
Comparison of Parallelized Radix-2 and Radix-4
Scalable Montgomery Multipliers

Andrew Carter, Paula Ning, William Koven, David Money Harris,
Michael Braly, Nathan Jones, Julien Massas, Trevin Murakami, Alexandra Simoni

Harvey Mudd College
301 Platt Blvd., Claremont, CA, USA

Email: acarter@cs.hmc.edu, david harris@hmc.edu

Sanu Mathew
Intel Corporation

Hillsboro, OR, US

Abstract—This paper compares 130nm custom silicon imple-
mentations of three scalable Montgomery multiplier architectures
to previously published FPGA implementations of the same
architectures. It investigates the delay, energy, and area trade-
offs of parallelized left-shifting radix-2, radix-4, and Booth-
encoded radix-4 architectures. The radix-4 architecture is most
efficient, performing 256 × 256-bit modular multiplication in
453ns while consuming 15.7nJ of energy and occupying an
area of 0.141mm2. The radix-2 architecture is a close second,
with an energy-delay product (EDP) 0.8% higher and an area-
delay product (ADP) 3.1% higher. The Booth-encoded radix-4
architecture eliminates the need for an adder generating a 3×
multiple, but comes at a cost of 36% in EDP and 34% in ADP
relative to the conventional radix-4 architecture. The relative
efficiencies of the silicon implementations are consistent with the
FPGA implementations.

I. INTRODUCTION

Modular exponentiation is the basis for modern crypto-
graphic algorithms such as RSA and digital signatures. These
algorithms generally process 256 to 2048-bit numbers to
ensure sufficient security. Modular multiplication is time-
consuming because of the division step to find the remainder.
However, Montgomery multiplication [1] allows the modulo
operation to be done in a more convenient base, eliminating
the division at the cost of extra multiplications and additions.
Hence, Montgomery multiplication forms the basis of efficient
modular exponentiation.

To accommodate arbitrary n-bit multiplications, scalable
Montgomery multipliers repeatedly cycle chunks of the
operands through smaller, fixed-size processing elements
(PEs). A scalable, radix-2v PE of width w processes v bits
of the multiplier and w bits of the multiplicand per operation.
A Montgomery multiplier contains a systolic array of p such
PEs.

The critical path of standard Montgomery multipliers con-
tains two dependent multiplication steps. Orup demonstrated
a method of reordering the steps so that these multiplications
take place in parallel in a w × w multiplier [2]. This method
was later generalized to w × v multipliers by Kelley [3]. An-
other optimization to reduce latency is to left shift the operands
rather than to right shift the result [4]. Jiang and Pinckney
have applied this technique to three scalable parallelized left
shifting architectures: radix-2, radix-4, and Booth-encoded

radix-4 Montgomery multipliers [5][6][7]. They measured the
delay and area of Virtex II FPGA implementations. Our goal
in this study is to measure the delay, area, and energy of
custom 130nm silicon implementations of each of these three
architectures, and to determine if the relative merits of the
architectures is consistent with the FPGA implementations.

Section II defines the Montgomery multiplication algorithm.
Section III illustrates the three PE architectures under con-
sideration. Section IV describes the test chip and Section V
presents the results.

II. BACKGROUND

Montgomery multiplication is defined as

Z ≡ XY R−1 mod M (1)

where
X : n-bit multiplier
Y : n-bit multiplicand
M : n-bit odd modulus, typically prime
R : 2n

R−1 : modular multiplicative inverse of R mod M
RR−1 ≡ 1 mod M

The steps of Montgomery multiplication are shown in
Figure 1. Because R = 2n, dividing by R is equivalent to
shifting right by n bits. Q has the property that the lower
n bits of [Z +Q×M] are 0. Hence, no information is lost
during the reduction step.

