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Abstract—The OpenGL geometry pipeline lighting stage requires raising a number in the range ½0; 1� to a power between ½1; 128� to
compute specular reflections and spotlights. The result need only be accurate to a number of bits related to the color depth of the

output device. This paper describes a hardware implementation of such an exponentiation unit based on a logarithm lookup table, a

multiplier, and an inverse log table. The inputs arrive in IEEE single-precision floating-point format and the output is a floating-point

color component in the range ½0; 1� with 8-10 bits of accuracy. The log lookup table is partitioned into subintervals to reduce table size

and each subinterval is computed from a bipartite table to further reduce size. A synthesized design uses 32k gates to achieve 10-bit

accuracy with a latency of 9.4 ns in a 180 nm process. Although the system is tailored to the OpenGL application, the same principles

can be applied to the design of other exponentiation units.

Index Terms—Powering, exponentiation, computer arithmetic, OpenGL hardware acceleration, table lookups, table complexity,

bipartite tables.

�

1 INTRODUCTION

OPENGL is a standard for professional 3D graphics [1], [2].
The OpenGL pipeline consists of floating-point in-

tensive transformation and lighting followed by short
integer computations for rasterization. Hardware graphics
accelerators have traditionally focused on the rasterization
stages, but have become so fast that transformation and
lighting are now a bottleneck [3]. Therefore, the transforma-
tion and lighting calculations have moved from the host
processor to a hardware transform and lighting engine on a
mainstream PC-graphics accelerator, such as the NVIDIA
GeForce4 and ATI RADEON 9700.

The transform and lighting engine accepts vertices and

normalvectors andperformsmatrixmultiplies for coordinate

system transformations. It then calculates ambient, emissive,

diffuse, and specular lighting. Specular lighting results in

highlights when light comes from a particular direction and

reflects off the surface. Lights may be specified as spotlights

that also favor a particular direction. Both specular lighting

and directed spotlight calculations involve raising the cosine

of an angle to a power to determine the light intensity

reaching the viewer. Specifically, the OpenGL pipeline must

raise a number in the range ½0; 1� to a (possibly noninteger)

power in the range ½0; 128�. In practice the power is usually

in the range ½1; 128� and this design is restricted to that

range for ease of hardware implementation. Such a limit is

consistent with the philosophy of accelerating the common

OpenGL modes and trapping to software for other modes.

The inputs and outputs of the pipeline are commonly

represented as single-precision IEEE floating-point num-

bers [1], [4]. The exponentiation operation is required for

each vertex for Gouraud shading and for every pixel for the
more realistic but computationally expensive Phong shad-
ing [5]. Ideally, all computations would be performed with
as high a precision as possible until a final rounding stage
that determines the vertex color. In practice, the precision
may be reduced to save hardware without introducing
perceptible artifacts.

Accurately computing AB is considered a difficult
floating-point operation [6] because the function is ill
conditioned, especially for large values of B [7]. Approx-
imations for specific cases can be efficient. For example,
Tang [8], [9] describes an algorithm for expðBÞ using range
reduction, a polynomial approximation, and reconstruction.
Efficient approaches involving table lookup and interpola-
tion exist when B is a constant [10], [11]. Software math
libraries [12] often rely on multiplications, particularly
when B is an integer.

The hardware implementations of commercial graphics
accelerators such as the SGI Infinite Reality Engine or the
NVIDIA or ATI chips have been closely guarded trade
secrets. However, a number of academic designs have been
published. These designs use the fact that the absolute
accuracy requirements are set by the color depth of the
output device and the acuity of human vision. Shin et al.
[13] use a direct ROM lookup based on A and B. While a
full ROM would be very expensive (e.g., 8 Mbits), they use
nonuniform quantization of the inputs to maintain visual
fidelity with only a 128kb ROM. However, their approach
does not handle arbitrary noninteger values of B, is prone
to banding from the quantization, and offers little error
analysis. Another technique is to use the identity

AB ¼ 2B log2 A ð1Þ

to compute the result using a logarithm, multiply, and
exponent. Chen and Lee [14] perform the logarithm and
exponent with table lookups, while Kwon et al. [15] use
clever piecewise linear approximations that avoid the need
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for tables and are accurate over most but not all of the input
domain.

