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Models for the stabilization of an inverted pendulum figure prominently in studies of human
balance control. Surprisingly, fluctuations in measures related to the vertical displacement angle for
quietly standing adults with eye closed exhibit chaos. Here we show that small amplitude chaotic
fluctuations (“microchaos”) can be generated by the interplay between three essential components
of human neural balance control, namely, time-delayed feedback, a sensory dead zone and frequency-
dependent encoding of force. When the sampling frequency of the force encoding is decreased, the
sensitivity of the balance control to changes in the initial conditions increases. The sampled, time-
delayed nature of the balance control may provide insights into why falls are more common in the
very young and the elderly.

PACS numbers: 02.30.Ks, 07.05.Dz, 05.45.Ac

The identification of the mechanisms that stabilize
unstable states is a relevant problem that receives
increasing attention in physics, engineering, biology
and neuroscience. A well studied paradigm involves
the stabilization of an inverted pendulum using time-
delayed feedback [1–3]. In particular, such models have
been used to obtain insights into the neural control of
balance and into how falls, a major cause of morbidity
and mortality in the elderly, might be prevented. An
unexplained observation is that the fluctuations in
measures related to the vertical displacement angle, θ, of
quietly standing adults [4–7] and the movements of the
trunk of a sitting infant [8] exhibit a positive maximum
Lyapunov exponent (λmax), namely a signature of a
chaotic dynamical system [9, 10]. Chaotic dynamics can
be controlled using time-delayed feedback [11]. However,
little is known about how chaotic dynamics can arise in
the context of the delayed feedback control of balance
[12–14]. Thus an understanding of the mechanism that
generates these low amplitude, chaotic fluctuations may
provide important clues into the nature of human balance
control [15].

Here we show that chaotic fluctuations can be
generated by the interplay between three essential
components of neural balance control, namely, time-
delayed feedback, a sensory dead zone and the frequency-
dependent encoding of force. A key observation is that
the control forces for human balance control are exerted
intermittently [17–21]. Intermittency is suggestive of a
sampled data system [22–24]. Two essential properties
of a sampled data system are spatial quantization and
temporal sampling [25]. In the context of neural
balance control, temporal sampling arises because of
spike frequency dependent neural force [26–28]. Spatial
quantization of feedback arises because of the presence
of sensory dead zones [29–32]. The combined effect

of spatial quantization and temporal sampling produces
an amplitude quantization because the corrective forces
are turned ON and OFF depending on whether the
controlled variable is larger or smaller than a sensory
threshold [32–34]. Time delays arise because of the
time between when the nervous system detects an error
and then acts upon it. Thus the chaotic fluctuations
generated by balance control could arise in much the
same way as occurs when digital time-delayed feedback is
used to control a continuous-time Newtonian mechanical
system in the presence of round-off error due to the finite
precision numerical representation of the state variables
(spatial quantization). Since the amplitude of these
chaotic fluctuations are very small, the phenomenon is
referred to as microchaos [12–14].

Our discussion is organized as follows. First we
introduce the concept of a sampled, time-delayed data
system through an analysis of a scalar delay differential
equation. Acting together spatial quantization due
to the sensory dead zone (Section I) and temporal
sampling due to frequency encoding (Section II) produces
the low-amplitude chaos called microchaos. Finally
in Section III we extend our observations to an
electronic implementation of delayed feedback control of
an unstable fixed point and an experimentally validated
model for the stabilization of human postural sway
during quiet standing by time-delayed proportional-
derivative (PD) feedback [2, 15, 16]. In all cases there
is a sensitive dependence to the initial conditions for a
range of sampling times.

I. QUANTIZED HAYES EQUATION

We illustrate the effects of amplitude quantization
and time sampling (Section II) on the time-delayed
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feedback control of balance by considering the scalar
delay differential equation (DDE)

ẋ(t) = x(t)−Gx(t− τ) (1)

where τ is the time delay, G is the feedback gain
and the ‘−’ before G indicates negative feedback
(Fig. 1). This equation, named the Hayes equation
[35], frequently arises in the linear stability analysis of
models for feedback control in engineering and biological
applications [36–38]. In the context of balance control,
(1) describes the control of an over-damped inverted
pendulum, where θ is the angular position, x = ` sin θ
and ` is the distance of the center of mass from the
contact point on the ground [33].

