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Abstract

The counterflow pipeline architecture [12] consists of
two interacting pipelines in which data items flow in op-
posite directions. Interactions occur between two items
when they meet in a stage. We present the design deci-
sions for, and test measurements from, an asynchronous
chip that explores the basic ideas of such an architec-
ture. We built the chip in order to confirm proper op-
eration of the arbiters required to ensure that each and
every item flowing in one direction interacts with each
and every item flowing in the other direction.

Our chip, named “Zeke,” was built in 0.6�m CMOS
through the MOSIS fabrication facility. The maximum
total throughput of the chip, which is the sum of the
throughputs of the two pipelines, varies between 491
MDI/s (Mega Data Items per second) and 699 MDI/s,
depending on the amount of interaction that takes place.
Under average data and operating conditions the per-
formance of our chip was roughly halfway between these
throughput values.

“ ...their construction being as it were
a wheel within a wheel.”

Ezekiel, Chapter 1, verse 16.

1. Introduction

In [12] Sproull, Sutherland, and Molnar proposed a
counterflow pipeline architecture consisting of two in-
teracting pipelines in which data items move in oppo-
site directions. Such an architecture can be used to im-
plement a processor, where one pipeline carries instruc-
tions and the other carries results. An essential feature
in a counterflow pipeline processor is that each instruc-
tion will meet each counterflowing result in some stage,
where the instruction and result will interact. The inter-
action includes the checking of whether an instruction’s
operand address matches a counterflowing “result” ad-
dress and, if so, copying a result value into an operand
field of the instruction, an operation we call “garnering.”

The counterflow pipeline architecture was a new ar-
chitecture that offered many research opportunities. For
the past several years this architecture served as a re-
search focus of our Asynchronous Systems Group at
Sun Microsystems Laboratories. The initial years were
spent investigating the general architecture, while more
recently we have concentrated on the design of fast basic
circuitry for pipeline control [1, 7, 8].

When we reached the point at which we were pre-
pared to implement and test the basic ideas of the coun-
terflow pipeline, we undertook the building of a counter-
flow pipeline test chip as “the ultimate verification,” as
Charles Molnar would have said.

During the design process we faced several chal-
lenges. First, how to design a counterflow pipeline for
which we can test correct operation. This was not an
easy task, given the high degree of parallelism and ar-
bitration present in the architecture. In particular, we
wished to verify correct functionality of the design: that
each instruction meets each counterflowing result, that
address matching is correctly carried out, and that result
garnering occurs whenever there is an address match.

A second challenge was speed. How fast could we
make the counterflow pipeline operate, and how would
we measure its performance? We have experience with
several design styles suitable to implement pipeline con-
trol circuits. We selected the asynchronous, symmet-
ric, persistent, pulse protocol (asP*), because it pro-
vided high performance without too much complexity
and easy interfacing for testing the chip. Furthermore,
because the on-chip circuitry could operate at a much
higher speed than our off-chip measurement equipment,
we designed the chip to permit simple measurement of
the on-chip speed with off-chip equipment.

The third challenge was to optimize our learning ex-
perience. Could we design the chip such that we could
learn some general lessons about counterflow pipeline
architectures? For example, we wanted to know how
the total throughput of the counterflow pipeline varied
as a function of the number of items in each pipeline
and as a function of the number of items with matching
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addresses. As a side benefit of this exercise we expected
to gain more experience and confidence in building fast
asynchronous circuits.

These challenges influenced several design decisions,
most of which are reported in Section 2. In Section 3 we
explain the basic operation of the control circuits and the
data path. Section 4 describes the implementation of the
arbiters, while Section 5 reports the performance results
measured from the fabricated chips. Section 6 explains
how we tested the arbiters on our chip. We conclude
with some lessons that we have learned from this design.

2. General structure of the chip

In order to keep the chip relatively simple and fully
testable we chose the following design. Our test chip
consists of two counterflowing rings of 28 stages, one
ring for the so-called northbound items and the other
ring for the so-called southbound items, as shown in
Figure 1. We dispensed with the distinction between in-
structions and results, treating the data in each pipeline
simply as “items.” We chose rings as opposed to straight
pipelines so that we could easily run the system con-
tinuously at its maximum speed, thus allowing us to
measure throughput as a function of the number of full
cells in a way similar to that used in previous ring de-
signs [1, 7, 8, 14].

