

1

Abstract— All Harvey Mudd College Engineering students

take a one-semester course on Digital Design and Computer
Architecture. The lectures are closely accompanied by a series
of laboratory projects leading to the implementation and
programming of a simplified MIPS microprocessor on an FPGA.
We are developing a textbook to help other instructors
interested in such a unified course. Our experience shows that
hardware-software co-design for reconfigurable computing is a
perfectly natural theme for an introductory digital course.

Index Terms—digital design, computer architecture, FPGA,
education

I. INTRODUCTION

LL Harvey Mudd College Engineering majors are required
to take a one-semester course called Introduction to

Computer Engineering (E85). The course covers digital design
and computer architecture. It culminates with a project in
which students build a MIPS processor on an FPGA and
program the processor to control an external speech
synthesizer chip.

E85 has been organized around tightly integrated lectures
and FPGA -based labs since 1999 [1]. In Fall 2005, the course
incorporated Hardware Description Languages (HDL) and
moved to a modern FPGA platform with an I/O device lab. We
are presently writing a textbook to support the class.

This paper describes the guiding principles and structure of
the E85 course. It discusses the lab assignments and the new
textbook. It concludes with assessment results and discussion
of some of the challenges in structuring such a course.

II. GUIDING PRINCIPLES

We believe that the first course in digital design can be one
of the most exciting subjects studied by EE, CS, and CE majors.
The material is relatively easy to understand, requiring very
little mathematics beyond zero and one. The subject is also
conducive to hands-on laboratory projects in which students

Manuscript received November 27, 2005.
David Money Harris and Sarah Harris are with the Department of

Engineering, Harvey Mudd College, Claremont, CA 91711
{David_Harris, Sarah_Harris}@hmc.edu.

build interesting digital systems with a modest amount of effort
compared to other engineering disciplines. The projects are
appealing to the large fraction of students who were drawn to
the field because they liked to build things and who may have
been frustrated with the largely theoretical courses at the
beginning of many curricula. And the results are spectacular;
students leave the course with tangible skills to build systems
that would have seemed impossible for most before they
entered the class.

We teach a unified course covering both digital design and
computer architecture. In our experience, the two topics are
highly synergistic. Students are fascinated to learn how a
microprocessor works and recognize their new knowledge as a
major milestone in their education. The microprocessor is a
canonical digital system, complex enough to illustrate all of the
issues in basic digital design, yet simple enough for a first
course.

We believe that the laboratory component should be an
inseparable part of the introductory course because students
learn best by doing. In the 1980’s and 1990’s, laboratory
exercises using 74-series TTL logic were well suited to such a
course because the TTL chips concretely support the notion
of logic gates and because they are easy to breadboard. Now
TTL systems are largely obsolete and the vast majority of
modern digital design targets Field Programmable Gate Arrays
(FPGAs) or Application-Specific Integrated Circuits (ASICs).
FPGAs and ASICs use very similar design methods and
FPGAs are ideal for rapid prototyping, so FPGAs have become
the natural target for digital design labs. The key pedagogical
challenge is that FPGA design is more abstract, especially
when HDLs are employed.

Similarly, we have found students benefit from learning to
design at the schematic level before transitioning to HDL
because they need to think of hardware as distinct from
software. Once they have experience with schematics, we
introduce HDL as a shortcut for implying the hardware,
constantly revisiting the link between hardware and the HDL
for describing it. Students are eager to learn HDL because they
understand that it is how real designs are done today.

Putting these principles together, we find that hardware-
software co-design for reconfigurable computing is a perfectly
natural theme for an introductory course in digital systems.

From Zero to One:
An Introduction to Digital Design and Computer Architecture

David Money Harris, Senior Member, IEEE, and Sarah Harris, Member, IEEE

A

2

III. COURSE STRUCTURE

E85, along with introductory courses in mechanical,
chemical, materials, electrical, and systems engineering, is
required of all general Engineering majors at Harvey Mudd
College. It is offered in the fall and spring semesters to a total
of 80-90 students per year, including some CS majors and
students from adjacent Claremont colleges. The prerequisite is
a freshman-level introduction to Java programming taught by
the CS department. E85 is primarily taken by sophomores and
juniors, most of whom are taking four or five other classes at
the same time. Hence, the course must pack a large amount of
content into a modest amount of the students’ time.

