
1

Local Stall Propagation
David Harris

Harvey Mudd College
September 29, 2000

Abstract

Microprocessors commonly encounter data hazards that must be resolved by stalling the pipeline until all
inputs become available. The stall is broadcast globally to previous stages so no tokens are lost. As
propagation delays of cross-chip wires exceed 1 cycle, it is no longer possible to stop the processor “on a
dime.” Local Stall Propagation is a systematic approach to solving the problem. In such a system, each
pipeline register contains storage for two tokens. On a stall, the pipeline retains its primary token, but
accepts a secondary token from the previous stage that has not yet received the stall. An entire cycle is
available to communicate the stall to the previous stage. Flip-flops, transparent latches, or pulsed latches
may be modified to hold two tokens per stage with minimal additional hardware or latency and while
maintaining scan capability. Valid bits provide a natural mechanism for automatic power reduction.

I. Introduction
Microprocessors commonly encounter data hazards. Some data hazards can be resolved by forwarding, but
many, such as use after load, require stalling the pipeline until data becomes available. Stalling a pipeline
involves stopping not only the pipe stage experiencing the data dependency, but previous stages as well.
Broadcasting the stall across the die is time consuming and is becoming a very difficult speed path in
modern processors. In Section II, we will see that scaling trends will make simplistic global stall
implementations impossible in future large high-performance processors. A number of alternatives have
been used recently, but these approaches suffer from latency, hardware cost, and lack of scalability.
Section III introduces an approach called local stall propagation. Special “stall registers” are used that can
hold two tokens. In normal operation, both tokens are identical. When a stall occurs, the second token is
preserved unchanged, as must occur in a stall, but the first token is accepted from the previous stage.
Therefore, the previous stage does not have to stall immediately. A stall signal is locally propagated
backward through the pipeline one stage per cycle, eliminating the tight timing constraint on global stalls.
Section IV addresses low-overhead stall register designs for systems using flip-flops, pulsed latches, and
transparent latches, including the support of clock enabling and scan. Section V presents simulation results
validating the method.

II. Global Stalls
In-order microprocessor pipelines stall on unresolved data dependencies [1]. For example, a machine
language program may load data from memory into register 1 on one instruction, then add registers 1 and 2
on the next instruction. If the load takes multiple cycles, perhaps because of a 2-cycle data cache latency or
a data cache miss, the add cannot begin on the cycle immediately following the load. Instead, the pipeline
must stall until the data becomes available. A stall involves holding the current inputs to the pipeline stage
until the missing data arrives. In an ordinary pipeline, this requires that all the previous stages also hold
their data so that tokens don’t get lost. Stalls are commonly caused by instruction or data cache misses,
TLB misses, and by data dependencies on instructions with long latencies, such as loads, floating point
operations, or transfers between multimedia and integer execution units.

A pipeline stage that generates a stall must broadcast the stall to all the previous stages. Each stage must
only enable its input registers if none of the subsequent stages generate stalls. For example, Figure 1 shows
an abstract pipeline. Each of the three stages consists of a clocked register followed by a block of
combinational logic. The combinational logic may generate a stall signal (s1-s3). On a stall, the input
register should remain unchanged and the previous stages also must stall to avoid losing data. The load
enable signals (l1-l3) are deasserted during the stall.

2

CL CL CL

clk clk clk

l1 = s1+s2+s3
l2 = s2+s3
l3 = s3

l1 l2 l3
s3s2s1

Stall
Logic:

Figure 1: Pipeline with global stalls

Cycle Stage 1 Stage 2 Stage 3 Notes
1 A * *
2 B A *
3 C B A
4 D C B s3 asserted
5 D C B
6 D C B
7 D C B s3 released
8 E D C
9 F E D
10 G F E
11 H G F
12 I H G s2 asserted
13 I H * s2 released
14 J I H
15 K J I

Table 1: Movement of data through pipeline with global stalls

Table 1 shows the movement of data through the pipeline as stalls are asserted and released. The letters
represent tokens moving through the pipeline. When a stall occurs in a given stage, the token is held in that
stage and the previous stages stall too. Bubbles (*) consisting of invalid data move into subsequent stages.

The critical path for a stall typically involves some logic to determine that a stall must occur, followed by
flight along a long line, a NOR function to merge stalls, and buffering to drive the register enables. As gate
delays shrink relative to wire delays, the flight time is becoming a greater problem. Figure 2 shows the
distance an optimally repeated signal may travel in a CPU clock cycle for various technology generations
[2]. It is becoming impossible to drive a stall to all parts of the chip in a single cycle, even using wide
upper-level metal lines and repeaters. In other words, it is becoming impossible to “stop the processor on a
dime.”

