAC, AXI
Interrupt controller, an AXI GPIO, UART16550, an AXI IIC
master, a Memory Interface Generator which serves as the DDR
controller, and a Custom GPIO Controller supplied by Imagination.
All of the blocks except the MIPS core and the custom GPIO
module are Xilinx IP blocks. This design fulfils the requirements
listed in Table 5 to run Linux.

4.4 Kernel and Buildroot port

Additional source code in the form of patches to the Linux Kernel
is provided as part of the MIPSfpga-SoC package. This adds
support for the MIPSfpga soft-SoC platform in the Linux Kernel.
As microAptiv UP and the IP blocks we used are already supported
in the kernel, we reuse existing code while only needing to add the
MIPSfpga-SoC platform description. Buildroot compiled for the
mips32r2 ISA can then be loaded by kernel running on the
MIPSfpga-SoC. The resulting system can run applications relying
on the GNU standard C libraries.

4.5 MIPSfpga boot process

The Linux Kernel expects hardware to be in an initialised state
before being loaded. In traditional systems, this is accomplished by
the first stage bootloaders. The first stage bootloaders are stored in
static ROM on the SoC. They initialise the CPU cache and other
peripherals. They load the secondary stage bootloader or kernel in
memory from an attached storage medium and then set the
program counter register to the start address of the kernel to
execute it.

In MIPSfpga, the first stage bootloader is similarly preloaded in
block memory as part of the bitstream that loads the MIPS SoC
onto the FPGA. However, the kernel is not read from any storage
medium. The kernel is loaded via e-JTAG. After the bootloader
initialises the system, the CPU is halted via e-JTAG and the kernel
is loaded in memory.

4.6 Custom blocks versus industry-supplied IP

MIPSfpga-SoC additionally bridges the gap between academia and
industry by showing how to use both custom blocks and industry-
supplied IP, in this case Xilinx IP, in a design. Custom design
enables students to understand the entire system they are building
from the ground up; whereas using industry-supplied blocks
decreases development time. To facilitate practising both methods
of design, MIPSfpga-SoC uses both types of blocks, notably
adding a custom GPIO block with an AXI interface. This simple
block allows students to understand what it takes to build a slave
peripheral, interface it to the interconnect, and use it to
communicate with the MIPS CPU and interact with the physical
world via simple switches and LEDs.

5 Related work
Many soft-core processors, in addition to MIPSfpga, are available
today. The most notable is the soft-cores offered by the major
FPGA providers, Xilinx and Altera, and existing open-source soft-
cores. This section describes these other soft-core options and
compares them with MIPSfpga.

Xilinx and Altera offer their own soft-cores, Nios/Nios II [9]
and MicroBlaze [10], respectively, specifically configured for their
FPGAs. These alternatives, however, have disadvantages: they are
not open-source, which limits their use substantially; they are
neither based on industrial/commercial cores nor support a
commercial ISA; and they lack teaching-oriented documentation.
ARM also provides a non-open-source alternative, the Cortex M0
Design Start [11], which is a basic (8 K gates), low performance
soft-core. It is completely obfuscated and has primitive debug
support because it does not include e-JTAG. Also, it does not
provide a route to silicon for academia and it provides only limited
teaching materials.

Several open-source soft-cores also exist. Two well-known
alternatives, both supporting a SPARC RISC ISA, are the
OpenSPARC family [12] and the LEON family [13], developed by
Oracle (and originally by Sun Microsystems) and by Aeroflex
Gaisler (and originally the European Space Agency), respectively.
Although they are interesting open-source alternatives, they lack
good teaching materials and they implement an ISA not as widely
used in academia as MIPS or ARM. Two other open-source
alternatives worth mentioning are RISC-V [14], started at the
University of California, Berkeley, and openRISC, developed by
opencores.org [15]. These cores do not implement commercial
ISAs and, as in the previous cases, provide few teaching materials.