The course is usually taught with two 75-minute lectures
each week for fifteen weeks. The syllabus is given in Table 1.
Students turn in a problem set and a laboratory assignment
every week except during exams and holidays. The laboratory
exercises are a key hands-on element of the class and will be

discussed in detail in the next section. Problem sets reinforce
concepts that would be too time-intensive to explore in lab;
they also help prepare students for the midterm and final
exams.

IV. LAB ASSIGNMENTS

Table 2 lists the E85 laboratory assignments. These
laboratories are completed using Xilinx ISE 6.3i with ModelSim
6.0 for simulation and Synplify Pro 8.1 for synthesis.

In the first three labs, the students use schematic entry to
understand basic logic circuits. They use combinational logic
gates in the first two labs followed by sequential logic circuits
in the third lab. They follow the steps of (1) describing the
problem, (2) writing truth tables, (3) deriving the Boolean
equations, and (4) translating the equations to hardware.

In the fourth and fifth labs students transition to a hardware
description language (HDL). In our class, we use Verilog, but

TABLE I

E85 SYLLABUS

No Date Topic Assignment
1 31-Aug Introduction: digital abstraction; binary numbers; bits and bytes; logic gates
2 5-Sep Transistor-level implementation; truth tables, Boolean expressions
3 7-Sep Boolean algebra; K-maps PS 1
4 12-Sep X’s and Z’s; timing, hazards Lab 1
5 14-Sep Sequential circuits: SR latches, D latches, flip-flops, clocking PS 2
6 19-Sep Finite State Machines Lab 2
7 21-Sep Dynamic discipline; metastability PS 3
8 26-Sep Introduction to Hardware Description Languages (HDLs): Verilog Lab 3
9 28-Sep More Verilog PS 4
10 3-Oct Building Blocks I: mux, decoder, priority encoder, counter, comparator Lab 4
11 5-Oct Building Blocks II: Arrays: RAMs, ROMs, PLAs, FPGAs PS 5
12 10-Oct Number systems: fixed & floating point, unsigned & signed
 12-Oct Midterm: take-home
 17-Oct Fall Break: no class
13 19-Oct Arithmetic: addition & subtraction, multiplication PS 6
14 24-Oct MIPS instruction set and registers Lab 5
15 26-Oct Branches & procedure calls PS 7
16 31-Oct Addressing modes Lab 6
17 2-Oct Linking & launching applications PS 8
18 7-Nov Single-cycle processor datapath Lab 7
19 9-Nov Single-cycle processor control PS 9
20 14-Nov Multicycle processor Lab 8
21 16-Nov Exceptions PS 10
22 21-Nov Pipelining Lab 9
23 23-Nov Pipelining hazards and stalls PS 11
24 28-Nov Memory-mapped I/O Lab 10
25 30-Nov Memory hierarchy, latency & throughput Caches PS 12
26 5-Dec Memory system optimization, Virtual memory Lab 11
27 7-Dec Advanced architecture: a sampler
 14-Dec Final: take-home

3

the text has side-by-side coverage of Verilog and VHDL.
The hardware and software are also compatible with both
HDLs. In the fourth lab, students also design a finite state
machine, as in lab 3, but this time by describing it using an
HDL. The parallels between schematic entry and HDL
code are made clear because labs 3 and 4 show both
methods for approaching a similar problem. The students
view the schematic synthesized from the HDL code using
the synthesis tool, Synplify Pro. They can then correct
any errors if the synthesized schematic is not what they
expected. The students are prepared to write effective,
synthesizable HDL code because of the hardware basis
they developed in the first three labs.

In labs 6 and 7, the students learn how to approach
digital systems from a software perspective by writing
MIPS assembly code. They learn about the architecture of
the processor, including its register and memory
conventions, by simulating their code on the SPIM
simulator.

In labs 8 through 10, the students link the domains of
software and digital hardware by designing and simulating
the MIPS processor executing test code. Lab 8 gently
guides students through the design of a complex system,
while labs 9 and 10 turn them loose to do their own design.