This paper describes an algorithm and hardware im-
plementation for calculating P ¼ AB. A and B are provided
at arbitrarily high precision with A 2 ½0; 1�, B 2 ½1; 2b�. P 2
½0; 1� is expressed as a fixed-point number faithfully
rounded to p fractional bits. In other words, the result has
an absolute error of less than 2�p [18]. As in [14], the

algorithm is based on (1) with logarithm and exponential
lookup tables. For OpenGL, b is 7 and p is typically 8 or 10,
corresponding to the number of bits used to represent each
red, green, blue, and alpha color component.

The hardware cost depends on the size of the lookup
tables required to produce a p-bit result. If a single
logarithm lookup table were used, we will find the number

of entries grows as Oð2bþpÞ and can be impractically large.
Alternatively, Chen and Lee [14] use a medium-sized
(4; 096� 9) table and accept significant errors for large
values of B. A key idea of this paper is to partition the
logarithm table into multiple tables over subintervals, as
done by Coleman et al. [16]. This leads to OðbÞ tables that
grow as Oð2pÞ for an area of Oðb2pÞ. The logarithm table size

can be reduced even further using table-lookup-and-
addition methods [17], [18], [19], [20], [21] in place of a
conventional table lookup.

This paper presents the algorithm and error analysis that
determines the size of the lookup tables. The design was
coded in Verilog and synthesized to produce area and
timing results.

2 ALGORITHM

We wish to compute P ¼ AB, where A and B are floating-
point numbers in the domains ½0; 1� and ½1; 2b�, respectively.
The result is faithfully rounded to p fractional bits. This
means that the returned result is guaranteed to be one of the
two fixed-point numbers that surround the exact result.
Faithful rounding is more practical than exact rounding for

a exponentiation unit because it is expensive to calculate the
result to the high level of precision required to round
exactly [6].

Fig. 1 shows the steps of the computation. We begin with
the identity AB ¼ 2B log2 A. The logarithm, L, is selected from
a table using a fixed-point representation of A, then
multiplied by a fixed-point representation of B to obtain
the product X � B log2 A. We finally determine the result

P ¼ 2X as a floating-point number. The exponent is the
integer portion of X and the significand is looked up from a
table based on the fractional part of X.

In this paper’s notation, let the bit vector x½m : n�
represent

Pm
i¼n x½i�2i. Let p0 ¼ dlog2ðpþ 1Þe, which is the

number of bits required to represent the integer portion of
the logarithm of the smallest A ¼ 2�p that will not generate
a result of 0. Let ÂA �1 : �n1½ � be a fixed-point representation
of A truncated to n1 fractional bits. B̂B b : �n2½ � is the
corresponding fixed-point representation of B with
bþ 1 integer bits and n2 fractional bits. One can readily
convert from floating-point inputs into these fixed-point
representations by a shift and truncation of the signficands.
The result P will be a floating-point number in the range
½0; 1� faithfully rounded to within one part in 2�p.

Fig. 2 lists the exponentiation algorithm. It first handles
special cases of large and small inputs. Note that only p0 bits
of integer part must be maintained in the log lookup and
multiplication because, if the integer portion exceeds this
range, the final result will be 0. The number of bits n1, n2,
n3, and n4 for each intermediate result determines the sizes
of the tables and the multiplier. In the next section, we will
perform an error analysis to find the smallest numbers of
bits required to achieve a particular accuracy.

As a concrete illustration of the algorithm, consider a
small exponent unit handling values of B in the range of
½0; 4� returning a result faithfully rounded to four bits. In
this case b ¼ 2, p ¼ 4, and p0 ¼ 3. The subsequent error
analysis will show the intermediate computations must
maintain n1 ¼ 7, n2 ¼ 7, n3 ¼ 9, and n4 ¼ 6 bits if a
straightforward logarithm lookup table is employed. Now,
consider the steps of computing 0:973:5 ¼ 0:898879. In
binary, A ¼ 0:11111000010100 . . .2 , B ¼ 11:102, and P =
AB ¼ 0:11100110000111 . . .2 . The intermediate results are:

ÂA ¼ 0:11111002

B̂B ¼ 11:10000002

L ¼ � log2 0:111110012ð Þ ¼ 0:0410 ¼ 0:0000101002

X ¼ LB̂B ¼ 000:0010002

E ¼ 2� 0:0010001ð Þ2 ¼ 0:912052 . . .10 ¼ 0:11102

P ¼ 0:11102 � 2�0002 ¼ 0:11102 ¼ 0:87510:

Thus, the answer is faithfully rounded to four bits.

