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Abstract— All Harvey Mudd College Engineering students 

take a one-semester course on Digital Design and Computer 
Architecture.  The lectures are closely accompanied by a series 
of laboratory projects leading to the implementation and 
programming of a simplified MIPS microprocessor on an FPGA. 
We are developing a textbook to help other instructors 
interested in such a unified course.  Our experience shows that 
hardware-software co-design for reconfigurable computing is a 
perfectly natural theme for an introductory digital course. 
 

Index Terms—digital design, computer architecture, FPGA, 
education 
 

I. INTRODUCTION 

LL Harvey Mudd College Engineering majors are required 
to take a one-semester course called Introduction to 

Computer Engineering (E85).  The course covers digital design 
and computer architecture.  It culminates with a project in 
which students build a MIPS processor on an FPGA and 
program the processor to control an external speech 
synthesizer chip. 

E85 has been organized around tightly integrated lectures 
and FPGA -based labs since 1999 [1].  In Fall 2005, the course 
incorporated Hardware Description Languages (HDL) and 
moved to a modern FPGA platform with an I/O device lab.  We 
are presently writing a textbook to support the class. 

This paper describes the guiding principles and structure of 
the E85 course.  It discusses the lab assignments and the new 
textbook.  It concludes with assessment results and discussion 
of some of the challenges in structuring such a course. 

 

II. GUIDING PRINCIPLES 

We believe that the first course in digital design can be one 
of the most exciting subjects studied by EE, CS, and CE majors.  
The material is relatively easy to understand, requiring very 
little mathematics beyond zero and one.  The subject is also 
conducive to hands-on laboratory projects in which students 
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build interesting digital systems with a modest amount of effort 
compared to other engineering disciplines.  The projects are 
appealing to the large fraction of students who were drawn to 
the field because they liked to build things and who may have 
been frustrated with the largely theoretical courses at the 
beginning of many curricula.  And the results are spectacular; 
students leave the course with tangible skills to build systems 
that would have seemed impossible for most before they 
entered the class. 

We teach a unified course covering both digital design and 
computer architecture.  In our experience, the two topics are 
highly synergistic.  Students are fascinated to learn how a 
microprocessor works and recognize their new knowledge as a 
major milestone in their education.  The microprocessor is a 
canonical digital system, complex enough to illustrate all of the 
issues in basic digital design, yet simple enough for a first 
course. 

We believe that the laboratory component should be an 
inseparable part of the introductory course because students 
learn best by doing.  In the 1980’s and 1990’s, laboratory 
exercises using 74-series TTL logic were well suited to such a 
course because the TTL chips concretely support the notion 
of logic gates and because they are easy to breadboard.  Now 
TTL systems are largely obsolete and the vast majority of 
modern digital design targets Field Programmable Gate Arrays 
(FPGAs) or Application-Specific Integrated Circuits (ASICs).  
FPGAs and ASICs use very similar design methods and 
FPGAs are ideal for rapid prototyping, so FPGAs have become 
the natural target for digital design labs.  The key pedagogical 
challenge is that FPGA design is more abstract, especially 
when HDLs are employed. 

Similarly, we have found students benefit from learning to 
design at the schematic level before transitioning to HDL 
because they need to think of hardware as distinct from 
software.  Once they have experience with schematics, we 
introduce HDL as a shortcut for implying the hardware, 
constantly revisiting the link between hardware and the HDL 
for describing it. Students are eager to learn HDL because they 
understand that it is how real designs are done today. 

Putting these principles together, we find that hardware-
software co-design for reconfigurable computing is a perfectly 
natural theme for an introductory course in digital systems. 
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III. COURSE STRUCTURE  

E85, along with introductory courses in mechanical, 
chemical, materials, electrical, and systems engineering, is 
required of all general Engineering majors at Harvey Mudd 
College.  It is offered in the fall and spring semesters to a total 
of 80-90 students per year, including some CS majors and 
students from adjacent Claremont colleges.  The prerequisite is 
a freshman-level introduction to Java programming taught by 
the CS department.  E85 is primarily taken by sophomores and 
juniors, most of whom are taking four or five other classes at 
the same time.  Hence, the course must pack a large amount of 
content into a modest amount of the students’ time. 

The course is usually taught with two 75-minute lectures 
each week for fifteen weeks.  The syllabus is given in Table 1. 
Students turn in a problem set and a laboratory assignment 
every week except during exams and holidays.  The laboratory 
exercises are a key hands-on element of the class and will be 

discussed in detail in the next section.  Problem sets reinforce 
concepts that would be too time-intensive to explore in lab; 
they also help prepare students for the midterm and final 
exams. 

IV. LAB ASSIGNMENTS 

Table 2 lists the E85 laboratory assignments.  These 
laboratories are completed using Xilinx ISE 6.3i with ModelSim 
6.0 for simulation and Synplify Pro 8.1 for synthesis.   