3

Figure 2: Reachable distance per clock

Microprocessor designers have dealt with this problem in a number of ad-hoc ways. Many exploit the
specific structure of the pipeline. For example, an out-of-order processor inherently provides a dispatch
queue that decouples the front-end instruction fetch logic from the back-end execution logic. Therefore
stalls only impact part of the pipeline. Some machines use a replay mechanism in which extra registers are
provided to hold original values in case a stall occurred. In ordinary operation, the extra registers are
ignored. When a stall occurs that cannot be broadcast in time, incorrect data is written into the normal
pipeline registers. When the stall arrives, the incorrect data is dropped and the pipeline state is
reconstructed from the extra registers. This is expensive in terms of chip area and adds a multiplexer delay
to the critical path. Asynchronous pipelines use a request/acknowledge handshake to pass data. This can
remove the need for global stalls, but asynchronous designs raise their own difficulties.

The Alpha 21264 combines several approaches for stall control in the instruction queues. In the integer
queue, a replay or “bypass path” is provided in the event of late stalls, but this is costly in area and delay:
320 bits are enqueued per instruction each cycle. In the floating-point queue, a simpler estimator was used
to determine queue fullness. The estimator provides the stall earlier and eliminates the need for the bypass
path, but pessimistically forces stalls in some cases when the queue is not yet full, increasing the total
number of stalls by 20%. Clearly stall signals are a challenge for high-speed designs and a mechanism of
stalling using only short wires is beneficial.

III. Local Stall Propagation
We now consider a more scalable approach to stalls called local stall propagation. Local stall propagation
requires the capability of storing two tokens rather than just one at each pipeline stage. The primary token
contains the data being processed. Ordinarily the secondary token is identical to the primary token. When
we stall the pipeline, we retain the primary token. However, there may not be enough time to stall the
predecessor stage. Therefore, we allocate storage for a secondary token that is delivered by the
predecessor. This gives us an entire extra cycle to pass the stall information to the predecessor stage by
lowering an acknowledge signal. When we release the stall, the secondary tokens that have accumulated
may gradually continue down the pipeline. Table 2 shows the primary and secondary tokens in such a
locally-stalled system.

Figure 3 shows a pipeline using local stalls. Observe how stalls no longer must be broadcast across the
entire pipeline. Instead, they are propagated serially between pipeline stages on acknowledge (a) lines,
with a full cycle available for to pass between each stage. Acknowledge goes low when a stage can no
longer accept new data.

Two load enable signals, ls and lp, are required by each register to control the primary and secondary
storage. Table 3 describes their operation, relating the primary and secondary tokens (P, S) and the data
input D. Recall that the primary token P is the output of the register.

4

Stage 1 Stage 2 Stage 3Cycle
S P S P S P

Notes

1 A A * * * *
2 B B A A * *
3 C C B B A A
4 D D C C B B s3 asserted
5 E E D D C B
6 F F E D C B
7 G F E D C B s3 released
8 G F E D C C
9 G F E E D D
10 G G F F E E
11 H H G G F F
12 I I H H G G s2 asserted
13 J J I H * * s2 released
14 K J I I H H
15 K K J J I I

Table 2: Movement of data through pipeline with local stalls

CL CL CL

clk clk clk

Local Stall
FSM

Local Stall
FSM

Local Stall
FSM

l1s l1p
s1

a1 a2 a3

l2s l2p
s2

l3s l3p
s3

Figure 3: Pipeline with local stalls

ls lp Operation
0 0 no change
0 1 P=S, S unchanged
1 0 S=D, P unchanged
1 1 P=D, S=D

Table 3: Operation of latch enables

A simple locally-stalled register can be constructed from two flip-flops, as shown in Figure 4b. A more
efficient implementation requires only three latches, rather than the four usually contained in two flip-flops,
as shown in Figure 4c. In Section IV, we will develop a register using only two latches.

The local stall logic is a two-state finite state machine shown in Figure 5. The transitions are based on an
internal signal x, which is true when the current stage generates a stall or the successor propagates a stall by
deasserting the ao acknowledge. It generates load enables ls and lp and an acknowledge ai indicating the
predecessor may safely send data. From the state transition diagram, we derive the next state and output
logic.

5

0
1

ls lp

clk

clk

ls lp

D Q
D Q Latch

Latch

Latch

D Q

ls lp

clk

(a) (b) (c)
Figure 4: Locally stalled register (a) implemented with two flip-flops (b) or three latches (c).