Multiply: Z = X × Y
Quotient: Q = Z ×M ′ mod R
Result: Z = [Z +Q×M] /R
Normalize: If Z ≥M then Z = Z −M

Fig. 1. Algorithm for Montgomery multiplication

Figure 2 shows the parallelized scalable Montgomery mul-
tiplication algorithm [3]. The variables are defined as follows:

n1 = n+ v + 1 extended number of bits of Y
n2 ≥ n+ v + 2 extended number of bits of X
f = n2/v outer loop length
e = ⌈n1/w⌉ inner loop length

��������������������������������������,((($VLORPDU�����

M ′ : n2-bit integer
which is the modular inverse of −M mod 2n2

such that −MM ′ ≡ 1 mod 2n2

M̂ : n-bit integer [(M ′ mod 2v) + 1] /2v

C : v + 1-bit carry

Z = 0
for i = 0 to f − 1

Qi = Z0 mod 2v

C = 0
for j = 0 to e− 1

(C,Zj) = (Zj+1
v−1:0, Z

j
w−1:v) + C

+ Qi × M̂ j +Xi × Y j

Fig. 2. Parallelized radix-2v scalable Montgomery Algorithm

The number of cycles required for a left-shifting Mont-
gomery multiplication is [6]

c =
f

p
max

(
e+ 1, p+

vp

w
+ 1

)
(2)

Hence when p ≈ n/w, the multiplier performance saturates
and ceases to benefit from more PEs.

III. PROCESSING ELEMENT ARCHITECTURES

This section presents block diagrams for the three PE
architectures under consideration and analyzes the number of
cycles to compute a Montgomery multiply.

A. Radix-2 (R2)

Figure 3 shows a parallelized radix-2 left shifting Mont-
gomery multiplier [5]. The two w-bit AND gates compute the
partial products of one word of Y or M with one bit of X or
Q. The partial products are then added to the running total Z
in carry-save redundant form using the pair of 3 : 2 carry-save
adders (CSAs).

The critical path for the R2 involves one AND gate and two
CSAs. In the custom circuit implementation, the late input is
provided to the fastest input of the CSAs. The X and Q inputs
see a fanout of w to drive all the AND gates.

3:2
C
S
A

3:2
C
S
A

C in

Xi

Z

Y

Z

Y

Cout

C in

Cout

M M
w
w

w

w

w

w

reduce

(w)

(w)

Fig. 3. R2 Block Diagram

B. Radix-4 (R4)

Figure 4 shows a parallelized radix-4 left shifting Mont-
gomery multiplier [6]. The two w-bit MUX4 gates compute
the partials products of one words of Y or M with two bits of
X or Q. For example, the first MUX4 selects from 0, Y, 2Y,
or 3Y . The partial products are added to the running total Z
using the pair of CSAs. Because Q is derived from a previous
Z and arrives in redundant form, an XOR gate is necessary to
convert it back to non-redundant form to select the appropriate
multiple of M . This architecture requires that the 3Y and 3M
multiples be precomputed and passed through the pipeline.

The critical path for the R4 involves one MUX4 and two
CSAs, which is slightly longer than the R2 . Again, the X
and Q inputs have a fanout of w.

w

w

X

w+1

xptr

w+1

2

Y

Z (sum)

M

Q (sum)
2

0
M
M<<1
3M

C
S
A
#2 [w-1:0]

w+1

w+1

[w-1:0]

[w-1:0]

Y

M

Z

Q

[w-1:-1]

[w-1:-1]

[w-3:-3]

[w-3:-3]

[w-1:1] [w-1:1]

[1
:0
]

[1
]

[1]
[1]

[1]

[0]

[w-1:0][w-1:0]
[w-3:-2]

Q (carry)
[1:0]

[1]

Z (carry)
[w-1:1]

3Y

3M
[w-1:0]

[w-1:0]

3Y

3M

[w-3:-2]

[w-3:-2]

[w][0] [w][0]

C
S
A
#1

lswcarry
1 0discard

0

3Y
Y<<1
Y

EN

EN

EN

EN

Fig. 4. R4 Block Diagram

C. Booth-Encoded Radix-4 (R4B)

Figure 5 shows a parallelized Booth-encoded radix-4 left
shifting Montgomery multiplier [7]. The Booth-encoding elim-
inates the need for the 3Y and 3M multiples at the expense of
more complex partial product selection logic. The two BOOTH
SELECTORs each contain a w-bit MUX5 that chooses the
partial product of one word of Y or M with two bits of X
or Q. For example, the first MUX5 selects from 0, Y,−Y, 2Y,
or −2Y based on the value of X . Because Q is derived from
a previous Z and arrives in redundant form, a 2-bit carry-
propagate adder (CPA) is necessary to convert it back to non-
redundant form to select the appropriate multiple of M . The
PE contains additional logic to handle corner cases related to
Booth-encoding, which adds an AND gate and two MUX2s
to the critical path.