MIPSfpga, on the other hand, addresses all constraints
mentioned above. It is an industrial-level open-source soft-core that
is completely unobfuscated and that is used in important
commercial devices including Microchip's PIC32MZ. It
implements an ISA (MIPS32r3) widely used in academia and with
a wide range of existing documentation and support. MIPSfpga
also provides extensive documentation, including a large amount of
teaching materials and labs that are available in five languages.
MIPSfpga also provides support across FPGA platforms, including
both Xilinx and Altera FPGAs, and it is easily extendible to other
FPGAs. The system has also been extended with an advanced
package, MIPSfpga-SoC, which includes a Linux SoC design
centred on the MIPS core with interfaces such as memory (DDR),
UART16550, I2C, Ethernet, and an interrupt controller.

Other teaching packages for computer architecture are also
available, including the HIP environment [16], the BZK.SAU
simulator [17], the CNP laboratory [18] and the advanced multi-
core architectures (AMA) course [19], among others. These
packages are discussed and compared with MIPSfpga here.

The work in [16] presents the HIP environment to show
students how a pipelined processor works. It uses a simple 5-stages
soft-core similar to some early MIPS processors, and connects the
FPGA on which the design is loaded to a user GUI on the PC that
shows the state of the core in each step. The ISA of the core used
in this work consists of 52 instructions, far from the support for the

Fig. 5  Simplified block diagram for MIPSfpga-SoC

IET Circuits Devices Syst.
© The Institution of Engineering and Technology 2017

7

full MIPS32r3 ISA of MIPSfpga. Also, the environment does not
include a prepared set of labs to be used along with it, and the book
where the core is described is only available in Slovene. Instead,
the MIPSfpga teaching resources, which include guides and labs,
are available in five different languages. On the other hand,
MIPSfpga does not provide a GUI as the one in this environment,
but lecturers and students have unrestricted access to the RTL of
the core, which allow them to explore the value and contents of
every signal and register in the processor by inspecting the waves
in an RTL simulator.

The authors in [17] introduce a computer architecture simulator
called BZK.SAU. Similar to the work shown previously, the ISA of
this simulator consists of 59 instructions. Simple cores such as
these allow for students to experiment with some of the concepts
they learn, but they do not bridge the gap between what they see in
the textbooks and actual industrial-level processors. In addition, the
latter work is exclusively based on simulation, meaning that
students cannot download the completed design onto an FPGA and
experiment with it works on actual hardware.

The CNP laboratory presented in [18] puts together a simple
environment to teach the basics of computer architecture,
compilers and networking. MinIPS, the pipelined processor at the
core of this laboratory, is a minimised MIPS ISA, and the compiler
that goes along with it, Tiny C, is designed to comply with this
reduced set of instructions. Although the labs in MIPSfpga are not
targeted at courses in compilers or networking, nothing stops
lecturers in these topics from using the contents of the MIPSfpga
Getting Started package as hands-on materials for their courses.
The MIPS32r3 ISA is well known, extensively documented, and
lecturers may implement their own compiler or choose among the
different existing compilers that support the MIPS ISA, such as
Codescape MIPS SDK, gcc, or LLVM. Also, as the MIPSfpga-SoC
package shows, it is perfectly possible to connect the MIPSfpga
core to an Ethernet adaptor.

Other simulators suitable for computer architecture courses are
compared in [20]. An interesting aspect of this survey is that the
evaluation criteria are established using the IEEE Curriculum
Guidelines for Undergraduate Degree Programs in Computer
Engineering [21]. These guidelines establish six main knowledge
units: Fundamentals of computer architecture, Memory system
organisation and architecture, Interfacing and Communication,
Device subsystems, Processor systems design, and Organisation of
the CPU. As shown in Table 3, all of these topics are covered to
some extent by the MIPSfpga Labs.