In lab 8, the students are given the structure of the
single-cycle processor and fill in the necessary logic. To
test their processor, the students translate a MIPS
assembly code into machine code, load it into the memory
used by the processor, and simulate the program running
on their completed single-cycle processor using
ModelSim. This lab is their first experience building a
complex digital system, and the HDL structure provided
exemplifies good design practice for future labs.

In labs 9 and 10 the students are much more on their
own to work as independent circuit designers. Given well-
defined interfaces between the processor and memory,
and, within the processor, between the datapath and
control, they implement the controller and datapath. As in
lab 8, their completed processor is tested by loading a
machine code program into the processor’s memory and
running it on the processor in simulation using ModelSim.

The final lab illustrates hardware/software co-design for
a real-world application. In this lab, students interface
their multicycle MIPS processor, implemented on the
Spartan 3 FPGA, with a speech synthesizer chip using
memory-mapped I/O. The students control the speech
chip by developing assembly code to drive the memory-
mapped control and data signals.

In Lab 4, students downloaded their designs onto a
custom Spartan 3 FPGA board over the Xilinx Parallel

TABLE II
E85 LABORATORY ASSIGNMENTS

Lab Description Design Method
1 1-bit Full Adder
2 Control Decoder for MIPS
3 Adventure Game Finite State Machine

Schematic

4 Turn Signals Finite State Machine
5 32-bit ALU

HDL

6 Computing Fibonacci Numbers
7 Software Floating Point Addition

Assembly
Language

8 MIPS Single-Cycle Processor
9 MIPS Multicycle Processor Control
10 MIPS Multicycle Processor

HDL

11 Processor, I/O Interface: Speech
Synthesis

HDL & Assembly

Fig. 1. Spartan 3 FPGA board.

Cable IV so they could watch their FSM output on LEDs.
Likewise, Lab 11 is downloaded to a board with a prewired
speech chip and speaker. The board, adapted from an
upper division elective, is shown in Fig. 1 and described
further in [2]. The labs progressively build upon each
other. The full adder from Lab 1 is used in the ALU in Lab
5, which in turn is used in the processors in Labs 8
through 11. The control decoder from Lab 2 is also used
in the processor in Lab 8.

Students can access the Engineering Computational
Facility 24 hours a day to work on their labs, or may install
the CAD software on their personal computers.
Undergraduate lab assistants hold scheduled lab hours
each week, help struggling students with troubleshooting,
and grade the labs. Typically there is one lab assistant for
every 25 students and the assistant is present for 2-4
hours each week.

In summary, by using configware as the basis for
learning digital design and computer architecture, the
students retain the value of a hands-on design experience
without the tedium of breadboarding discrete gates. They
learn modern digital design practices, computer
architecture, and software/hardware co-design through a
series of labs that progressively build upon principles
learned in previous labs.

4

TABLE III
T EXTBOOK CONTENTS

1 From Zero to One

1.1 The Game Plan
1.2 The Art of Managing Complexity
1.3 The Digital Abstraction
1.4 Number Systems
1.5 Logic Gates
1.6 Logic Levels
1.7 CMOS Transistors
1.8 Summary and A Look Ahead

2 Combinational Logic Design

2.1 Introduction
2.2 Boolean Equations
2.3 Boolean Algebra
2.4 From Logic to Gates
2.5 Multilevel Combinational Logic
2.6 X's and Z's, Oh My
2.7 Karnaugh Maps
2.8 Multiplexers
2.9 Timing
2.10 Summary

3 Sequential Logic Design

3.1 Introduction
3.2 Latches and Flip-Flops
3.3 Synchronous Logic Design
3.4 Finite State Machines
3.5 Timing of Sequential Logic
3.6 Parallelism and Pipelining
3.7 Summary

4 Hardware Description Languages

4.1 Introduction
4.2 Combinational Logic
4.3 Structural Modeling
4.4 Sequential Logic
4.5 More Combinational Logic
4.6 Finite State Machines
4.7 * Parameterized Modules
4.8 Test Benches
4.9 Summary

5 Digital Building Blocks

5.1 Introduction
5.2 Combinational Building Blocks
5.3 Sequential Building Blocks
5.4 Arithmetic
5.5 Arrays
5.6 *Chip Implementation Options
5.7 *System Implementation Options
5.8 Summary