3 ERROR ANALYSIS

To guarantee a faithfully rounded result, we must consider
the sources of error introduced by the finite precision
lookup tables and multiplier. Given these sources, we
determine the necessary table sizes.

The logarithm table ideally returns the logarithm of A,
but, because it is indexed with only n1 bits in ÂA½�1 : �n1�,

252 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 3, MARCH 2004

Fig. 1. Block diagram of exponentiation unit.



some round-off error is introduced. Let the table entry for ÂA

contain � log2ðÂA½�1 : �n1� þ 2�ðn1þ1ÞÞ. The round-off error

"1 is thus at most half of a unit in the least significant

position.

"1j j ¼ A� ÂA½�1 : �n1� þ 2� n1þ1ð Þ
� ����

��� � 2� n1þ1ð Þ: ð2Þ

Fig. 3 illustrates the variation of the round-off error with A

for n1 ¼ 3.
The logarithm table produces a result L rounded to the

nearest fixed-point number with n3 fractional bits. This

introduces another error representing the difference be-

tween the exact logarithm and the table contents.

"3j j ¼ � log2 ÂAþ 2�ðn1þ1Þ
� �

� L½p0 � 1 : �n3�
���

��� � 2� n3þ1ð Þ:

ð3Þ

The B input to the multiplier is truncated to B̂B b : �n2½ � with

n2 fractional bits, so

"2j j ¼ B� B̂B½b : �n2�
�� �� < 2�n2 : ð4Þ

The product X p0 � 1 : �n4½ � is truncated to n4 bits before

being used in the exponent lookup table. As in the

logarithm table,

"4j j ¼ L � B̂B� X p0 � 1 : �n4½ � þ 2� n4þ1ð Þ
� ����

��� � 2� n4þ1ð Þ: ð5Þ

Finally, the exponent table produces a result rounded to the

nearest fixed-point number with p fractional bits, introdu-

cing a further error.

"5j j ¼ 2� X �1:�n4½ �þ2� n4þ1ð Þ
� �

� E½�1 : �p�
����

���� � 2� pþ1ð Þ: ð6Þ

Considering all these errors, we actually compute

P̂P ¼ 2 Bþ"2ð Þ log2 Aþ"1ð Þþ"3ð Þþ"4 þ "5: ð7Þ

For faithful rounding, we must choose tables large enough

that the error is small enough: P̂P � P
�� �� < 2�p.

2 Bþ"2ð Þ log2 Aþ"1ð Þþ"3ð Þþ"4 þ "5 � 2B log2 A
�� �� < 2�p: ð8Þ

Because the errors are small, we will analyze them using

first-order Taylor series approximations for log2x and 2x

log2 xþ "ð Þ � log2 xþ "

x ln 2
ð9Þ

2xþ" � 2x 1þ " ln 2ð Þ: ð10Þ

Substituting (9) into (8) and eliminating quadratic error

terms, we find

2B log2 Aþ "1
A ln 2þ"3ð Þþ"2 log2 Aþ"4 þ "5 � 2B log2 A

���
��� < 2�p: ð11Þ

Then, substituting (10) into (11) and simplifying, we find

our error bound

AB "1
B
A þ "2 log2 A ln 2þ "3B ln 2þ "4 ln 2

� �
þ "5

�� �� < 2�p:

ð12Þ

This bound depends on the input A; for small values of

A, we can place looser constraints on the errors than when

A is close to 1. This suggests that we could benefit from

partitioning the logarithm table into subintervals with

greater precision for inputs close to unity. We will choose

upper bounds on "1, "2, "3, "4, and "5 to ensure that (12) is

satisfied for a desired accuracy p. The bounds on the
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logarithm table errors "1 and "3 will depend on the value of
A. The other bounds will be independent of A and B.

To find bounds on "1 and "3 we take a derivative of their
terms with respect to B to find the maximum value each
term can take on for a given value of A. For both errors, this
maximum occurs at

B ¼
1 A < e�1

�1= lnA otherwise
2b A > e�2�b

:

8<
: ð13Þ

Also observe that the weight on the "2 term takes on a
maximum value at A ¼ 1=e, B ¼ 1 of

AB log2 A ln 2
�� �� � 1

e
: ð14Þ

We can now eliminate B from (12) by substituting (13)
and (14) and taking an upper bound of 1 for AB. The error
bound depends on the interval containing A.