Local Stall
FSM ls = 1

ai = 1
x = s + ao

s

aoai

ls lp

ls = 0
ai = 0

reset

x / lp=0

x / lp=0

x / lp=1

x / lp=1 clk

s

ao

x
ai

ls lp

(a) (b) (c)

ls'

Figure 5: Local stall FSM: (a) interface, (b) state transition diagram, and (c) circuit implementation

When a pipeline stage stalls, it must deassert an associated valid bit to indicate that the output data is not
valid so that the data will not be written to register files or otherwise contaminate the machine. When the
valid bit is low, it must be passed along the pipeline but the data need not propagate because it is invalid
anyway. Therefore, the valid bit can be used as an additional enable on data registers to eliminate
unnecessary switching and automatically reduce the power consumption of units where no useful
computation is occurring.

In this locally stalled system, a full cycle is available to compute the stall and disable the primary half of
the register. Another cycle is available for the deasserted acknowledge to be driven to the previous pipeline
stage. This is much better than having only one cycle to compute the stall and drive it to all previous
pipeline stages, as required for simple global stalls. Sometimes the extra time is not all necessary. For
example, we may have enough time in the second cycle to drive the deasserted acknowledge to two
previous pipeline stages. In such a case, we can use a hybrid approach in which we alternate locally-stalled
registers and ordinary registers to reduce the overhead, as illustrated in Figure 6.

6

CL

clk

Local Stall
FSM

l1s l1p
s1

a2

clk

l2

CL

s2
a1

CL

clk

Local Stall
FSM

l3s l3p
s3

a4

clk

l4

CL

s4
a3

Figure 6: Hybrid approach broadcasting acknowledges across two stages

In this example, a low acknowledge a2 from the second FSM is broadcast to disable both l2 and l1p.
Similarly, a stall generated at s2 must disable l2 and l1p. A stall at s1 only immediately disables l1p.

The hybrid design presents exactly the same data and acknowledge interface as does an ordinary locally-
stalled pipeline. Therefore, the designer can mix and match broadcasting stalls to one, two, or even more
predecessor stages as timing dictates.

IV. Stall Register Design
Figure 4 showed methods of constructing locally stalled registers using four or three latches with a latency
penalty of one multiplexer or latch delay. This section develops an improved flip-flop using only two
latches. It then extends the design for systems using two-phase transparent latching or pulsed latches [4]
rather than flip-flops. Locally-stalled registers hold twice the state and therefore might be expected to have
twice the overhead in a scan chain. A better approach requires only a single additional access transistor and
a modification to the local stall FSM.

A. Flip-Flops
The locally-stalled register designs of Figure 4 are straightforward but are more expensive in area and
latency than ordinary master-slave flip-flops. An improved design separately controls the enables to the
master and slave latches in a master-slave flip-flop so the latches behave as the secondary and primary state
storage, respectively. Figure 7 shows the datapath and local stall FSM for such a design. The FSM exactly
matches that given in Figure 5, but lp is latched to ensure it does not glitch while clk is high. Now the
datapath incurs zero overhead in latency. No additional latches are necessary in the datapath, though the
latch area may be larger because both latches must accept enable inputs. The small cost of the local stall
FSM is amortized across the large number of registers in the datapath.

B. Transparent Latches
Systems using two-phase transparent latches may use a similar approach to provide local stalls with no area
or delay overhead in the datapath, as shown in Figure 8. Each stage of logic is divided into two half-cycles
separated by transparent latches. The heavy dashed lines indicate the pipeline stage boundary; the second
latch in the previous pipeline stage is also shown. The first latch of each stage holds the primary token.
The second latch in the previous stage holds the secondary token. Note that the stall may be generated in
either the first or second half-cycle of the pipeline stage. It is shown coming from the first half. If the stall
comes from the second half of the cycle and might be critically late, the clkb latch in the FSM may be
moved to latch ao rather than x to reduce the latency from stall generation to deasserting lp.

7

Latch

Latch

ls lp

CL

clk

D Q

s

Latch

Latch

clk

ai ao

x

Local Stall FSM

Figure 7: Locally-stalled flip-flop using two latches, along with corresponding local stall FSM

Latch CL

Latch CL

Latch CL

clk clkclk

ls lp

Latch

Latch

clk

ai ao

x

1 22

Pipeline Stage
Figure 8: Locally-stalled transparent latch system, along with corresponding local stall FSM

C. Pulsed Latches
In globally-stalled pipelines, pulsed latches are attractive because they require only one latch delay per
cycle [4]. Unfortunately, this offers no place to store the secondary token in locally-stalled pipelines.
Therefore, locally-stalled pipelines using pulsed latches require a second pulsed latch, as shown in Figure
9. This increases the area and adds one latch delay of latency to the critical path. The system uses an
ordinary local stall FSM like that of Figure 5.