28 stage ring

S cycle counter

N cycle counter

South

North

1 marker bit

2 address bits

8 data bits

5 count value bits

Figure 1. A 28-stage counterflow ring with
8-bit data items

For the correct functionality of the counterflow
pipeline, it is essential that a north and southbound item
do not miss each other when they try to cross the same
stage boundary in opposite directions. In other words,
the chip design must prevent simultaneous crossings
of a stage boundary by a north and southbound item.
We used arbiters to prevent simultaneous crossings of a
stage boundary by a northbound and a southbound item.
The main purpose of the chip was basically to test this
mutual exclusion behavior. We wanted a design in which
we could detect even a single arbitration failure in bil-
lions of trials. However, we also wanted simplicity in
the design.

We devised the following test structure for the coun-
terflow pipeline. Each data item consists of a two-bit ad-
dress, a five-bit count value, and one marker bit. When-
ever a north and southbound item meet in a stage, their
two-bit addresses are compared. If the addresses match,
the count value in each of the meeting items is incre-
mented modulo25 � 1 = 31; otherwise both count
values remain unchanged. The reason for incrementing
modulo31, and not modulo32, is that we use a Linear
Feedback Shift Register (LFSR) counter. The increment
process models the “garnering” operation of the general
counterflow pipeline architecture.

In addition to the count value associated with each
north and southbound item, there is also a cycle counter
associated with one of the stage boundaries in each ring.
In our tests we initialize the data items in the rings such
that only one marker bit is set in each ring. Each cycle
counter is incremented when an item with a set marker
bit passes its stage boundary. Each cycle counter holds
48 bits, which is sufficient to allow the rings to run for
at least two days without cycle counter overflow.

Additional circuitry is used to initialize the North and
South sides of each stage “full” or “empty,” and we can
read and write the values of the address, count value,
and marker bits. We can also read and write the values
of the cycle counters and start and cleanly stop the rings
at any time by means of an external signal. Thus we are
able to initialize the two rings and the two cycle counters
with known values, let them run for a while, stop them,
and then read the contents of each stage and the cycle
counters.

From the start and end positions of all the items and
the cycle counter values, we can calculate what each
item’s count value should be, modulo 31. Any discrep-
ancies between the calculated and actual count values
indicates that items missed each other, e.g., due to ar-
bitration failures. There is a very small probability that
errors are masked due to the modulo 31 counters.

Although our test chip has a structure similar to the
original counterflow pipeline proposal, its data opera-
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tions are much simplified. The address comparison be-
tween a result and an operand is represented by a sim-
ple two-bit comparison, and the garnering action is re-
placed by independent increments to five-bit count val-
ues. However, with this stripped-down version of the
structure, we are able to thoroughly investigate all of the
critical components in the architecture, run at full speed,
and detect failures in the system.

Additional performance measurements of our chip
was carried out via special output pads. A couple of
pads monitored the low-order bits of the cycle counters,
enabling us to measure the throughput of the pipeline
rings. Because we can initialize the rings to any state,
we can measure the throughput of the rings as a func-
tion of the number of items in each ring and the number
of matching items.

Having chosen the chip architecture and the test pro-
cedure, the next challenge was finding a fast implemen-
tation. Speed is very important to us, more so than low
power consumption or modularity. We had several con-
trol and data circuits styles to choose from. The original
proposal [12] gives an implementation based on tran-
sition signaling, transition arbiters, and single-rail data
paths. We also considered the pipeline implementations
given in [1] and [7]. In addition to these pipeline imple-
mentations, we looked into various schemes to imple-
ment the arbitration required at boundary crossings.

For reasons of speed, simplicity, and testability, we
chose our asynchronous, symmetric, persistent, pulse
protocol (asP*) implementation [7] and single-rail data
paths for the pipelines. Although pipeline implemen-
tations based on transition-signaling can be faster than
asP* pipelines [8], the additional requirement of the ar-
bitration makes asP* pipelines preferable. We imple-
mented the arbitration with a single mutual exclusion el-
ement (MUTEX) between stages.

Our experiences indicate that using a return-to-zero
protocol, such as asP*, is easier to manage for testing
purposes, and it simplifies the task of starting, stopping,
loading, and unloading the data items by means of ex-
ternal signals. Also, when the chip or test program do
not behave as expected, it is easier to diagnose the prob-
lem. For our test procedure to work, it was important
that the start and stop mechanisms avoid corrupting the
data in the rings. The circuit design for synchronized
stopping of pipelines, which we used earlier in unidi-
rectional pipelines [7], also turned out to work well in
our counterflow pipeline design and added only a slight
performance penalty.