6 Architecture

6.1 Introduction
6.2 Assembly Language
6.3 Machine Language
6.4 Programming
6.5 Addressing Modes
6.6 Assembling and Loading
6.7 * Other MIPS Instructions
6.8 Summary

7 Microarchitecture

7.1 Introduction
7.2 Performance Analysis
7.3 Single-Cycle Processor
7.4 Multicycle Processor
7.5 Pipelined Processor
7.6 * HDL Representations
7.7 * Exceptions
7.8 Summary

8 Memory Systems

8.1 Introduction
8.2 Caches
8.3 Virtual Memory
8.4 Memory Mapped I/O
8.5 Performance Analysis
8.6 Summary

9 Advanced Microarchitecture

9.1 Introduction
9.2 Branch Prediction
9.3 Superscalar Pipelines
9.4 Out of Order Execution
9.5 Summary

Appendix: C Programming

V. TEXTBOOK

Until this year, E85 historically used Patterson & Hennessy’s
Computer Organization and Design text published by Morgan
Kaufmann [3]. The textbook elegantly covers assembly
language programming, computer architecture, and
microarchitecture using the MIPS processor. However, it
assumes a previous course in digital logic. With the generous
encouragement of Patterson, Hennessy, and Morgan
Kaufmann, we are writing a new textbook for a unified course
building on the strengths of Patterson & Hennessy’s MIPS
designs.

Table 3 lists the contents of the new book. Optional
sections are indicated with a *. As of February 2007, Chapters
1-8 have been written and are being reviewed. Morgan
Kaufmann plans a January 2007 publication date. The book

targets one semester or two-quarter introductory courses in
electrical engineering, computer science, and computer
engineering.

Another unique element of the textbook is its coverage of
HDLs. We cover Verilog and VHDL in chapter 4, after
combinational and sequential logic design, but before the
design of larger components or microarchitecture. We teach
HDLs not as a programming language (as far too many books
do), but as a shorthand for specifying digital hardware. The
chapter is organized around various digital hardware structures
(e.g. combinational logic, registers, FSMs, and hierarchy).
Both Verilog and VHDL describing each structure are
presented in side-by-side format. Below the code is a
schematic synthesized from the HDL to drive home the
relationship between code and hardware. Instructors can
select either HDL, and students can easily learn the other once

5

they have mastered the first. The HDL is then emphasized
throughout subsequent chapters.

Chapter 7, discussing MIPS microarchitecture, ties together
all of the previous chapters. It features the designs of single-
cycle, multicycle, and pipelined processors shown in Figure 2
that are closely adapted from Patterson & Hennessy. The
chapter illustrates combinational and sequential circuit design
and the use of digital building blocks. It draws on the
assembly language programming material. And it features a
HDL model of the single-cycle processor illustrating the design
of a complex system.

VI. ASSESSMENT

E85 has been taught as a unified course on digital design
and computer architecture for the past seven years by five
different instructors. It generally receives teaching evaluations
above 6.0 on a 7 point scale. Instructors in the upper division
digital design electives find that E85 students are well prepared
for advanced work. Recent student comments include:

I enjoyed how the labs built upon each other, it
was cool seeing it all come together.

The labs were really fun.

Students did complain about fighting with bugs in Xilinx
Version 2 and 4, but have been more satisfied with Version 6.3i.

To make sure the workload stays under control, students are
asked to report the time they spend on class assignments. In
the past three semesters, the workload has averaged about 4
hours per lab and 2.5 hours per problem set, for a total of 6.5
hours per week. This is typical for a 3-unit course at HMC.
Moving from Xilinx ISE version 4 to 6 saved about half an hour
per week on average because the tool became more stable.

The labs were labor-intensive to develop, but reasonably
inexpensive to maintain. Many undergraduates have
contributed to the lab development, enhancing their own
education as well. The department hires one undergraduate lab
assistant for every 15-20 students; the assistant generally
works about 2 hours per week. Xilinx ISE is free to academic
institutions and ModelSim and Synplify Pro have nominal
academic pricing. The FPGA boards cost under $100; Digilent
also sells a Spartan 3 board for $99 [4] and Xilinx has been
generous about donations. The board is connected to a PC in

the department general-purpose computer lab; dedicated lab
facilities are under consideration.