"1 þ "2
e þ "3A ln 2þ "4 ln 2þ "5

�� ��
�"1

eA lnA þ "2
e þ

�"3 ln 2
e lnA þ "4 ln 2þ "5

�� ��
"12

b þ "2
e þ "32

b ln 2þ "4 ln 2þ "5
�� ��

9=
; < 2�p

A < e�1

otherwise
A > e�2�b

:

ð15Þ

We already bounded "5 in (6). Reducing the errors "1 and
"4 is costly because these determine the number of entries in
the logarithm and exponent lookup tables. We will allocate
the total allowable error of 2�p among the five terms to
satisfy (15) while giving as much slop as possible for "1 and
"4 to minimize table sizes.

"1j j
�1

eA lnA "1j j
2b "1j j

9>=
>;

< 2�ðpþ2Þ
A < e�1

otherwise

A > e�2�b

"2j j
e

< 2�ðpþ4Þ

A ln 2 "3j j
� ln 2
e lnA "3j j
2b ln 2 "3j j

9>=
>;

< 2�ðpþ4Þ
A < e�1

otherwise

A > e�2�b

ln 2 "4j j < 2�ðpþ3Þ:

ð16Þ � ð19Þ

Given these bounds, we can determine the number of bits
required at each step in the computation. Taking 1

e < 2�1

and ln 2 < 20, we solve (4) and (17) for n2 ¼ pþ 3 and (5)
and (19) for n4 ¼ pþ 2. We will choose n1 and n3 in the next
section based on our logarithm table design.

4 TABLE DESIGN

Fig. 4 plots the weight w multiplying the "1 term in (16) for
b ¼ 7, showing that it increases from 1 for small inputs A to
2b ¼ 128 as A gets very close to 1. As the magnitude of this
term determines the size of the logarithm, we observe that
the table must be huge to provide the required accuracy for
values of A near 1. Specifically, if a single logarithm lookup
table indexed with n1 bits were used to cover all inputs
ÂA �1 : �n1½ � across the interval ½0; 1�, (16) implies it would
have to be large enough that 2b"1 < 2�ðpþ2Þ or "1 < 2�ðpþbþ2Þ.
Equation (2) requires n1 ¼ pþ bþ 1, so the lookup table
would have 2pþbþ1 entries. This is unacceptably costly
(256K entries) for b ¼ 7, p ¼ 10. This section shows how to

use multiple tables spanning subintervals of the domain to

reduce the overall table size. It then examines bipartite

tables to further reduce size. Finally, it defines the exponent

table size.

4.1 Logarithm Table Design

Notice that the weight on the "1 error in (16) introduced by

indexing the logarithm table with a finite number of bits

increases as A approaches 1. Hence, we use multiple

logarithm lookup tables valid over different subintervals

with greater precision for inputs close to unity. Specifically,

we use bþ 2 tables: T0 . . .Tbþ1. Table Ti covers the

subinterval ½1� 2�i; 1� 2�ðiþ1ÞÞ except the last table Tbþ1

covers the subinterval ½1� 2�ðbþ1Þ; 1Þ. Each table is indexed

with only ~nn1 bits of ÂA and returns an approximation to the

logarithm L½p0 � 1 : �ni
3�, where the number of fractional

bits ni
3 increases with the table number i.

We index the table using ÂA, the fixed point representation

of A. Values of A in Ti ð0 � i � bÞ are binary fractions with i

leading 1s. We treat the subsequent ~nn1 bits as the index j into

the table and truncate the remaining least significant bits.

Therefore, the jth entry of Ti holds L½p0 � 1 : �ni
3� ¼

� log2ðÂAþ 2�ð~nn1þiþ2ÞÞ for ÂA ¼ 1� 2�i þ j2�ðiþ~nn1þ1Þ. Hence,

the round-off error is j"1j � 2�ð~nn1þiþ2Þ. Table Tbþ1 covers the

same size subinterval as table Tb, so, for values of A in this

table, j"1j � 2�ð~nn1þbþ2Þ. Now, we can find a bound on the

error introduced in the result by the finite sized logarithm

lookup tables.