We heavily optimized the circuit design using the the-
ory of “Logical Effort” [13] combined with SPICE sim-
ulations to select transistor sizes.

Finally we made some design decisions to simplify

the testing. We chose to make each stage accessible
through an externally addressable bus for loading and
unloading its contents. As a consequence we did not
need a special interface stage, and all stages could be
made identical. Thus, in this design, there was no single
bottleneck stage in the pipelines, as we have had in all of
our previous chips [1, 7, 8]. Making all stages the same
also simplified the layout.

3. Basic Control Circuit

The control circuit of our counterflow test chip is
based on the asP* protocol. We briefly review the ba-
sic principles of the asP* protocol in this section, and in
the next sections we expand the basic control circuit to
arrive at the control circuit for the counterflow pipeline.

The control circuit shown in Figure 2 controls the
movement of data items in a unidirectional pipeline.
Each stage in the pipeline is implemented by an SR
latch, and each boundary between stages is implemented
by an AND gate. Throughout this paper, the SR latches
are implemented with NOR gates, so when one of the
inputs S or R is high, the latch will besetor resetre-
spectively –this is to simplify the description of the cir-
cuit operation. In our chip we implemented the latches
with NAND gates to obtain slightly better performance.

= move

Stage n Stage n+1

S R

E F

latch

S R

E F

Data path

Control path

SR SR
latch

Figure 2. The basics of an asP* control cir-
cuit

3



The data path shown consists of standard data latches,
represented here as pass gates (boxes with a cross in
Figure 2) followed by a sticky buffer, i.e., buffers with
a weak positive feedback (triangles with a dot in Fig-
ure 2). The SR latches control the pass gates in the data
path. If the control latch is reset, the pass gate it con-
trols is made transparent, and we say that the stage is
empty. If the SR latch is set, the pass gate it controls is
made opaque, and we say that the stage is full. The out-
puts E and F indicate whether the stage is empty or full
respectively. Although normally these outputs are com-
plementary, during operation there may be short periods
when this is not the case, due to the internal delays of
the SR latch.

Whenever a stage is full and its righthand neighbor is
empty, the AND gate between the two SR latches gen-
erates a rising transition. This transition initiates amove
pulse. The rising transition sets the right SR latch and
resets the left SR latch, thereby filling the right stage
and emptying the left stage. Shortly after the right SR
latch is set, its E output falls, and concurrently shortly
after the left SR latch is reset, its F output falls. The first
of these falling outputs causes the AND output to fall,
ending the move pulse.

For the asP* protocol to operate correctly, delay con-
straints need to be satisfied. A sufficient condition for
correct operation is that an SR latch is never simultane-
ously set and reset. This condition can be translated into
the requirement that move pulses on the S and R inputs
of an SR latch must not overlap. A simple way to realize
this condition for the implementation above is to ensure
that falling transitions propagate at least as fast as rising
transitions from the F output to the R input and from the
E output to the S input of the latches. When this delay
constraint for the asP* protocol is satisfied, move opera-
tions into and out of a stage strictly alternate.

Data movement from one stage to the next is directly
controled by the outputs of the SR latches. When a latch
is in the empty state, the pass gate that it controls is
transparent, and when the latch is full, the pass gate is
opaque.

In order to implement data movement correctly, some
delay constraints between the control circuits and the
data path must also be met. In particular, the set-up and
hold times of the data latches must be satisfied. These
set-up and hold times are closely related to the “bundling
constraints” of a bundled data path.

4. Mutual Exclusion and Interaction

Early in the project, Charles Molnar identified that
there were two critical issues that made the counterflow
pipeline interesting: arbitration and ensuring that when

two items meet in a stage that they interact. It was these
design requirements that appeared to prevent a coun-
terflow pipeline stage being synthesized by the various
tools available circa 1994 and that led to the design chal-
lenge SCPP-A [6].

Molnar illustrated the two issues in what has now be-
come known as the “Molnar five-state diagram,” shown
in Figure 3. The southbound moves in and out of a stage

interact S_outN_out

S

E

N

F

C

S_out N_out

N_inS_in

S_inN_in

Figure 3. Molnar’s five-state diagram

are represented byS in andS out respectively. A sim-
ilar meaning applies toN in andN out for northbound
moves. The state labels have the following meaning:
E=“the stage is empty”,F=“the stage is full”,N=“the
stage contains a northbound item”,S=“the stage con-
tains a southbound item”, andC=“the interaction be-
tween the two items has completed”. The five state dia-
gram clearly specifies that when a stage becomes full, a
move out of the stage can take place only when the inter-
action between items has completed. The five state dia-
gram also specifies, but perhaps less clearly, that moves
across a boundary must be mutually exclusive.