We have found that the schematic viewer in Synplify Pro is
essential to teaching HDL in a first course; in previous years
when no viewer was available, students had no way to
understand what good synthesizable coding style meant and
HDLs were too abstract.

VII. FUTURE ENHANCEMENTS

In the past, one FPGA board has been shared across the
entire class, so only Labs 4 and 11 use actual hardware. In the
future, we would like to add more FPGA stations so that
students can physically implement Labs 1 and 2 on the FPGA
as well.

The progression of labs worked well when all labs used
schematics, but is problematic because the Xilinx schematic
editor does not play gracefully with Synplify Pro Verilog
synthesis. As a result, Labs 2 and 5 need to be rethought.

We are currently upgrading to Xilinx ISE 8.1, which may
eliminate the need for the third-party ModelSim simulator.

VIII. CONCLUSIONS

Harvey Mudd has offered a very successful required
introductory course on digital design and computer
architecture using FPGAs with schematic entry and HDL. The
lab assignments are closely coupled to the lectures. We
believe that students benefit greatly from the hands-on design
experience and find it highly relevant because it uses modern
technology. We also find that teaching schematic-level design
before HDL is important for students to avoid the trap of
viewing HDL as a programming language. The course gives
students a solid foundation for future work in both hardware
and software design for reconfigurable computing systems.
We are developing a textbook to support the integration of
digital design and computer architecture in a first course.

REFERENCES
[1] D. Harris, “A Case for Project -Based Design Education,” Intl. J.

Engineering Education, vol. 17, no 4-5, pp. 367-369, 2001.
[2] S. Harris and D. Harris, “Inexpensive Student-Assembled FPGA /

Microcontroller Board,” Microelectronics Systems Education Conf.,
June 2005, pp. 101-102

[3] D. Patterson and J. Hennessy, Computer Organization and Design,
3rd Ed., San Francisco: Morgan Kaufmann, 2005,

[4] www.digilent.com

6

(a)

ImmExt

CLK

A RD

Instruction
Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0

1

0
1

A RD
Data

Memory
WD

WE
0

1

PC

0

1

PC' Instr 25:21

20:16

15:0

5:0

SrcB

20:16

15:11

<<2

+

ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg4:0

Result

31:26

RegDst

Branch

MemWrite

MemtoReg

ALUSrc

RegWrite

Op

Funct

Control
Unit

Zero
PCSrc

CLK

ALUControl
2:0

A
LU

(b)

SignImm

CLK

A
RD

Instr / Data
Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0

1

0

1 0

1

PC 0
1

PC' Instr
25:21

20:16

15:0

5:0

SrcB20:16

15:11

<<2

ALUResult

SrcA

ALUOut

31:26

R
egD

st

Branch

MemWrite

M
em

toR
eg

ALUSrcA

RegWrite
Op

Funct

Control
Unit

Zero

PCSrc

CLK

CLK

ALUControl2:0

A
LU

WD

WE

CLK

Adr

0

1
Data

CLK

CLK

A

B 00

01

10
11

4

CLK

ENEN

ALUSrcB 1:0IRWrite

IorD

PCWrite
PCEn

(c)

SignImmE

CLK

A RD

Instruction
Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0
1

0

1

A RD
Data

Memory
WD

WE
0

1

PCF0

1
PC' InstrD

25:21

20:16

15:0

5:0

SrcBE

20:16

15:11

RtE

RdE

<<2

+

ALUOutM

ALUOutW

ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCBranchM

WriteRegM 4:0

ResultW

PCPlus4EPCPlus4F

31:26

RegDstD

BranchD

MemWriteD

MemtoRegD

ALUControlD

ALUSrcD

RegWriteD

Op

Funct

Control
Unit

ZeroM

PCSrcM

CLK CLK CLK

CLK CLK

WriteRegW 4:0

ALUControlE2:0

A
LU

RegWriteE RegWriteM RegWriteW

MemtoRegE MemtoRegM MemtoRegW

MemWriteE MemWriteM

BranchE BranchM

RegDstE

ALUSrcE

WriteRegE4:0

Fig. 2. (a) Single-cycle, (b) Multicycle, and (c) Pipelined MIPS processors.

