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Abstract—Designers use Monte Carlo simulations to evaluate
the impact of variability on circuits, but such simulations require
prohibitive amounts of computation to characterize rare events.
In this paper, we propose a method by which the long tail
behavior of circuits can be modeled with a reasonable number
of simulations. This technique is then applied to the problem
of domino keeper sizing to determine the sizing necessary to
ensure a reliable circuit. We find that to ensure reliability for a
commercial 45 nm process, the width of the keeper must be 0.17
times the effective width of the pull-down stack. Such a wide
keeper results in a delay penalty of 9.9% compared to a circuit
with no keeper.

I. INTRODUCTION

Variability increasingly affects the reliability, yield, and
performance of modern CMOS processes [1] [2]. Accordingly,
statistical methods have become a necessary technique in cir-
cuit design, and are widely employed to measure performance
characteristics [3]. Monte Carlo simulation is a straightforward
method of capturing such probabilistic behavior.

Modeling the extremes of device variation is important in
systems with many devices because a single low-probability
deviation can result in failure of the entire system. Unfortu-
nately, Monte Carlo simulation cannot accurately capture this
long-tail behavior unless a very large number of simulations
are computed, a process which can take prohibitively long.

Subthreshold leakage currents are particularly sensitive to
process variation because they vary exponentially with thresh-
old voltage [4]. In general, a 100 mV threshold variation
causes an order of magnitude increase in leakage. This
problem impacts the sizing of domino keepers. Even though
leakage through OFF transistors is nominally insignificant,
extreme variations in leakage mandate a strong keeper.

A recent probabilistic approach to quantifying domino cir-
cuit leakage [5] avoids extensive Monte Carlo simulation but
requires detailed knowledge of the distributions and corre-
lations of every physical parameter contributing to leakage.
This paper avoids the requirement of parameter extraction by
combining a reasonable number of Monte Carlo simulations
with curve-fitting techniques to describe the long-tail behavior.
Another approach, known as “importance sampling,” oversam-
ples the long tail of the distribution and then weights these
samples to match the true probabilistic behavior [6]. This
approach does not require a complete characterization of the
underlying distribution, but still requires an assumption of the
overall form of the distribution. The technique presented in

this paper does not require such assumptions about the nature
of the underlying probability distribution.

Domino circuits require keepers to improve resilience to
leakage and noise. A strong keeper degrades domino circuit
performance, reducing its advantage over static circuits. Var-
ious circuit techniques to alleviate this problem have been
proposed and surveyed in [7], but the conventional static
keeper remains standard industry practice [8]. One common
modification of the canonical design is the addition of a sep-
arate inverter on the feedback line [9]. The separate feedback
inverter improves the noise resilience of the circuit by isolating
the keeper from noise on the output node. Since this inverter
is only driving the keeper, it can be sized minimally, and so
has a negligible effect on energy and delay.

II. YIELD ANALYSIS

Consider an chip with M circuits, where the failure of a
single circuit results in the failure of the entire chip. We wish
to determine the value of a circuit parameter r (such as the
ratio of the keeper size to the size of the pulldown stack) to
achieve acceptable yield. Let εi(r) be the probability that a
particular circuit on chip i fails; this probability is typically
very low. Then the yield Yi(r) for chip i is the probability
that any circuit on that chip fails:

Yi(r) = (1− εi(r))M ≈ 1−Mεi(r). (1)

The average overall yield Y (r) across many such chips is then
given by

Y (r) =
1

N

N∑
i=1

Yi(r) ≈
1

N

N∑
i=1

(1−Mεi(r)) = 1−Mε̄(r),

(2)
where ε̄(r) is the average probability of failure of a single
circuit. Even though circuits on the same chip may display
spatial correlation, this result proves that analyzing a single
circuit is sufficient to predict yield.