To arrive at the complete asP* implementation of our
counterflow pipeline ring, we extended the basic con-
trol circuit. The first extension enforces mutual exclu-
sion between moves across stage boundaries and ensures
that, when items meet in a stage, they interact before
leaving the stage.

Figure 4 shows the addition of mutual exclusion. For
clarity, the data paths are not shown in this figure. Il-
lustrated are two asP* control circuits of counterflowing
pipelines. At each stage boundary we have added a MU-
TEX, shown in the figure as “ME.” A rising transition at
an input of the MUTEX denotes a request to move data,
while a falling transition denotes a release of a grant,
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E FE F
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North Stage 2Stage 1

South Stage 2Stage 1

SR

F

S R S

SR

R

ME

Figure 4. Addition of mutual exclusion

also called the “Done” signal. A MUTEX guarantees
that at any time at most one request will be granted. A
MUTEX can be built with cross-tied NAND gates and
a simple metastability filter, which results in a very fast
design, see [3, 11] for example.

Although this implementation prevents concurrent
moves across a common boundary, it does not allow
enough time for interactions between items to complete,
as the following example illustrates. Suppose that a
northbound item wants to leave stage 2 and a south-
bound item wants to leave stage 1. Suppose furthermore
that the requests for both moves arrive simultaneously at
the MUTEX and that the MUTEX grants the southbound
item first. Once the southbound item arrives in stage 2,
the falling transitions at the outputs of the latches will re-
lease the MUTEX. The MUTEX can then immediately
grant the northbound item to leave stage 2. Because of
the move of the southbound item into stage 2, however,
stage 2 now contains two items, and therefore an ad-
dress comparison and possibly count value increments
must take place before the northbound item may leave
stage 2. Unfortunately, the implementation in Figure 4
does not force the northbound item to wait until these
actions have completed.

Adding the completion detection circuits is shown in
Figure 5. Besides the MUTEX, we have added two
AND gates and so-called FULL/EMPTY boxes to the
basic asP* control circuits. The MUTEX and the two
AND gates are enclosed in a dashed box. We call this
part a COP, because it directs the traffic between two

F E

E FE F

F E

Box
F/E

Box
F/E

NorthStage 1 Stage 2

South Stage 2Stage 1

S RS R

E F E F

EF E

SR SR

F

ME

COP

S. May N. May

Leave 1 Leave 2

Figure 5. Addition of mutual exclusion and
completion detection

adjacent stages. A FULL/EMPTY box detects whether
a stage contains two items and, if so, whether the ad-
dresses of the items match. It has as inputs copies of the
F and E outputs of the control latches and the address
wires of the data paths. The address wires are not shown
in Figure 5. The FULL/EMPTY box has two outputs:
“North May Leave” and “South May Leave,” which in-
dicate whether a northbound or southbound item may
leave that stage.

The FULL/EMPTY boxes and the COPs complete the
requirements for correct counterflow operation as fol-
lows. In order to prevent any northbound item from
leaving stage 2 when a southbound item enters stage 2,
the FULL/EMPTY box will de-assert the “North May
Leave” signal as soon as the southbound item enters
stage 2 and before the MUTEX can issue a grant to a
northbound item. The “North May Leave” signal is as-
serted again only when it is safe for a northbound item
to leave stage 2, that is, after an address comparison and
a possible count value increment have taken place.

From the above example we can see that the COP con-
trols movement of items across a stage boundary in two
steps. First, it decides by means of the MUTEX which
of the pending moves may proceed and which one will
be blocked, if any. Secondly, the COP enables further
blocking of a moveout ofa stage until all actions result-
ing from a moveinto a stage have been completed. The
ability to further block a move out of a stage is neces-
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sary, because in our implementation each MUTEX will
be released a fixed time after it grants a request, irrespec-
tive of the actions that may take place as a result of the
move. For example, a move can result in a stage becom-
ing full, upon which an address comparison and possi-
ble count value increments must take place. In the short
time that the MUTEX blocks any pending move out of
the stage, the “May Leave” inputs of the AND gates in
the COP can be de-asserted to prolong the blocking of
the move out of that stage. Once it is safe to do so, the
FULL/EMPTY box removes this blocking signal.