The authors in [19] introduce a course on AMA. This type of
courses is beyond the initial scope of MIPSfpga but, as we stated
previously, lecturers have the freedom to adapt the contents of the
Getting Started package to their own needs. As an example, the
authors in [22] have engaged in some heavy modifications of the
source code of the microAptiv core contained in the MIPSfpga
system to develop a 120-core system that then can be downloaded
onto a Terasic DE5-NET FPGA.

For some research purposes, fabricating the MIPS core in
silicon is useful. For these cases, Imagination Technologies has
partnered with Europractice and MOSIS to offer academics and
researchers access to a MIPS core for Multi Project Wafer (MPW)
runs of silicon up to 100 pieces. The cores offered are the Warrior
M-class 5100 or 5150 cores. The Warrior M-classes are superset
extensions of the microAptiv family aimed at the Internet of
Things, wearable and other embedded applications. Therefore,
researchers have access to the latest evolution of the same core
used in MIPSfpga. These cores offer the full configuration options
including an FPU, DSP, microMIPS Instruction set and Hardware
Virtualisation for enhanced security. These agreements position
MIPSfpga as a one-of-a-kind collection of teaching resources,
providing materials from the first courses in Computer
Architecture up to advanced architectural topics for masters
courses and a route to silicon for researchers.

6 Conclusions
MIPSfpga offers a transparent platform for learning principles of
computer architecture, digital design, SoC design, and hardware–

software codesign. The two packages, MIPSfpga Getting Started
and MIPSfpga Labs, available to academics by Imagination
Technologies [1], offer an introduction to MIPSfpga and a set of
labs to teach the above principles. In the process, students learn
how to use FPGAs and peripherals and how to work with a
commercial processor, deeply analysing its microarchitecture and
its memory system. For instructors who want to build on this
knowledge, a third package, MIPSfpga-SoC, also available from
Imagination Technologies [1], shows how to run Linux on the
MIPSfpga core and how to integrate industry-supplied interfaces
into the system.

Once the students complete studying all the materials included
in these packages, they are ready to develop more ambitious
projects, such as adding interfaces to drive additional peripherals
(e.g. I2C or UART), adding new features to the core (such as a
hardware prefetcher) or to the memory system (such as a second
cache level or a way predictor), or any other project that the
instructor may choose.

7 Acknowledgments
The authors acknowledge the contributions from the Imagination
University Program, the University of Nevada, Las Vegas (USA),
Imperial College London (UK), Munir Hasan (IMG UK), Prashant
Deokar (IMG India), Mahesh Firke (IMG India) Parimal Patel
(Xilinx), Kent Brinkley (IMG USA), Rick Leatherman (IMG
USA), Chuck Swartley (IMG USA), Sean Raby (IMG UK),
Michio Abe (IMG Japan), Bingli Wang (IMG China), Sachin
Sundar (IMG USA), Alex Wong (Digilent Inc.), Matthew Fortune
(IMG UK), Jeffrey Deans (IMG UK), Laurence Keung (IMG UK),
Roy Kravitz (Portland State University), Dennis Pinto (University
Complutense of Madrid), Tejaswini Angel (Portland State
University), Christian White, Gibson Fahnestock, Jason Wong,
Cathal McCabe (Xilinx), and Larissa Swanland (Digilent).

8 References
[1] ‘Imagination University Program – Resources’, https://

community.imgtec.com/university/resources, accessed February 2017
[2] Imagination Technologies Ltd.: ‘MIPS32 microAptiv™ UP Processor Core

Family Datasheet’, 31 July 2013
[3] ARM: ‘AMBA 3 AHB-Lite Protocol Specification’, 2006
[4] Harris, S., Owen, R., Sedano, E., et al.: ‘MIPSfpga: hands-on learning on a

commercial soft-core’. 11th European Workshop on Microelectronics
Education (EWME), Southampton, England, May 2016, pp. 1–5

[5] Digilient Inc.: ‘Nexys4 DDR™ FPGA Board Reference Manual’, 11
September 2014

[6] Terasic Inc.: ‘DE2-115 User Manual’, 2013
[7] Harris, D., Harris, S.: ‘Digital design and computer architecture’ (Elsevier