In the first three labs, the students use schematic entry to 
understand basic logic circuits. They use combinational logic 
gates in the first two labs followed by sequential logic circuits 
in the third lab.  They follow the steps of (1) describing the 
problem, (2) writing truth tables, (3) deriving the Boolean 
equations, and (4) translating the equations to hardware. 

In the fourth and fifth labs students transition to a hardware 
description language (HDL). In our class, we use Verilog, but 

 
TABLE I 

E85 SYLLABUS 

No Date Topic Assignment 
1 31-Aug Introduction: digital abstraction; binary numbers; bits and bytes; logic gates  
2 5-Sep Transistor-level implementation; truth tables, Boolean expressions  
3 7-Sep Boolean algebra; K-maps PS 1 
4 12-Sep X’s and Z’s; timing, hazards Lab 1 
5 14-Sep Sequential circuits: SR latches, D latches, flip-flops, clocking PS 2 
6 19-Sep Finite State Machines Lab 2 
7 21-Sep Dynamic discipline; metastability PS 3 
8 26-Sep Introduction to Hardware Description Languages (HDLs): Verilog Lab 3 
9 28-Sep More Verilog PS 4 
10 3-Oct Building Blocks I: mux, decoder, priority encoder, counter, comparator Lab 4 
11 5-Oct Building Blocks II:  Arrays: RAMs, ROMs, PLAs, FPGAs PS 5 
12 10-Oct Number systems: fixed & floating point, unsigned & signed  
 12-Oct Midterm: take-home    
 17-Oct Fall Break:  no class  
13 19-Oct Arithmetic:  addition & subtraction, multiplication PS 6 
14 24-Oct MIPS instruction set and registers  Lab 5 
15 26-Oct Branches & procedure calls  PS 7 
16 31-Oct Addressing modes Lab 6 
17 2-Oct Linking & launching applications PS 8 
18 7-Nov Single-cycle processor datapath Lab 7 
19 9-Nov Single-cycle processor control PS 9 
20 14-Nov Multicycle processor Lab 8 
21 16-Nov Exceptions PS 10 
22 21-Nov Pipelining Lab 9 
23 23-Nov Pipelining hazards and stalls  PS 11 
24 28-Nov Memory-mapped I/O Lab 10 
25 30-Nov Memory hierarchy, latency & throughput Caches PS 12 
26 5-Dec Memory system optimization, Virtual memory Lab 11 
27 7-Dec Advanced architecture: a sampler  
 14-Dec Final: take-home  
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the text has side-by-side coverage of Verilog and VHDL.  
The hardware and software are also compatible with both 
HDLs.  In the fourth lab, students also design a finite state 
machine, as in lab 3, but this time by describing it using an 
HDL.  The parallels between schematic entry and HDL 
code are made clear because labs 3 and 4 show both 
methods for approaching a similar problem. The students 
view the schematic synthesized from the HDL code using 
the synthesis tool, Synplify Pro.  They can then correct 
any errors if the synthesized schematic is not what they 
expected.  The students are prepared to write effective, 
synthesizable HDL code because of the hardware basis 
they developed in the first three labs.   

In labs 6 and 7, the students learn how to approach 
digital systems from a software perspective by writing 
MIPS assembly code.  They learn about the architecture of 
the processor, including its register and memory 
conventions, by simulating their code on the SPIM 
simulator. 

In labs 8 through 10, the students link the domains of 
software and digital hardware by designing and simulating 
the MIPS processor executing test code. Lab 8 gently 
guides students through the design of a complex system, 
while labs 9 and 10 turn them loose to do their own design. 

In lab 8, the students are given the structure of the 
single-cycle processor and fill in the necessary logic.  To 
test their processor, the students translate a MIPS 
assembly code into machine code, load it into the memory 
used by the processor, and simulate the program running 
on their completed single-cycle processor using 
ModelSim. This lab is their first experience building a 
complex digital system, and the HDL structure provided 
exemplifies good design practice for future labs. 

In labs 9 and 10 the students are much more on their 
own to work as independent circuit designers. Given well-
defined interfaces between the processor and memory, 
and, within the processor, between the datapath and 
control, they implement the controller and datapath. As in 
lab 8, their completed processor is tested by loading a 
machine code program into the processor’s memory and 
running it on the processor in simulation using ModelSim. 

The final lab illustrates hardware/software co-design for 
a real-world application.  In this lab, students interface 
their multicycle MIPS processor, implemented on the 
Spartan 3 FPGA, with a speech synthesizer chip using 
memory-mapped I/O.  The students control the speech 
chip by developing assembly code to drive the memory-
mapped control and data signals. 