There are two important timing constraints that need
to be satisfied in this complete counterflow circuit. The
first constraint is the same as for the basic asP* con-
trol circuit: move pulses at the inputs of a control latch
may not overlap. In order to meet this delay constraint,
it is sufficient that the COP delays a rising transition at
least as much as a falling transition. The MUTEX helps
meeting this condition, because its function is exactly
to block a rising transition in the case of contention; a
falling input transition is never blocked. The AND gate
in the COP can also be made to satisfy this condition,
provided the “May Leave” input to the AND gate is used
to temporarily block the propagation of only rising tran-
sitions. The second timing constraint concerns a race
between lowering of the “May Leave” signal and releas-
ing the MUTEX. In the case of contention at a bound-
ary, the “May Leave” signal must be lowered before the
MUTEX can be released, a delay constraint that is easy
to meet.

The performance impact of our implemention of the
counterflow pipeline, when compared to a unidirectional
pipeline, is about a factor of two. This arises because
the minimum cycle time for this counterflow pipeline
implementation is about six gate delays longer than the
implementation for the unidirectional pipeline. This dif-
ference can be explained as follows. For each bound-
ary the extension to the critical cycle consists of a single
COP, which adds about three gate delays. A critical cy-
cle contains two boundary crossings, so the minimum
cycle time of the basic asP* implementation is increased
by about six gate-delays. Given that the minimum cycle
time for a unidirectional asP* pipeline is about 6 gate-
delays, we obtain a minimum cycle time for a counter-
flow pipeline of 12 gate-delays. Of course, when address
comparisons and count value increments occur, the dura-
tion of that particular cycle in that stage becomes longer.

Although the minimum cycle time of our implemen-
tation is 12 gate delays, it is important to note that
our control circuit implements three useful, basic func-
tions. First, it implements the usual move operations
of a single pipeline. Second, it implements the mutual
exclusion condition. And third, it implements a data-

dependent extension of the cycle time. Data-dependent
extensions of the cycle time can be useful in connection
with completion detection, as shown in [9] for example.
We were pleased to be able to implement these extra re-
quirements with such little extra delay.

5 The Data Path

The control circuit also manages conditional data pro-
cessing in the data path. In our case the data processing
is a count value increment. Figure 6 shows part of a
control and data path of our counterflow test chip, illus-
trating the conditional control.

E FE F

Box Box
F/E

S R S R

F/E

E FE F

ME

INC

increment

COP

Leave
S. May 

Stage 2Stage  1

Figure 6. The data path

When the FULL/EMPTY box for stage 1 detects that
the stage is full and that the addresses of the items
match, the counter value associated with each item must
be incremented. For this purpose, the FULL/EMPTY
box generates a pulse signal on the “increment” wire,
which makes the “increment” pass gate briefly trans-
parent. This pulse has a two-sided delay requirement.
The pulse must be long enough to let the incremented
counter value pass through the increment gate and over-
write the current counter value; on the other hand the
pulse must be short enough so that the counter value will
not be incremented twice. Additionally, during the in-
crement pulse the data latch for stage 1 must be opaque.

When the FULL/EMPTY box generates a pulse for
the increment pass gate, it also blocks a move signal, if
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any, through the COP by de-asserting the “May Leave”
signal. The “May Leave” signal remains de-asserted un-
til the increment is complete, after which it is asserted
and move signals are enabled again.

The incrementer in the data path is implemented with
a Linear Feedback Shift Register (LFSR), because it has
about the same increment delay for any value, unlike
an adder. Using an LFSR simplified the design of the
incrementer, the pulse generator, and the delay analysis.

6. Results

We have built and tested two versions of Zeke. The
first version turned out to malfunction in certain circum-
stances due to a violation of a delay constraint. Although
detection of these errors was a good sign that our test
procedures worked, the errors prevented us from com-
pleting all desired tests.

By means of extensive testing of the chip and sim-
ulation of the extracted layout, we traced the cause of
the error to a violation of a delay constraint for the COP
involving the “May Leave” wire. This error went unde-
tected in the first design, because our SPICE simulations
using estimated capacitances showed a safety margin of
more than 15% of the total path delay for this partic-
ular delay constraint. Experience from previous chips
had shown that this margin should be sufficient. Our re-
cent test results, however, indicated that our estimates
were in error. Simulations using capacitances carefully
extracted from the layout showed that the safety margin
for this constraint was close to zero.

Results of the performance measurements for our sec-
ond chip are given in the figures below. Our second ver-
sion of the chip turned out to operate about 25% faster
than our first version, mostly due to process variations.
After extensive testing we have not detected a single er-
ror.