Science and Technology, 2007, 2nd edn. 2012)
[8] Kakakhel, Z., Harris, S., Harris, D.: ‘MIPSfpga: an unobfuscated commercial

MIPS core and SoC that runs Linux’’. Embedded World 2016, Nuremberg,
Germany, February 2016

[9] ‘Altera – NIOS-II Processor’, https://www.altera.com/products/processors/
overview.html, accessed February 2017

[10] ‘Xilinx – MicroBlaze Soft Processor Core’, http://www.xilinx.com/products/
design-tools/microblaze.html, accessed February 2017

[11] ‘ARM – Cortex M0 Design Start’, http://www.arm.com/products/designstart/
index.php, accessed February 2017

[12] ‘Oracle – OpenSPARC’, http://www.oracle.com/technetwork/systems/
opensparc/index.html, accessed February 2017

[13] ‘Aeroflex Gaisler – LEON series Softcores’, http://www.gaisler.com/,
accessed February 2017

[14] Waterman, A., Lee, Y., Patterson, D.A., et al.: ‘The RISC-V Instruction Set
Manual, Volume I: User-Level ISA’, version 2.0, 2014

[15] ‘OpenCores – OpenRISC’, http://opencores.org/or1k/Main_Page, accessed
February 2017

[16] Bulić, P., Guštin, V., Šonc, D., et al.: ‘An FPGA-based integrated environment
for computer architecture’, Comput. Appl. Eng. Educ., 2013, 21, (1), pp. 26–
35

[17] Oztekin, H., Temurtas, F., Gulbag, A.: ‘BZK.SAU: implementing a hardware
and software-based computer architecture simulator for educational purpose’.
Proc. 2nd Int. Conf. Computer Design and Applications, Qinhuangdao, China,
June 2010, pp. 490–497

[18] Abe, K., Tateoka, T., Suzuki, M., et al.: ‘An integrated laboratory for
processor organization, compiler design and computer networking’, IEEE
Trans. Educ., 2004, 47, (3), pp. 311–320

[19] Petit, S., Sahuquillo, J., Gómez, M.E., et al.: ‘A research-oriented course on
advanced multicore architecture: contents and active learning methodologies’,
J. Parallel Distrib. Comput., 2017

[20] Nikolic, B., Radivojevic, Z., Djordjevic, J., et al.: ‘A survey and evaluation of
simulators suitable for teaching courses in computer architecture and
organization’, IEEE Trans. Educ., 2009, 52, (4), pp. 449–458

8 IET Circuits Devices Syst.
© The Institution of Engineering and Technology 2017

https://community.imgtec.com/university/resources
https://community.imgtec.com/university/resources
https://www.altera.com/products/processors/overview.html
https://www.altera.com/products/processors/overview.html
http://www.xilinx.com/products/design-tools/microblaze.html
http://www.xilinx.com/products/design-tools/microblaze.html
http://www.arm.com/products/designstart/index.php
http://www.arm.com/products/designstart/index.php
http://www.oracle.com/technetwork/systems/opensparc/index.html
http://www.oracle.com/technetwork/systems/opensparc/index.html
http://www.gaisler.com/
http://opencores.org/or1k/Main_Page

[21] The Joint Task Force on Computing Curricula, IEEE Computer Society/
ACM: ‘Computer engineering 2004 – curriculum guidelines for
undergraduate degree programs in computer engineering’ (IEEE Computer
Society, 2004)

[22] Kumar, H.B.C., Ravi, P., Modi, G., et al.: ‘120-core microAptiv MIPS
Overlay for the Terasic DE5-NET FPGA board’. Int. Symp. on Field-
Programmable Gate Arrays, Monterey, USA, February 2017

IET Circuits Devices Syst.
© The Institution of Engineering and Technology 2017

9