When G = 0, the fixed point x ≡ 0 is unstable. The
stability boundaries of (1) in the plane (G, τ) are given
by the line G = 1 and the parametric curve

G =
√
ω2 + 1, τ =

1

ω
atan(ω) (2)

with ω ∈ [0,∞) (see red line in Fig. 1c).
The effect of quantization is that the feedback forces

are computed using integer multiples of the quantization
step, h. Hence (1) becomes the quantized Hayes equation

ẋ(t) = x(t)−GhInt

(
x(t− τ)

h

)
, (3)

where Int() rounds towards zero. In contrast to (1),
the stable solutions of (3) are limit cycle oscillations
(Fig. 1b). Due to the piecewise constant forcing, the limit
cycle oscillations can be determined by piecing together
segments of exponential functions as

x(t) =



. . .

2Gh+ (x0 − 2Gh)et−t0 if 2h ≤ x(t− τ) < 3h,

Gh+ (x0 −Gh)et−t0 if h ≤ x(t− τ) < 2h,

x0et−t0 if − h < x(t− τ) < h,

−Gh+ (x0 +Gh)et−t0 if − 2h < x(t− τ) ≤ −h,
−2Gh+ (x0 + 2Gh)et−t0 if − 3h < x(t− τ) ≤ −2h,

. . .

where x0 = x(t0) and t0 refers to the initial time instant
of each segments. In other words, when x(t) crosses a
threshold at time t = tT , an integer change occurs in the
feedback τ later at instant t = tT + τ . The amplitude of
the oscillations scale with h [14]. If h→ 0 then (3) gives
(1).

When

eτ < G <
eτ

eτ − 1
, (4)

there is a limit cycle oscillation bounded by either 0 <
x < 2h or by −2h < x < 0. The observed limit cycle
depends on the choice of the initial condition. These
solutions are confined to the region in (G, τ) designated
S2. When τ < ln 2 and

eτ

eτ − 1
< G <

3 +
√

17− 12eτ + 4e2τ

2(eτ − 1)
, (5)
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FIG. 1: Comparison of oscillatory solutions generated by (3)
and by the electronic circuit described in Section III A. (a)
Parameter regions for different types of bounded motions of
(6) with R = 300). (b) Numerical simulations for parameter
points 1-5 shown in a). (c) Boundaries of regions of bounded
motions for the quantized-sampled Hayes equation (6) when
R = 300 (black line) and for the circuit with R = 300 (blue
dots). For comparison the red line give the stability region
for the Hayes equation (1) and the green lines outline the
parameter regions for the three different oscillatory solutions
for the sampled Eurich-Milton equation (9). (d) Circuit
output for parameter points 1-5 shown in c). In all cases
the initial condition was the background noise in the analog
part of the circuit, Vrms ≈ 0.02 V. When h < Vrms the solution
escapes from the basin of attraction.

then there exist solutions bounded in −2h < x < 2h.
This region is indicated by T2 in Figure 1a. Similarly,
there exist regions, where the solutions are bounded in
0 < x < 3h, 0 < x < 4h, etc., indicated by S3, S4, etc.,
and in −3h < x < 3h, −4h < x < 4h, etc., indicated by
T3, T4, etc. Examples of solutions for S2, T2 and S3, T3
are shown in Figure 1b.

II. QUANTIZED-SAMPLED HAYES EQUATION

The introduction of time discretization into the
feedback requires the use of a time step ∆t such that
τ = R∆t, where R is a positive integer. Hence (3)
becomes the quantized-sampled Hayes equation

ẋ(t) = x(t)−GhInt

(
x(tj−R)

h

)
, (6)
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where t ∈ [tj , tj+1) and tj = j∆t, j = 0, 1, 2 . . . gives the
time instants where the state variables are sampled. If
∆t→ 0 such that R∆t→ τ then (6) gives (3).