Theorem 1. The maximum weighted magnitude of the "1 error

term in (16) introduced by table Ti is jwi"1j � 1:07 � 2�ð~nn1þ2Þ.

Proof. The breakpoint A ¼ e�2�b
occurs in table Tb, as

seen from the Taylor series approximation

e�2�b � 1� 2�b þ 1
2ð2�bÞ2. Therefore, we divide the proof

into two parts, one for table Tbþ1 and the other for tables

T0 . . .Tb.
For table Tbþ1, jwbþ1"1j � 2b2�ð~nn1þbþ2Þ ¼ 2�ð~nn1þ2Þ.

For tables T0 . . .Tb, jwij < �1
eð1�2�ðiþ1ÞÞ lnð1�2�ðiþ1ÞÞ . Eval-

uating numerically, we find jwij < 1:07 � 2i, so

jwi"1j < 1:07 � 2i � 2�ð~nn1þiþ2Þ ¼ 1:07 � 2�ð~nn1þ2Þ. For large i, a

first order Taylor series approximation shows wi ! 2
e2

i,

so the bound becomes loose for i > 0. tu
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Theorem 2. The maximum weighted magnitude of the "3 error
term in (18) introduced by table Ti is jvi"3j � 2�ðni

3þ1�iÞ.

Proof. From (3), we know j"3j � 2�ðni
3þ1Þ. Again, we divide

the proof into two parts, one for table Tbþ1 and the other
for tables T0 . . .Tb.

For table Tbþ1,

vbþ1"3j j � 2b ln 2 � 2� nbþ1
3

þ1ð Þ < 2� nbþ1
3

þ1�ðbþ1Þð Þ:

For tables T0 . . .Tb,

vij j < � ln 2

e 1� 2�ðiþ1Þð Þ ln 1� 2�ðiþ1Þð Þ :

Evaluating numerically, we find vij j < 2i, so

vi"3j j < 2i � 2� ni
3þ1ð Þ ¼ 2� ni

3þ1�ið Þ:
ut

Given Theorem 1 and (16), we choose ~nn1 ¼ p bits to index
the logarithm tables. Note that we violate the bound in (16)
by the factor of 1.07. This is compensated for by the slack in
(19). Similarly, given Theorem 2 and (18), we choose
ni
3 ¼ iþ pþ 3.
Note that T0 contains p0 integer bits and pþ 3 fractional

bits. For i > 0, one can determine numerically that the
integer bits and i� 1most significant fractional bits in Ti are
all 0s, so the tables contain only pþ 4 nontrivial bits in each
entry. The multiplier may thus be optimized to accept only
p0 þ pþ 3 bits of L if followed by a right shift by i to
compensate for the leading 0s. In general, the total number
of bits in the logarithm tables is 2p bþ 2ð Þ pþ 4ð Þ þ p0 � 1½ �.

In summary, our design with b ¼ 7, p ¼ 10 requires nine
logarithm tables of 1,024 entries each. T0 has 4 integer bits
and 13 fractional bits. The other tables have 14 fractional
bits. The total table size is about 16KB. The table size
reduces significantly if less accuracy is necessary; for
example, a table for p ¼ 8-bit color depth requires only
3.5KB of storage.

4.2 Bipartite Logarithm Tables

The logarithm table sizes can be reduced further using
symmetric bipartite table approximations [17], [18], [19].
Consider evaluating fðxÞ ¼ � log2ðxþ 2�ðpþ1ÞÞ, where x is
the input A truncated to p bits. In the previous section, we
looked up fðxÞ in a 2p-entry table. An alternative method is
to divide x into three bit strings, denoted as x0, x1, and x2, of
lengths p0, p1, and p2, respectively. The value of the input
ope r and i s x ¼ x0 þ x1 þ x2 and t h e l eng t h i s
p ¼ p0 þ p1 þ p2. Using the first part of a Taylor series

fðxÞ ¼ fðx0 þ x1 þ x2Þ
� fðx0 þ x1Þ þ x2 � f 0ðx0 þ x1Þ
� fðx0 þ x1Þ þ x2 � f 0ðx0Þ
� gðx0; x1Þ þ hðx0; x2Þ;

ð20Þ

where gðx0; x1Þ is a table of initial values with 2p0þp1 entries
containing fðx0 þ x1Þ and hðx0; x2Þ is a table of offsets with
2p0þp2 entries containing x2 � f 0ðx0Þ.