In Lab 4, students downloaded their designs onto a 
custom Spartan 3 FPGA board over the Xilinx Parallel  

 

TABLE II 
E85 LABORATORY ASSIGNMENTS 

 
Lab Description Design Method 
1 1-bit Full Adder 
2 Control Decoder for MIPS  
3 Adventure Game Finite State Machine 

Schematic 

4 Turn Signals Finite State Machine 
5 32-bit ALU 

HDL 

6 Computing Fibonacci Numbers 
7 Software Floating Point Addition 

Assembly 
Language 

8 MIPS Single-Cycle Processor 
9 MIPS Multicycle Processor Control 
10 MIPS Multicycle Processor 

HDL 

11 Processor, I/O Interface: Speech 
Synthesis 

HDL & Assembly  

 

 

Fig. 1.  Spartan 3 FPGA board. 
 

Cable IV so they could watch their FSM output on LEDs. 
Likewise, Lab 11 is downloaded to a board with a prewired 
speech chip and speaker. The board, adapted from an 
upper division elective, is shown in Fig. 1 and described 
further in [2]. The labs progressively build upon each 
other.  The full adder from Lab 1 is used in the ALU in Lab 
5, which in turn is used in the processors in Labs 8 
through 11.  The control decoder from Lab 2 is also used 
in the processor in Lab 8.  

Students can access the Engineering Computational 
Facility 24 hours a day to work on their labs, or may install 
the CAD software on their personal computers.  
Undergraduate lab assistants hold scheduled lab hours 
each week, help struggling students with troubleshooting, 
and grade the labs.  Typically there is one lab assistant for 
every 25 students and the assistant is present for 2-4 
hours each week. 

In summary, by using configware as the basis for 
learning digital design and computer architecture, the 
students retain the value of a hands-on design experience 
without the tedium of breadboarding discrete gates.  They 
learn modern digital design practices, computer 
architecture, and software/hardware co-design through a 
series of labs that progressively build upon principles 
learned in previous labs. 
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TABLE III 
T EXTBOOK CONTENTS 

1 From Zero to One 

1.1 The Game Plan 
1.2 The Art of Managing Complexity 
1.3 The Digital Abstraction 
1.4 Number Systems 
1.5 Logic Gates 
1.6 Logic Levels 
1.7 CMOS Transistors 
1.8 Summary and A Look Ahead 

2 Combinational Logic Design 

2.1 Introduction 
2.2 Boolean Equations 
2.3 Boolean Algebra 
2.4 From Logic to Gates 
2.5 Multilevel Combinational Logic 
2.6 X's and Z's, Oh My 
2.7 Karnaugh Maps  
2.8 Multiplexers 
2.9 Timing 
2.10 Summary 

3 Sequential Logic Design 

3.1 Introduction 
3.2 Latches and Flip-Flops 
3.3 Synchronous Logic Design 
3.4 Finite State Machines 
3.5 Timing of Sequential Logic 
3.6 Parallelism and Pipelining 
3.7 Summary 

4 Hardware Description Languages 

4.1 Introduction 
4.2 Combinational Logic 
4.3 Structural Modeling 
4.4 Sequential Logic 
4.5 More Combinational Logic 
4.6 Finite State Machines 
4.7 * Parameterized Modules 
4.8 Test Benches 
4.9 Summary 

5 Digital Building Blocks 

5.1 Introduction 
5.2 Combinational Building Blocks 
5.3 Sequential Building Blocks 
5.4 Arithmetic 
5.5 Arrays 
5.6 *Chip Implementation Options 
5.7 *System Implementation Options 
5.8 Summary 

6 Architecture 

6.1 Introduction 
6.2 Assembly Language 
6.3 Machine Language 
6.4 Programming 
6.5 Addressing Modes 
6.6 Assembling and Loading 
6.7 * Other MIPS Instructions 
6.8 Summary 

7 Microarchitecture 

7.1 Introduction 
7.2 Performance Analysis 
7.3 Single-Cycle Processor 
7.4 Multicycle Processor 
7.5 Pipelined Processor 
7.6 * HDL Representations 
7.7 * Exceptions 
7.8 Summary 

8 Memory Systems 

8.1 Introduction 
8.2 Caches 
8.3 Virtual Memory 
8.4 Memory Mapped I/O 
8.5 Performance Analysis 
8.6 Summary 

9 Advanced Microarchitecture 

9.1 Introduction 
9.2 Branch Prediction 
9.3 Superscalar Pipelines 
9.4 Out of Order Execution 
9.5 Summary 

 
Appendix: C Programming 
 

 

 

V. TEXTBOOK 

Until this year, E85 historically used Patterson & Hennessy’s 
Computer Organization and Design text published by Morgan 
Kaufmann [3].  The textbook elegantly covers assembly 
language programming, computer architecture, and 
microarchitecture using the MIPS processor.  However, it 
assumes a previous course in digital logic.  With the generous 
encouragement of Patterson, Hennessy, and Morgan 
Kaufmann, we are writing a new textbook for a unified course 
building on the strengths of Patterson & Hennessy’s MIPS 
designs. 