The sampling effect introduces a periodic parametric
excitation in the time delay [40]. This can be seen by
writing x(tj−R), t ∈ [tj , tj+1) as x(t− ρ(t)) where

ρ(t) = R∆t+ t−∆t Int

(
t

∆t

)
, (7)

is a ∆t-periodic function. Thus (6) is equivalent to a
time-periodic DDE (i.e. a DDE with time-periodic point
delay) with principal period ∆t = τ/R. According to
the Floquet theory [39], the stability conditions for linear
time-periodic DDEs are determined by the eigenvalues of
the monodromy operator, which for delayed systems is
typically an infinite-dimensional operator. On the other
hand (6) can also be considered as a system of ordinary
differential equations with a piecewise constant forcing on
the right hand side. The piecewise constant forcing arises
when a zero order hold is applied over each time interval
∆t. Hence we have a finite-dimensional representation
of the monodromy operator This is very similar to what
occurs in a sampled data system [25]. These observations
motivate the use of the semi-discretization method [40]
to numerically integrate the DDEs with event-driven
switching feedback considered in this communication.

Fig. 2 shows the effects of changing R on the dynamics
generated by (6). As R decreases the solutions become
increasingly sensitive to very small changes in the initial
function (compare solid and dashed lines) (Fig. 2a). This
is accompanied by a decrease in the number of harmonics
in the power spectral density (Fig. 2c) and the enclosure
of the orbits in the phase plane becomes larger (Fig. 2d).

The observations in Fig. 2 illustrate the phenomenon
of microchaos (small-scale chaos). The key point is the
realization that because of time sampling the switches in
feedback do not typically occur when |x(t−τ)| = |h|, but
rather when |x(tj−R)| ≥ |h| and |x(tj−R−1)| < |h|. This
allows a fluctuation of the values of x(t) at the switching
instants within the range

|x(tj−R)− x(tj−R−1)| ≈ |heR∆t − he(R−1)∆t|
≤ he(R−1)∆t|(e∆t − 1)| ≈ he(R−1)∆t∆t. (8)

Thus, depending on the value of R = τ/∆t, the
fluctuations in x(t) can be so small that they may not
be visually apparent (top panel in Fig. 2b). Even for
large R, the solutions generated by two nearby choices
of initial functions eventually separates. In other words,
the rate of revolution of chaos is inversely proportional
to R [41].

Collectively the observations in Figure 2 suggests
a route from periodic motions to microchaos as R
decreases. The sensitivity of the solutions to changes in
the initial function suggest that the maximum Lyapunov
exponent, λmax, is positive. This is not surprising. For
small displacements, namely when |x(tj − R∆t)| < h,

we have exponential growth governed by ẋ(t) = x(t).
Figure 3 shows λmax calculated using the Wolf algorithm
[10] as a function of R. There is an inverse relationship
between R and λmax (see also Discussion).

The observations of microchaotic dynamics in Fig. 2
can also be mathematically supported by the fact that all
of the solutions in Fig. 2 involve only crossings of the x =
±h threshold. In this case the dynamics of the circuit are
described by the sampled Eurich-Milton equation [33, 41]

ẋ(t) = x(t) + f(x(tj−R)), (9)

where t ∈ [tj , tj+1) and

f(x(tj −R∆t)) =


G if x(tj−R) ≤ −h,
0 if − h < x(tj−R) < h,

−G if x(tj−R) ≥ h .
(10)

The green lines in Fig. 1c show the boundaries for the
three types of limit cycle oscillations that exist as a
function of (G, τ) [33, 41]. In the region of the parameter
space where the solutions of the circuit correspond to
solutions of (9), it has been proven that the dynamics
are chaotic when R = 0 [41].

III. APPLICATIONS

We anticipate that the addition of a sensory dead
zone and sampling to models for the stabilization of an
unstable state, such as that possessed by an inverted
pendulum, will result in a sensitivity to initial conditions
for a range of ∆t. Here we present two examples for
which this conjecture is true.