Figure 7 shows the total throughput of the counterflow
pipeline ring in Mega Data Items per second (MDI/s) un-
der different data conditions, where the number of North
items is fixed at 14. We define the total throughput as
the sum of the throughput of the northbound ring and
the throughput of the southbound ring. The upper curve
gives the best-case throughput for our counterflow test
chip, which is obtained when no meeting items have
matching addresses. The lower curve gives the worst-
case throughput, which is obtained when all meeting
items have matching addresses. The middle curve gives
the average-case throughput taken over many samples,
where for each sample the pipelines are filled with ran-
dom addresses. Because there are only four possible ad-
dresses, on average one out of every four meetings has
items with matching addresses.
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Figure 7. Total throughput versus number
of items in the South ring, with 14 items in
the North ring

Figure 7 shows that, when we change the number of
items in one ring from zero to one, the throughput in the
other ring drops markedly. The reason for the drop is
that the one item must interact with every item it meets
in the other ring. The address matching between items
increases the cycle time and, hence, decreases the total
throughput. When each ring has at least one item, the
total throughput increases almost linearly as the number
of items increases. After one of the rings becomes about
half full, the total throughput decreases roughly linearly
with the number of items in the fuller ring.

Figure 8(a) shows the total throughput as a function of
the number of items in the northbound and southbound
ring, where all meeting items have different addresses.
When one ring is empty, a plot of throughput versus oc-
cupancy follows a trapezoid, similar to ones we have
seen in other publications [7, 14]. The presence of a
short section of a flat top indicates that there is at least
one slow stage in the ring, which acts as a bottleneck.
At first this may be surprising, given that we had tried
to avoid bottlenecks by making all stages identical. The
layout of the rings, however, created some asymmetries
in the lengths of wires that interconnect the stages. The
ring layout is a square with seven stages on each side;
the longer wires at the corners result in bottlenecks.

The changes in performance become more pro-
nounced when all the addresses match, as shown in Fig-
ure 8(b). When addresses match, the cycle time for that
particular interaction increases by the delay to increment
a count value, thus reducing the total throughput.

The performance measurements show that the peak
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Figure 8. Total throughput versus number of items in the North and South rings when no items
match (a) and all items match (b).
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no items match (a) and all items match (b).
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Figure 10. Measured EM Emissions spectrum for “synchronous” mode (a) and “asynchronous”
mode (b).

throughput of the North ring is 462 MDI/s and is ob-
tained when the South ring is empty. This through-
put corresponds to a minimum cycle time of about 12
gate-delays in0:6� technology, where a gate-delay is a
fanout-of-4 inverter delay or about 180 ps in this pro-
cess. In our chip the South ring is the inner ring, and it
is slightly faster than the North ring. The peak through-
put of the South ring is 498 MDI/s, which corresponds
to a minimum cycle time of about 11 gate-delays. These
cycle times closely match our predictions from simula-
tions.

The peak total throughput when no addresses match is
699 MDI/s and is obtained when#N = 14;#S = 14
and when#N = 15;#S = 13. The peak total
throughput when all addresses match is 491 MDI/s and
is also obtained when#N = 14;#S = 14 and when
#N = 15;#S = 13. These maximum throughputs
also closely match SPICE predictions. SPICE simula-
tions show that the extra delay per boundary crossing for
an address match is about 2 gate delays, whereas the ex-
tra delay for an address match and an increment is about
5.5 gate delays. For a single ring this gives a cycle time
of about12 + (2 � 2) = 16 gate-delays, or about 2.9
ns, when an address match occurs in each stage. This
results in a throughput of about 345 MDI/s for a single
pipeline, or 690 MDI/s for two perfectly synchronized
counterflow pipelines. In case an address match and an
increment occurs in each stage, we get for a single ring a
cycle time of12+ (2� 5:5) = 23 gate-delays, or about
4.1 ns. This results in a throughput of about 244 MDI/s
for a single pipeline, or 488 MDI/s for two perfectly syn-

chronized counterflow pipelines.
Figure 9 shows the power consumption as a function

of the number of items in the North and South ring.
When we compare these graphs with the graphs for to-
tal throughput, we observe that power consumption is
roughly proportional to the total throughput.