Circuit designers generally desire that special-purpose cir-
cuits degrade yield negligibly. For example, 3σ reliability is a
common design goal [10]. Therefore, we wish to find r such
that the chip yield Y (r) = .9987, the 3σ probability of the
normal cumulative distribution function. If we let M = 104,
this yields a very small ε̄(r) = 1.3 · 10−7. Approximately 108

Monte Carlo simulations would be required to generate an
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Fig. 1. Wide-NOR domino gate.
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Fig. 2. Simulated circuit.

empirical distribution that could be used to accurately estimate
failure probabilities of this magnitude.

III. PROPOSED SIMULATION METHOD

A more computationally efficient method of estimating
low-probability events involves fitting a shifted exponential
distribution to the tail of an empirical distribution. While the
exact nature of the empirical distribution may be unknown, the
use of this so-called “quasiempirical” distribution is justified
because the tail of a wide class of distributions behaves
as an exponential function [11]. After finding the empirical
cumulative distribution function (CDF) of the simulated data,
the last k observations are replaced with a shifted exponential
function, where k is typically small relative to the number
of samples. This exponential curve is chosen so that overall
expected value of the distribution remains the same.

The overall process for constructing this quasiempirical
distribution is as follows [11]: first, order the data points X1

through Xn and construct the empirical CDF. Then, replace
the last k points with an exponential function, such that the
cumulative density F (x) at any value of the random variable
x in this exponential range is given by

F (x) = 1− (k/n) exp (−(x−Xn−k)/θ), (3)

where

θ =
(
Xn−k/2 +

n∑
i=n−k+1

(Xi −Xn−k)
)
/k. (4)
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Fig. 3. DC transfer characteristics of high-skew inverter.

IV. APPLICATION TO DOMINO KEEPERS

We will now apply this yield model to domino circuits. In
general, we are interested in the leakage behavior of arbitrarily
complex domino gates. In the worst case, only a single transis-
tor in each parallel stack is OFF . The OFF transistors subject
to crosstalk noise dominate the overall leakage through the
pull-down network. In domino circuits with 1-of-n encoding
and bundled routing [8], at most two victim inputs will see
crosstalk noise caused by the single aggressor. Therefore, a
two-input domino OR gate is representative of the worst-case
leakage behavior of an arbitrary domino gate. Such a gate is
shown in Fig. 1. The P/N ratio of the keeper relative to a pull-
down stack is r. The high-skew inverter has a P/N ratio of
3:1.

Domino circuits were simulated in HSPICE on both a low
power and a high speed 45 nm process at a temperature
of 125◦C and a supply voltage VDD = 1 V. We used the
test setup in Fig. 2. Normal Vt transistors were used in all
cases. Leakage is strongly affected by noise on the dynamic
inputs. We employ a noise condition with three contributing
components:

Vnoise = Vbounce + Vresidual + Vcoupling,

where Vbounce = 30 mV represents the ground bounce,
Vresidual = 40 mV is the residual noise caused by noise at
the input to the previous stage, and Vcoupling = 200 mV is
the coupling noise. Our worse-case “noisy corner” therefore
applies a total of Vnoise = 270 mV on each coupled input.
Since the keeper is isolated by the separate feedback inverter,
it is not affected by coupling on the output node. The noise
on the keeper input is therefore limited to 70 mV. While the
transient characteristics of the noise spike will likely have
some impact on the necessary keeper size [12], we assume
for the sake of simplicity that Vnoise is effectively a DC level.

Circuit failure occurs when leakage pulls Vout below Vcrit,
the level that results in Vresidual at the output of the subsequent
high-skew inverter. DC simulation of a high-skew inverter
finds the nominal value of Vcrit to be 629 mV for the low
power process and 708 mV for the high speed process. The
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Fig. 4. Empirical CDF constructed from Monte Carlo simulations.

.82 .815 .81 .805 .8 .795 .79 .785 .78
1 − 15e−4

1 − 10e−4

1 − 5e−4

1

Vout (V)

C
D

F

 

 

Empirical CDF
Quasiempirical
Exponential Fit

Fig. 5. Empirical CDF with exponential fit.