A. Digital feedback control

Digital feedback controllers are ubiquitous in atomic,
molecular and optical physics [44, 45], where, for
example, it has been possible to use this technique to
control the trajectory of a single atom [46] and to explore
entropy production in a photon-counting optoelectrnic
feedback oscillator [47]. Time delays and the limitations
of sensors are important considerations. Equation (6)
can be implemented as the electronic circuit shown in
Fig. 4 (see Appendix). Briefly

x(t) =

∫ t

0

[
x(t) +GhInt

(
x(t− τ)

h

)]
dt ,

= − 1

R2C2

∫ t

0

z(t) dt , (11)

where

z(t) =

[
R1f

R1b
x(t) +

R1f

R1a
GhInt

(
x(t− τ)

h

)]
. (12)
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FIG. 2: Sensitivity of the dynamics of (6) to different initial functions x(ϑ) ≡ 0.5 and 0.6 for ϑ ∈ [−τ, 0] when G = 4.0 and
τ = 0.438 s. a) Solutions for two nearby choices of the initial condition are shown (solid and dashed black red line) for three
values of R. b) Maxima of solution in (a) at zoomed scale to demonstrate microchaotic fluctuations. c) Power spectral densities
(PSD) and d) phase plane projections for the three values of R shown in a).
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FIG. 3: Maximal Lyapunov exponent as function of R for
numerical simulations of (4). Maximal Lyapunov exponent
was determined using the numerical method described in
[10] using Wolf’s Matlab program downloaded from Matlab
central. [10].

The values of resistors R2, R1a, R1b, R1f and capacitor
C2 are given in Fig. 4. The first term of the integral is the
solution of the continuous dynamical system ẋ(t) = x(t).
This part of the circuit is implemented using operational
amplifiers. The second term of the integral represents
the effects of time-delayed digital negative feedback and
was constructed using a microprocessor (Arduino Mega,
sampling frequency 1000 Hz). This microprocessor was
programmed to quantize the feedback and to introduce
the time delay using a circular buffer. The input to the
microprocessor was low-pass filtered (LPF) in order to
minimize the effects of high frequency noise on the timing
of threshold crossings. It is understood from (6) that for

FIG. 4: Schematic representation of the electronic circuit
used to model (3) and (6). The circuit is manually triggered
by briefly closing the reset switch then typically inputting a
square wave pulse of duration τ by holding the switch at IC.
It is also possible to trigger the circuit by briefly closing the
reset switch and IC, then allowing the internal noise in the
circuit to autotrigger the oscillator. See also the Appendix
and Supplementary Material [48].

each time interval of length ∆t the force generated by the
digital feedback is kept constant, namely there is a zero-
order hold approximation. The sample-and-hold (S/H)
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FIG. 5: Dynamics of the circuit shown in Fig. 4. (a) and
(b) show the time series obtained for two initial conditions
due to different background noise (about Vrms ≈ 0.26 and
0.32 for R=10 and 0.26 and 0.33, respectively, for R=3) (red
and black) for two different values of R when τ = 0.425s and
G = 4.0). (c) λmax as a function of R.

circuit (1 % duty cycle) enables the feedback forces to be
sampled at a lower frequency than the circuit sampling
frequency.

Qualitatively similar solutions are observed in the
circuit as for numerical simulations of (6) for the same
choices of G and τ (compare Fig. 1b and d). However,
since the circuit contains capacitance, the switches in
feedback do not occur instantaneously as in (6), but there
is a small, but finite rise time and fall time. This may
explain why the the circuit appears to have a greater
sensitivity to change in the initial conditions and hence
for a given R there is a larger λmax (Fig. 5).

B. Postural sway

Human balance during quiet standing is often modeled
by a second-order delay differential equation of the form
[2, 15, 16, 49–51]

θ̈(t)− ω2
nθ(t) = T (t− τ) (13)

where ωn is the characteristic frequency of the system,
τ is the time delay (≈ 0.1s [16, 52]) and T is the
restoring torque. Following the parameters in [15], ω2

n =
(MgH − Kpass)/J , where M = 60kg is the mass of the
body without the feet, g = 9.81m/s2 is the gravitational
acceleration, H = 1m is the distance between the center
of mass and the ankle joint, Kpass = 0.8MgH is the
passive stiffness of the ankle and J = 60kgm2 is the mass
moment of inertia with respect to the ankle joint. These
parameters give ωn = 1.4s−1.