We also conducted a number of tests to measure the
electromagnetic radiation of the chip in various modes
of operation. We carried out these measurements in
a 3 meter electromagnetic anechoic chamber. Further-
more, we intentionally enabled the six high-speed out-
put pins of the chip to increase the signal strengths and
to ease our measurement comparisons. During the EMI
measurements we disconnected the host computer and
turned it off, such that the majority of the radiation came
from our chip. The upward slope of the base values of
the measurements is due to background radiation levels.

Plots of measurements taken for two distinct modes
of operation are shown in Figure 10. Figure 10(a) shows
the radiation spectrum of the chip when both rings were
loaded with 14 items and none of the items in the North
ring had a matching address with any of the items in the
South ring. Under these circumstances the counterflow-
ing rings lock into a “synchronous” mode of operation,
where all items in both rings move one stage forward in
lockstep. The synchronous mode of operation is illus-
trated in Figure 10(a), where the fundamental frequency
peak occurs at 342 MHz and the second harmonic at 684
MHz. The fundamental frequency matches the through-
put rate we measured from our on-chip cycle counters.

Figure 10(b) shows the counterflowing rings in a more
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realistic asynchronous mode of operation that has almost
identical throughput to the “synchronous” configuration.
In this case the North ring is loaded with 13 items and
the South ring with 15 items. Two items in the North
ring have addresses that match three items in the South
ring. These circumstances give a much more irregular
mode of operation than the “synchronous” mode we ob-
served in Figure 10(a). Although the throughput and
power consumption for both modes of operation is about
the same, the spectrum for the “asynchronous” mode of
operation is much more spread out and the heights of the
peaks are about 6dB lower. Although these EMI mea-
surements were not conducted with the rigor and pre-
cision required for FCC compliance, we found that our
measurements were consistent over a number of tests.
Our EMI measurements results concur with observa-
tions reported in [4, 10], which also show a reduction
in emissions and a spreading of the emissions spectrum.

7. Stress Testing The Arbiters

In our counterflow pipeline, arbitration is critical to
correct operation, and so we designed a small second
experiment on the chip to confirm that the counterflow
pipeline would still operate correctly in the presence of
severe arbiter contention. Moreover, we wanted to quan-
tify experimentally the additional delay in cycle time
due to metastable behavior.

We expected that it would be difficult to force arbiter
contention in the 28-stage ring, believing that the ring
would lock into modes of behavior in which there is little
contention. For this reason we designed and installed on
the Zeke chip a separate smaller test circuit that would
stress its arbiters.

Our arbiter test circuit consisted of a three-stage coun-
terflow ring, which we placed in the center of our main
28-stage counterflow ring. Figure 11 illustrates this
three-stage counterflow ring. The bars in the Figure rep-
resent the stage boundaries. In the circuit these bound-
aries correspond to the COPs. At each request input to
the COP we inserted an adjustable delay, and each de-
lay value is controlled by a current source external to the
chip. We chose current-controlled delays for this experi-
ment, because of their accuracy and fine time resolution.
The range of these delays is from about 550ps to 20ns,
with a resolution of about five picoseconds around the
metastable point. Except for the adjustable delays, the
three stages were identical to the stages in the 28-stage
ring. The 48-bit cycle counters used by the main exper-
iment could also be connected to the three-stage ring.

The arbiter stress test is carried out in the following
manner. Each ring is initially loaded with one item in
stage 1, and both items have the same address and their

1

2 3

A B

C

d

North South

Figure 11. The arbiter stress test topology

marker bit set. The items are released almost simultane-
ously, and their next meeting will either be in stage 2 or
in stage 3, depending on the values of the adjustable de-
lays and the small differences in the delays in the stages.
If the northbound item incurs a smaller delay than the
southbound item, the items will next meet in stage 3,
while if the southbound item incurs less delay than the
northbound item, then the items will next meet in stage
2. If both items incur exactly the same delay, the stage
in which they will meet depends on the arbiter decision
in COP C. By careful setting the adjustable delays at
the inputs of COPs A and B, we can force the meetings
between the two items into only one of two patterns: ei-
ther the meetings alternate between stages 1 and 2 or the
meetings alternate between stages 1 and 3. By adjusting
the delays at the inputs of COP C, we can make the cir-
cuit change from one pattern to the other. The change of
pattern indicates that we have passed through the point at
which maximum contention occurs at COP C: the point
at which the two items arrive at COP C at about the same
time. In fact, over a very small range of delays, which
is of the order of a couple of picoseconds, we have even
observed a mix of the two patterns. Furthermore, as ex-
pected, when the arbiter in COP C receives its two input
requests at about the same time, the arbiter takes longer
to decide which request to grant. This arbitration delay
is significant and increases the cycle time of the items
running around the ring. In all experiments that stressed
the arbiters the counting circuits indicate error-free op-
eration over billions of cycles.