One can show that the lengths p0, p1, and p2 depend on
the desired accuracy of the result and the second derivative
of f [19]. If the second derivative is relatively small, a Taylor

series analysis shows choosing p0 � p1 � p2 gives accepta-
ble error [20] and requires approximately 2ð2=3Þp table entries
rather than the 2p entries required in a conventional table.

A direct implementation of the logarithm lookup using a
single bipartite table covering the range ½0; 1Þ is not feasible.
The derivative of the function goes to infinity at x ¼ 0, so
the error in the lookup becomes unbounded. Even over the
range ½0:5; 1Þ, a single bipartite table would require more
entries to produce acceptable error than do the multiple
tables over subintervals developed in the previous section.
However, we can reduce storage requirements by replacing
each of the tables T1 . . .Tb with a bipartite table.

Exploiting symmetry in the table of offsets hðx0; x2Þ
allows the table to be reduced in size by a factor of two to
2p0þp2�1 at the expense of a few XORs [19]. The rounded
contents of the g and h tables and the exact error bounds are
determined using the algorithm presented in [21]. Based on
the error bounds, we choose p0 ¼ 4, p1 ¼ 3, p2 ¼ 3 for p ¼ 10
and p0 ¼ 3, p1 ¼ 2, p2 ¼ 3 for p ¼ 8. Thus, for p ¼ 10, we
replace each 1,024-entry lookup table T1 . . .T8 with a
128-entry table of initial values, a 64-entry table of offsets,
and a 14-bit carry-propagate adder. Similarly, for p ¼ 8, we
replace each 256-entry lookup table with a pair of 32-entry
tables and a 12-bit adder. In both cases, we must keep the
full unipartite T0 to cover the subinterval ½0; 0:5Þ. The
combined logarithm table sizes are 5 KB or 1.3KB for p ¼ 10
or 8, respectively. No guard bits are used because a tedious
analysis shows that the extra error from an unfaithfully
rounded result is smaller than the slack in the bounds on "3
and "2.

4.3 Exponent Table Design

As shown earlier, the exponent table is indexed with the
upper n4 ¼ pþ 2 fractional bits of the product computed by
the multiplier and produces an answer rounded to
p fractional bits. Thus, the table requires p2pþ2 bits of
storage. The table for p ¼ 10 has 5 KB of storage and a table
for p ¼ 8 has 1 KB of storage.

5 IMPLEMENTATION

This section describes Verilog implementations of the
exponentation algorithm. The design using a logarithm
table with multiple subintervals described in Section 4.1 is
called the unipartite design. The design with multiple
subintervals and bipartite tables described in Section 4.2 is
called the bipartite design. It presents a block diagram of
the unit, the verification methodology, and the synthesis
results. The inputs A and B are IEEE single-precision
floating-point numbers. The output P is calculated as a
fixed-point number with p bits of fraction and is converted
to floating-point format for later use. The Verilog model is
parameterized by b and p.

Fig. 5 shows a block diagram of the exponentiation unit.
The floating-point inputs A and B are converted to fixed-
point format ÂA and B̂B. ÂA is presented to bþ 2 log tables
covering the subintervals of ½0; 1� and the logarithm L is
selected from the appropriate table based on the number of
leading 1s, i. To reduce the size of the multiplier, the right
shift of L by i is delayed until after the multiplication. The
exponent table looks up E based on the fractional bits of X.
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In the normal case, the floating-point result P has a

significand equal to E and an exponent equal to the integer

part of X. The result multiplexer selects 1.0 in the special

cases of A ¼ 1:0, 0.0 if A is tiny or X is too large, or AB

otherwise.
In the unipartite design, each of the log tables has

2p entries. In the bipartite design, each of the tables consists

of a smaller bipartite table and an adder. Fig. 6 illustrates

these tables for p ¼ 10, b ¼ 7. Each also contains a leading-

one counter and multiplexer to select the appropriate

table Ti.

5.1 Verification

VCS simulations verified the Verilog implementation

against a C reference model. The C model generates the

tables and determines both the expected Verilog result and

the true value of AB to ensure the algorithm rounds

faithfully.
The test vectors includebothdirected and random tests for

b ¼ 7 and p ¼ 8 and 10. Six million random vectors were

applied. For faithful rounding, the maximum error must be

less than 2�p (0.0039 for p ¼ 8 or 0.00098 for p ¼ 10). In the

unipartite design, the maximum errors found were 0.0030

and 0.00080, respectively. In the bipartite design, the

maximum errors were 0.0031 and 0.00082. The small extra
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Fig. 5. Refined block diagram of exponentation unit.