The principal sensory input during quiet standing with
eye closed is from proprioceptive sensors in the ankle
joint [29, 53], namely the Golgi tendon organs and muscle
spindles [30]. Under these conditions the functional form
for T becomes

T (t) = Tp(t) + Td(t), (14)
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FIG. 6: Dynamics of the PR model of postural sway described
by (13)-(14). (a) and (b) show the time series obtained for
two initial conditions, θ(0) = 0.1 deg and 0.12 deg (red and
black) for two different values of R. (c) λmax as a function of
R for τ = 0.1s (solid line) and τ = 0.125s (dashed line).

where

Tp(t) =

{
0 if |θ(tj−R)| < Πpos

−kpθ(tj−R) if |θ(tj−R)| ≥ Πpos ,
(15)

Td(t) =

{
0 if |θ̇(tj−R)| < Πvel

−kdθ̇(tj−R) if |θ̇(tj−R)| ≥ Πvel ,
(16)

with t ∈ [tj , tj+1), tj = j∆t, and kp = 20s−2 and kd =
4s−1 are, respectively, the proportional and derivative
gains. The sensory dead zone for the body’s angular
position, Πpos, is 0.1 deg. This value has been estimated
using small mechanical ankle displacements [29] and
from the two-point correlation function [31]. The dead
zone for the angular velocity, Πvel was assumed to be
1 deg/s. For these parameters the oscillations in the
postural away angle are of the order of 0.5 deg as observed
experimentally [54].

Figure 6 shows the sensitivity of the solutions of
(13)-(14) to initial conditions. As observed for the
quantized-sample Hayes equations and its electronic
implementation, λmax becomes more and more positive
as R decreases. The spike frequencies recorded for muscle
spindles and Golgi tendon organs suggest that ∆t ≈
0.005 − 0.03s [55, 56]. For this range of ∆t we obtain
λmax ≈ 0.02− 0.2 (see Fig. 6c). If the electro-mechanical
delay is included, τ become 0.125s ([51] and the value
of λmax changes as a function of R (see dashed line in
Fig. 6c.

Estimates of λmax postural sway during quiet standing
with eye closed range from < 0 [58, 59], to 0.063 [6], 0.1
[15], 0.2-0.5 [7] and 1.9 [5]. The observations in Fig. 6
are consistent with estimates of λmax ≤ 0.2.

IV. DISCUSSION

Our mechanism for producing microchaos can be
readily understood intuitively. In mathematical models
the three sufficient conditions for chaos are well
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established [57]: sensitivity to initial conditions, the
existence of closed invariant sets, and mixing. For
small x, namely, when |x(tj − R∆t)| < h, we have
ẋ(t) = x(t) and hence the Lyapunov exponent is
positive. Thus there is a sensitivity to initial conditions.
The negative feedback ensures that invariant sets exist
for appropriate choices of G and τ . Finally, the
limit cycle dynamics together with the effects of time
discretization on determining threshold crossings provide
a mechanism for mixing. These intuitions have been
established analytically for some simplified versions of
(6) [12, 41]. Although it has been suggested that a
positive λmax for postural sway can be generated by
weakly perturbing an intermittent control mechanism
with a low amplitude periodic input [15], our observations
suggest that microchaos can be an intrinsic component
of the control mechanism.

Our main observation is that a quantized, time-
sampled DDE model for balance control is capable
of reproducing the positive λmax values measured by
experimentalists for human postural sway using the Wolf
algorithm. In general the Wolf algorithm is not well
suited for estimating λmax for chaotic DDEs. The
fundamental problem is that such dynamical systems
are infinite dimensional. In contrast, the quantized,
time-sampled DDE model we propose for human balance
control is finite dimensional. In fact, our model is
equivalent to a (R + 1)-dimensional system of ODEs.
Thus we anticipate that the Wolf algorithm would be
capable of, at least, reliably detecting the sign of λmax.
Indeed, the Wolf algorithm obtains a positive λmax for (9)
when R = 0 as predicted [41]. However, the accuracy of
λmax determined by the Wolf algorithm is not known.
The ongoing development of more powerful methods
for measuring the spectrum of Lyapunov exponents for
DDEs [42, 43] may enable quantitative comparisons to
be made between the predicted and measured values of
λmax.