Figure 12 quantifies the additional arbiter delay due
to metastable arbiter behavior as a function of the extra
delayd at the input of COP C. When the adjustable de-
lay is at its lowest value, the meeting pattern of the items
is an alternation of meetings in stages 1 and 3. The fig-
ure shows that as the adjustable delay value increases,
the additional arbiter delay increases, because the ar-
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Figure 12. Additional arbiter delay as a
function of delay d

biter in the COP then operates closer to the metastable
point and takes longer to issue a grant. The measured
additional arbiter delay increases roughly as the nega-
tive logarithm of the distance to the metastable point.
Increasing the adjustable delay further causes the arbiter
to grant the other side, and the additional arbiter delay
then decreases as the negative logarithm. On this side of
the curve the meetings occur in stages 1 and 2. Our ob-
servations concur with the theoretical and experimental
results on metastable behavior reported in [2, 5].

Figure 12 shows that we observed additional delays in
average cycle time of up to 95 ps. We estimate the error
in each measurement to be at most 3 ps. Delays larger
than 95 picoseconds were not obtainable, due to the fi-
nite resolution of our adjustable delays. For comparison,
the delay through the arbiter for an uncontested request
was measured to be 375 ps.

8. Concluding Remarks

We learned a great deal from our experiences in de-
signing and measuring this test chip. We start with
summarizing some advantages and disadvantages of the
asP* protocol.

A big advantage of using the asP* protocol is that it
can be implemented with standard logic elements, like
Boolean gates and latches. Such elements are familiar
to any circuit designer and can be found in any standard
cell library. Another advantage of using the asP* proto-
col is that we have found it easier to work with for test-
ing purposes than designs that use transition signalling.

We have found that use of the asP* protocol resulted in
a clean implementation of the basic functions of a coun-
terflow pipeline. In addition to the usual “move” oper-
ations of a pipeline, the counterflow pipeline must be
able to achieve mutual exclusion between moves across
the same boundary and must be able to block a move
temporarily until match and garnering actions have com-
pleted. These requirements were implemented easily by
the addition of a MUTEX and an AND gate.

A disadvantage of the asP* protocol is that it has more
local delay constraints than transition-signaling proto-
col implementations. Without a systematic approach to
the design and verification of a design, these delay con-
straints easily become overwhelming. The timing error
in our first counterflow pipeline chip made us realize that
we have to be more careful in setting the margins for
our delay constraints and also demonstrated the short-
comings of the SPICE models that we used during the
design. For aggressive designs, careful and complete ex-
traction and simulation of layout is required.

The price we paid for the extensions to the asP*
protocol is an increase in minimum cycle time from 6
gate-delays for the asP* implementation for the unidi-
rectional pipeline to 12 gate-delays for the counterflow
pipeline implementation. A gate-delay is a fanout-of-4
inverter delay or about 180 ps in our process. This min-
imum cycle time is achieved when single items move
through a stage and do not encounter an item flowing in
the opposite direction. The delay of a stage increases
with 2 gate delays when two items meet in a single
stage, but their addresses do not match, and with 5.5
gate-delays, when the addresses do match. For average-
case circumstances, however, our experiments show that
the counterflow pipeline operates at a throughput that
is roughly halfway between the worst-case and best-
case throughput. This is a good demonstration that
asynchronous circuits can achieve average-case perfor-
mance, whereas clocked circuits must be designed to op-
erate for the worst case.

Our experiences gained over several years studying
the counterflow pipeline architecture indicate that it is
unlikely to be speed competitive with other existing
or conventional architectures for general-purpose pro-
cessing. The reason is that the counterflow architec-
ture forces orderings upon the data that result in local
congestion when there are large data-dependent vari-
ations in the processing times. However, this coun-
terflow pipeline experiment illustrates that, with small
data-dependent variations in processing times, the sys-
tem adapts quickly to the changing workloads and ex-
hibits performance that is better than if the system was
fixed to always operate with the worst-case conditions.

Our experiments with these chips continue, and we
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have found some interesting, and as yet not fully ex-
plained, modes of operation. We expect that as our un-
derstanding deepens of the behavior modes of this chip,
we will be better prepared for future chip designs. We
are learning to appreciate more and more the value of
building and measuring the behavior of real chips, de-
spite the large effort that this requires.
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