8

Local Stall
FSM

s

aoai

ls lp

Latch

Latch

φp

CL

Figure 9: Locally-stalled transparent latch system, along with corresponding local stall FSM

clk

clk

clk

clk

Q

SDI

SDO
SCA

SCB

Shadow Latch

Latch Latch

Access Transistor

Figure 10: Ordinary scannable flip-flop

D. Scan
An ordinary scannable flip-flop is shown in Figure 10. The global clock is stopped low with the first latch
transparent and the second latch opaque. The small inverters represent weak feedback devices. A third
“shadow” latch and an access transistor are added for scan. Scan clocks SCA and SCB are alternately
pulsed to walk data through the scan chain from SDO of one flop to SDI of the next. When scan is
complete, the global clock restarts.

When we construct locally-stalled flip-flop like that of Figure 7, both latches may be opaque and contain
tokens if the machine is stalled. We must be able to scan both tokens out and scan new data in to both
latches to get complete scan coverage. Moreover, as the scan chain modifies the values of data elsewhere
in the pipeline, we must not allow the first latch to become transparent and lose its token. To solve this
problem, we can add control to the local stall FSM forcing ls low during scan so the first latch is opaque.
Finally, we require an extra access transistor to move data through both latches. It is controlled by a third
scan clock SCC, as shown in Figure 11. The scan procedure is otherwise unchanged, so locally stalled flip-
flops can be mixed with ordinary flip-flops in the scan chain.

An alternative approach is to build flip-flops with three latches as shown in Figure 4c (plus the shadow
latch), avoiding the need for the special latch disabling. This comes at the cost of the extra latch.

V. Simulation Results
A linear 4-stage pipeline using locally-stalled flip-flops was modeled in Verilog and simulated to verify the
logic. The simulation waveforms are shown in Figure 12.

9

clk•lp

clk•lp

Q

SDI

SDO
SCA

SCC

Shadow Latch

Latch Latch

Access Transistor

SCB clk•ls

clk•ls

Access Transistor

D

Figure 11: Locally-stalled scannable flip-flop

Figure 12: Pipeline simulation results

Stalls are applied as with the example from Table 2. Tokens 0, 1, 2, … correspond to A, B, C, … ,
respectively. The primary token D, secondary token Mid, valid signal V, acknowledge A, and stall S of
each of the four stages are shown. A stall is asserted when token B (01) reaches stage 3 (D37) and is held
for three cycles. The output of the stage is immediately marked invalid and the acknowledges fall and work
their way back along the pipeline. When the stall is released, the output becomes valid again and the
acknowledges are reasserted. Similarly, another stall is generated when token H (07) reaches stage 2 (D27)
and is held for a single cycle.

The Verilog module describing a stage is shown in Figure 13. The module illustrates the use of the valid
bit to disable the data flops to reduce power.

10

module stage(clk, reset, di, do, vi, vo, ai, ao);
input clk, reset;
input [7:0] di;
output[7:0] do;
input vi, ao;
output vo, ai;

wire [7:0] dm;
wire vm, s, ls, lp;

flop8 dataflop(clk, reset, (ls & vi), (lp & vi), di, dm);
flop validflop(clk, reset, vi, vm);
stagelogic stagelogic(clk, reset, dm, vm, lp, do, vo, s);
stallfsm stallfsm(clk, reset, ai, ao, s, ls, lp);

endmodule
Figure 13: Verilog stage module with data and valid bits

VI. Conclusion
In conclusion, we have seen that stalls no longer can be broadcast globally in a single cycle. Local stall
propagation offers a systematic approach to solving the timing problems of stalls. In such a system, each
pipeline register contains storage for two tokens. On a stall, the pipeline retains its primary token, but
accepts a secondary token from the previous stage that has not yet received the stall. An entire cycle is
available to communicate the stall to the previous stage. Systems using flip-flops, transparent latches, or
pulsed latches may be modified to hold two tokens per stage with minimal additional hardware or latency
and while maintaining the capability to scan all the state of the machine.

Acknowledgments

This work was funded by a Beckman New Faculty grant from Harvey Mudd College. Ivan Sutherland and
Ian Jones provided valuable suggestions from their asynchronous point of view. David Diaz assisted with
simulation.

References

[1] D. Patterson and J. Hennessy, Computer Organization & Design, 2nd Edition. San Francisco, CA:
Morgan Kaufmann, 1998, p. 489-495.

[2] R. Ho, K. Mai, H. Kapadia, and M. Horowitz, “Interconnect Scaling Implications for CAD,” Intl. Conf.
CAD, 1999, pp. 425-429.

[3] T. Fischer and D. Leibholz, “Design Tradeoffs in Stall-Control Circuits for 600-MHz Instruction
Queues,” Proc. Intl. Solid-State Circuits Conf., Feb 1998, pp. 232-233.

[4] D. Harris, Skew-Tolerant Circuit Design. San Francisco, CA: Morgan Kaufmann, 2001.