The critical path for the R4B involves a BOOTH-
ENCODER, a MUX5, an AND gate, and two CSA-MUX2
pairs. Again, the X and Q inputs have a fanout of w.

The R4B is the most complex of the architectures. However
it is able to process two bits of X at a time without the need
for the 3Y and 3M multiples.

����

Z (sum)
[w-1:0]

Z (carry)
[w-1:0]

0

1

1

0

discardword

0
H

[w-1]

[w-1]

[pos-1:pos-2]

[pos-1:pos-2]

[pos-1:pos-2]

[pos-1:pos-2]

[pos-1:0]

0

1

[pos]

C
S
A

Y

M

[w-1:-1]

[w-1:-1]

SQ

MSBx

MSBQ

Q (sum)
Q (carry) [1:0]

[1:0]

Booth
Selector

[w]

[w-1:1]

[w-1:pos]

[pos-1:0]

0

1

[pos]
[w]

[w-1:1]

SX

QC
P
A

x

[1]

Booth
Encoder

E

E

xptr

SQ

MSBx

MSBQ

Q (sum)
Q (carry)

[pos-1:0]Booth
Selector [w-1:pos]

[pos-1:0]

Booth
Encoder

[1]

Y

M

Z

H

C
S
A

[w-1:1] [w-1:1]

[p
os

+1
:p

os
]

[p
os

+1
:p

os
]

[w-1:w-3]

[w-1:w-3] [1:-1]

[1:-1]

[w-3:0]

[w-3:0]

[w-1:2]

[w-1:2]

Fig. 5. R4B Block Diagram

IV. SILICON IMPLEMENTATION

The three 16−bit PEs were custom designed in Virtuoso
and fabricated though MOSIS in a commercial 130nm process.
Using a 1.2V supply, the process has an FO4 delay of 44ps. A
4× inverter consumes 3.7fJ per switch. The chip contains a
testfixture to measure the delay, and energy of each processing
element.

A. Testfixture Design

Figure 6 shows the block diagram of the test chip and Figure
7 shows an annotated photomicrograph. To perform high-speed
testing using low-speed external inputs, the test chip uses a
scan chain and a voltage controlled oscillator (VCO). Each PE
receives its own power supply to monitor power consumption.
The output of the the 13-stage VCO drives the PEs. To monitor
frequency, the clock is divided by 64 and sent off chip.

Figure 8 shows the test circuitry for a PE. A pair of vectors
is scanned into input registers. On-chip test circuitry alternates
between these vectors at full speed. When an external trigger
is applied, the result is synchronously captured by an output
register. The result is then transferred to the scan chain and
scanned out and compared against expectation to determine
whether the PE operates correctly at the internal clock fre-
quency.

Fig. 6. Chip Block Diagram

Fig. 7. Annotated Photomicrograph of Test Chip

Fig. 8. PE Test Circuitry

B. Test Procedure
We extracted each PE layout from Virtuoso and simulated

it in Nanosim to predict energy and maximum operating
frequency.

To measure energy on the fabricated chip, a set of ten
pseudorandom vector pairs were applied to each PE while the
PE supply current was monitored. The measurements were
performed at 94 and 440MHz, and the energy results were
consistent. However, the chip was unable to operate reliably
above 440MHz because of an error in the clock distribution
network.

V. RESULTS

Table I lists the energy, delay, and area of each PE. The
simulated and measured energy agree to within 11%, giving
confidence in the layout extraction and simulation models.
The minimum cycle time is only available from simulation.
It should be noted that some wires in the R2 and R4B designs
are under-driven, and it may be possible to reduce delay by
up-sizing some of the registers driving the wires.

Table II shows the energy, delay, and area of a 256×256-bit
multiply, using various numbers of PEs. Let m = vwp be a
measure of the amount of hardware dedicated to multiplica-
tion. The delay decreases and area increases with m. Energy
increases only slightly with m because the total amount of
computation remains constant. For m ≤ n, the R4 has 19%

����

less energy and 20% less area than the R2, but the delay
is 22% greater. However, the R4 can benefit from twice as
much hardware before performance saturates. The R4B is
never superior to the R4, although it eliminates the need for an
external CPA to compute the 3× multiples. A pair of 16−bit
CPAs has an area of approximately 4200µm2.