Table 3 lists the contents of the new book.  Optional 
sections are indicated with a *. As of February 2007, Chapters 
1-8 have been written and are being reviewed.  Morgan 
Kaufmann plans a January 2007 publication date.  The book 

targets one semester or two-quarter introductory courses in 
electrical engineering, computer science, and computer 
engineering. 

Another unique element of the textbook is its coverage of 
HDLs.  We cover Verilog and VHDL in chapter 4, after 
combinational and sequential logic design, but before the 
design of larger components or microarchitecture.  We teach 
HDLs not as a programming language (as far too many books 
do), but as a shorthand for specifying digital hardware.  The 
chapter is organized around various digital hardware structures 
(e.g. combinational logic, registers, FSMs, and hierarchy).  
Both Verilog and VHDL describing each structure are 
presented in side-by-side format.  Below the code is a 
schematic synthesized from the HDL to drive home the 
relationship between code and hardware.  Instructors can 
select either HDL, and students can easily learn the other once 
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they have mastered the first.  The HDL is then emphasized 
throughout subsequent chapters. 

Chapter 7, discussing MIPS microarchitecture, ties together 
all of the previous chapters.  It features the designs of single-
cycle, multicycle, and pipelined processors shown in Figure 2 
that are closely adapted from Patterson & Hennessy.  The 
chapter illustrates combinational and sequential circuit design 
and the use of digital building blocks.  It draws on the 
assembly language programming material.  And it features a 
HDL model of the single-cycle processor illustrating the design 
of a complex system. 

 
VI. ASSESSMENT 

E85 has been taught as a unified course on digital design 
and computer architecture for the past seven years by five 
different instructors.  It generally receives teaching evaluations 
above 6.0 on a 7 point scale.  Instructors in the upper division 
digital design electives find that E85 students are well prepared 
for advanced work. Recent student comments include: 

 
I enjoyed how the labs built upon each other, it 
was cool seeing it all come together. 
 
The labs were really fun. 
 

Students did complain about fighting with bugs in Xilinx 
Version 2 and 4, but have been more satisfied with Version 6.3i. 

To make sure the workload stays under control, students are 
asked to report the time they spend on class assignments.  In 
the past three semesters, the workload has averaged about 4 
hours per lab and 2.5 hours per problem set, for a total of 6.5 
hours per week.  This is typical for a 3-unit course at HMC.  
Moving from Xilinx ISE version 4 to 6 saved about half an hour 
per week on average because the tool became more stable. 

The labs were labor-intensive to develop, but reasonably 
inexpensive to maintain.  Many undergraduates have 
contributed to the lab development, enhancing their own 
education as well. The department hires one undergraduate lab 
assistant for every 15-20 students; the assistant generally 
works about 2 hours per week.  Xilinx ISE is free to academic 
institutions and ModelSim and Synplify Pro have nominal 
academic pricing. The FPGA boards cost under $100; Digilent 
also sells a Spartan 3 board for $99 [4] and Xilinx has been 
generous about donations.  The board is connected to a PC in 

the department general-purpose computer lab; dedicated lab 
facilities are under consideration. 

We have found that the schematic viewer in Synplify Pro is 
essential to teaching HDL in a first course; in previous years 
when no viewer was available, students had no way to 
understand what good synthesizable coding style meant and 
HDLs were too abstract. 

VII. FUTURE ENHANCEMENTS 

In the past, one FPGA board has been shared across the 
entire class, so only Labs 4 and 11 use actual hardware.  In the 
future, we would like to add more FPGA stations so that 
students can physically implement Labs 1 and 2 on the FPGA 
as well. 

The progression of labs worked well when all labs used 
schematics, but is problematic because the Xilinx schematic 
editor does not play gracefully with Synplify Pro Verilog 
synthesis.  As a result, Labs 2 and 5 need to be rethought. 

We are currently upgrading to Xilinx ISE 8.1, which may 
eliminate the need for the third-party ModelSim simulator. 

VIII. CONCLUSIONS 

Harvey Mudd has offered a very successful required 
introductory course on digital design and computer 
architecture using FPGAs with schematic entry and HDL.  The 
lab assignments are closely coupled to the lectures.  We 
believe that students benefit greatly from the hands-on design 
experience and find it highly relevant because it uses modern 
technology.  We also find that teaching schematic-level design 
before HDL is important for students to avoid the trap of 
viewing HDL as a programming language.  The course gives 
students a solid foundation for future work in both hardware 
and software design for reconfigurable computing systems. 
We are developing a textbook to support the integration of 
digital design and computer architecture in a first course. 
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Fig. 2.  (a) Single-cycle, (b) Multicycle, and (c) Pipelined MIPS processors. 
 