Fig. 6. Log table designs for p ¼ 10.



error in the bipartite design comes from round-off in the log
tables that could be avoidedwith an additional guard bit [21].

5.2 Synthesis Results

The exponentiation unit was synthesized with Synopsys
tools and mapped to the LSI Logic G12-p 180 nm cell library
[22] using worst-case models. The gate count of each
component is listed in Table 1 with a conversion of one gate
to 24 �m2, i.e., four LSI cell units. No ROM generator was
available, so lookup tables were synthesized onto the cell
library. If a ROM generator were available, the number of
ROM bits required for each table is also shown in the table
with an estimated conversion of one bit to about 2 �m2. In
comparison, the design of [13] requires 128 Kb of ROM for <
8-bit accuracy, [14] uses 73 Kb of ROM for < 6-bit accuracy
when B ¼ 128, and [15] uses a few adders and a floating-
point multiplier for < 6-bit accuracy.

Fig. 7 plots the gate count versus cycle time for the
exponentiation units. The bipartite designs pay an extra
adder delay to sum the table results, but, in the case of
p ¼ 10, the smaller bipartite tables are faster by more than
enough to offset the adder delay. If cycle time can be
relaxed further, a significant area savings is achievable.

Adding a factor of two to account for estimated
interconnect, the overall synthesized areas of the fastest
bipartite designs are 0.6 mm2 for p ¼ 8 and 1.5 mm2 for
p ¼ 10. Building the tables from ROMs rather than
combinational logic would reduce the areas to 0.3 and
0.6 mm2, respectively. The exponentiation unit can be
partitioned before and after the multiplier into a 3-stage

pipeline to match the cycle time (typically 3-4 ns) of 180 nm
graphics accelerators.

As the OpenGL standard requires up to two exponentia-
tions per vertex per light source (if the source has specular
and spotlight attributes), the pipelined design can process
at least 125 megavertices/second for a single light source. In
comparison, the AGP 8x memory interface has a bandwidth
of 2.1 GB/s, which is sufficient to deliver at most
88 megavertices/second to the geometry engine if each
vertex consists of three single-precision floating-point
XYZ coordinates and three color (RGB) or normal
ðNxNyNzÞ components. Multiple light sources may be
handled either at reduced throughput or with multiple
exponentiation units operating in parallel. This hardware
exponent unit may also be applicable to Phong shading,
which requires lighting calculations on a per pixel rather
than a per vertex basis.

6 CONCLUSION

This paper described a hardware implementation of a
exponentiation unit suitable for OpenGL lighting computa-
tions or other applications with similar accuracy require-
ments. The unit calculates P ¼ AB, where A and B are IEEE
single-precision floating-point numbers in the range ½0; 1�
and ½1; 2b�, respectively, and P is faithfully rounded to
p fractional bits. The unit uses a logarithm lookup, a
multiplier, and an exponent lookup. Error analysis shows
that the logarithm lookup table accuracy requirements
depend on the value of A, so the unit uses multiple tables
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TABLE 1
Exponentiation Unit Size

Fig. 7. Gate count versus latency. (a) p = 8. (b) p = 10.



over different subintervals of A to minimize the overall

table size. Bipartite tables are used for most subintervals to

further reduce table sizes. This implementation, good to

10 bits of accuracy, uses nine log lookup tables, a 2,048-

entry exponent lookup table, and a multiplier. Synthesized

in a 180 nm process, it has an area of 1.5 mm2 and a latency

of 9.4 ns. Another design with 8-bit accuracy has an area of

0.6mm2 and a latency of 8.2 ns. In comparison, the design of

[13] requires a larger lookup table than the 10-bit bipartite

design yet is accurate to less than 8 bits, is susceptible to

banding artifacts, and does not support noninteger powers.

The designs are freely available through the Harvey Mudd

Open Source Floating Point Project [23]. Future areas of

potential work to further reduce the logarithm table size

include multipartite tables [24], [15], nonuniform intervals,

or first or second-order interpolation.
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