DC transfer characteristics of the high-skew inverter for the
high speed process are shown in Fig. 3. The input voltage that
yields and output voltage of Vresidual is marked. We ignore
the impact of variation on the transfer characteristics of this
inverter.

V. RESULTS

We applied the proposed simulation method to a two-input
domino OR gate under the conditions described above. We
performed 104 Monte Carlo simulations to obtain empirical
CDFs.

The proposed simulation method allows an accurate deter-
mination of Vout for a given keeper size. However, we wish to
determine an appropriate P/N ratio r such that the probability
that Vout < Vcrit is less than ε. To accomplish this, iterative
simulations were performed, adjusting the size of the keeper
until Vout = Vcrit = 708 mV for the high speed process. This
condition was satisfied at r = 0.17.

Fig. 4 shows the CDF of the high speed process with a
standard keeper using r = 0.17. Even with 104 simulations,
the output level never approached the failure point Vcrit.
Fig. 5 shows the exponential fitting method applied to the
empirical CDF with k = 50. The exponential tail allows the
quasiempirical CDF to predict lower probability events. Fig.
6 shows the quasiempirical CDF on a semi-logarithmic scale.
The probability of failure ε̄(0.17) is achieved at Vout = Vcrit =
708 mV.
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Fig. 6. Exponential fit on a semi-logarithmic scale.
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Evaluating the curve-fitting technique with different k can
yield different results for the expected Vout at ε̄(r). Fig. 7
shows the r necessary to satisfy Vout = Vcrit = 708 mV using
various k from 5 to 100. These r were determined by iterative
simulation as described above. If k ≥ 15 is chosen, the results
of the simulation remain relatively stable, varying by no more
than 10% from r = 0.17. Thus, the specific choice of k is
unimportant as long as it satisfies this condition and is still
small relative to the total number of points in the empirical
distribution.

We also performed iterative simulation using this technique
with a larger number Monte Carlo simulations (5 · 104). The
iteratively determined best keeper size differed by less than
10%, demonstrating the stability of our curve fit. Additional
validation was performed by generating a huge number of
Monte Carlo simulations (108), sizing the keeper such that
r = 0.17. Fig. 8 compares the empirical distribution generated
by this computation to the quasiempirical distribution shown
in Figs. 5 and 6. The generated long tail tracks plausibly with
the simulated empirical distribution in the range of interest.

As it becomes clear that a large keeper may be required for a
reliable domino circuit, it is instructive to consider the impact
of keeper sizing on delay, as shown in Fig. 9. The keeper delay
penalty is the increase in delay for a reliable gate as compared
to a circuit with no keeper. Each stage drives a fanout of four,
for a total fanout of sixteen across the gate. The delay of FO16
static buffers (back-to-back inverters) using normal and low Vt
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Fig. 8. Comparison of exponential fit to empirical validation.

TABLE I
SIMULATION RESULTS

Process P/N Ratio Delay Penalty
45 nm High Speed 0.17 9.9%
45 nm Low Power 0.038 2.2%

transistors are shown for reference. Extrapolating the data to
r = 0 estimates the performance of a domino gate with no
keeper. The advantage of domino circuits over static logic for
simple gates is substantially reduced for this process, although
high-fanin structures would still see benefit. Fig. 10 shows the
same information for the low power process.

Table I gives the iteratively determined P/N ratio and keeper
delay penalty for the high speed and low power processes. The
low power process has much lower leakage, so the keeper size
and delay penalty are negligible.

VI. CONCLUSIONS

We have presented a technique by which the long-tail
behavior of circuits can be evaluated with a reasonable number
of Monte Carlo simulations without making any assumptions
about the underlying probability distribution. We then applied
this technique to the problem of domino keepers to determine
the keeper sizing that ensures a reliable domino circuit. The
keeper in a modern high speed process must be undesirably
wide to cope with leakage, especially under severe process
variation. This significantly impacts the performance of the
circuit, causing in a 9.9% delay penalty compared to a domino
circuit with no keeper. The same technique could be applied to
other yield problems such as voltage scaling in SRAM cells.
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