Our observations demonstrate that chaotic dynamics
can be robustly generated by a time-delayed intermittent
control strategy in which there is frequency-dependent
force encoding. We assumed that the changes in the
feedback force are small and hence ∆t is constant.
The microchaotic fluctuations have no effect on large
scale stability, but provide evidence for the existence of
an intermittent control strategy and the presence of a
frequency dependent encoding of muscle force. It is not
difficult to imagine that there may be situations when it
is important to consider that ∆t changes. This would
result is a novel dynamical system in which there is a
state-dependent delay related to force.

The implication of our observations is that in
dynamical systems with event-driven intermittent control
there exists a direct link between the maximum
positive Lyapunov exponent, λmax, signal quantization
and the sampling frequency of time-delayed feedback.
Quantization of visuomotor tasks is observed in the
movements of the very young and older adults

with disorders of the nervous system [60–62]. The
demonstration that sampled data systems are also
involved in human balance control is expected to provide
insights into why balance control often fails in the very
young and the elderly.
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APPENDIX

Details necessary to construct the circuit shown in
Fig. 4 are given in the Supplementary materials. Here
we describe the salient features of this circuit.

The electronic circuit consists of an unstable oscillator
that is wired into a feedback loop with a programmed
Arduino MEGA board. The oscillator is constructed
with operational amplifiers and consists of a 2-
stage unstable amplifier with an inverting pre-amp
and inverting integrator. The Arduino board is
programmed to provide three functions. First it converts
the instantaneous analog waveform voltage from the
oscillator at 1000Hz and reads them into a circular delay
buffer that delays the feedback signal to the oscillator by
an amount τ . Second, the input signal to the Arduino
board is quantized by level detecting voltages above a
set voltage. When the quantization level is less than
0.005V we refer to the feedback as“continuous”. When
the quantization level is greater than 0.005V the feedback
is referred to as “quantized”. Third, the polarity of
the input is inverted to produce negative feedback.
Finally, the feedback signal amplitude is multiplied by
the feedback gain, G, using an adjustable gain, non-
inverting amplifier on the circuit board.

The input waveform to the Arduino is the rectified
(see below) unstable amplifier response signal and the
recovered low-pass filter output of the Arduino is the
quantized negative feedback signal. These two signals
have entirely different shapes. The input and output
signals of the Arduino require special attention.

The analog input to the Arduino A to D converter
(ADC) (input A0) must be a positive voltage. However,
the signal generated by the remainder of the circuit
can be positive or negative. This problem cannot
be simply overcome by offsetting the signal, namely
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adding a constant positive voltage before the signal
is inputted to the Arduino board and then adding a
constant negative voltage to the output to re-establish
the negative feedback. This level shifting procedure
does not solve the requirement that Int(x) is 0 when
x is between −1 and +1. Although it is possible to
overcome the problem in software we elected to solve
it in hardware by constructing a precision op amp full-
wave rectifier at the Arduino A0 input. The rectifier
directly passes positive signal alterations to A0 while
inverting negative alternations and rectifies even millivolt
level signals. Consequently the Arduino inputs to A0 are
always positive.

The analog output of the Arduino is pulse width

modulated (PMW) and consists of 0 to +5V variable
duty-cycle pulses. This PWM output signal is then
synchronously demodulated and low-pass filtered to
recover both the positive and negative signal feedback
waveform.

The linear range of the circuit was estimated as follows:
When the response signal amplitude increased above 2V
peak voltage we observed that the abrupt exponential
segments of the waveform gradually appeared more
rounded and continuous (see Fig. 1) until it became
nearly sinusoidal when it reached 4V peak voltage. Based
on these observations we took the linear range of the
circuit to be -2.5V to + 2.5V.
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