TABLE I
RESULTS OF HARDWARE AND SOFTWARE SIMULATION

Energy Sim. Energy Sim. Delay Area
pJ pJ ns µm2

R2 3.95 3.79 1.21 11118
R4 6.40 5.89 1.48 17670

R4B 7.50 8.33 1.72 20412

TABLE II
RESULTS WHEN APPLIED TO A 256 BIT × 256 BIT MULTIPLICATION.

PE p m Cycles Energy Delay Area
nJ ns mm2

8 128 594 18.8 719 0.088
R2 16 256 306 19.3 370 0.177

32 512 315 39.8 381 0.355
4 128 594 15.2 879 0.070

R4 8 256 306 15.7 453 0.141
16 512 171 17.5 253 0.283
4 128 594 17.8 1020 0.081

R4B 8 256 306 18.4 526 0.163
16 512 171 20.5 294 0.326

Figure 9 compares the Energy-Delay Products (EDP) of
the different architectures. EDP improves with more hardware
until saturation because the delay decreases while the energy
remains constant. The R2 and R4 architectures have nearly
identical EDP, except that the R4 can take advantage of twice
as much hardware before delay saturates. The R4B is 36%
worse than the R4.

Figure 10 compares the Area-Delay Products (ADP) of the
different architectures. ADP is relatively constant with more
hardware until saturation because the delay decreases while
the area increases. The relative merits are nearly identical to
EDP.

Table III compares our delay and ADP results with pre-
viously published FPGA implementations [7]. FPGA area is
measured in terms of Lookup Tables (LUTs). Interestingly,
the FPGA implementations have nearly the same relative
frequencies and ADPs as the custom implementations.

TABLE III
COMPARISON BETWEEN FPGA AND SILICON FOR m ≤ n.

PEs FPGA Freq Silicon Freq LUT-DP ADP
MHz MHz ns mm2–ns

R2 318 826 48 ×109 66
R4 248 676 47 ×109 64

R4B 186 581 63 ×109 86

VI. CONCLUSION

This paper has quantified the energy, delay, and area of
custom silicon implementations of three parallelized left-

5×104

4×104

3×104

2×104

1×104

0

6×104

7×104

8×104

32 128 512

ED
P

(n
J n

s)

m = vwp

R2

R4B

R4

-
Fig. 9. Montgomery Multiplication EDP vs. Hardware

350

300

250

200

150

100

50

0
32 128 512

AD
P

(m
m

2
ns

)

m = vwp

R2
R4B

R4

-

Fig. 10. Montgomery Multiplication ADP vs. Hardware

shifting Montgomery multipliers. The Energy-Delay and Area-
Delay Products of the R2 and R4 are comparable. The R2
is simpler and does not require an external carry-propagate
adder. If the Montgomery multiplier can run at its own clock
frequency, then the R2 is thus preferable. However, if the
multiplier frequency is constrained by a fixed system clock,
then the R4 delivers the same cycle count at lower energy and
area. Moreover, the R4 can take advantage of twice as much
hardware before the cycle count saturates.

Compared to the R4, the R4B avoids the need for an external
carry-propagate adder at the cost of additional hardware. The
extra hardware cost outweighs the benefits, so the R4B is never
preferable.

These results are strikingly consistent with FPGA imple-
mentations. Thus, FPGAs appear to be a reasonable testbed
for comparing these kinds of arithmetic circuits.

����

ACKNOWLEDGMENT

The authors would like to thank the Clay-Wolkin Family
Foundation fellowship and Intel Circuit Research Lab for
supporting this research.

REFERENCES

[1] P. Montgomery, “Modular multiplication without trial division,” Math of
Computation, vol. 44, pp. 519–521, April 1985.

[2] H. Orup, “Simplified quotient determination in high-radix modular mul-
tiplication,” Proc. 12th IEEE Symp. Computer Arithmetic, pp. 193–199,
July 1995.

[3] K. Kelley and D. Harris, “Parallelized very high radix scalable Mont-
gomery multipliers,” Proc. Asilomar Conf. Signals, Systems, and Com-
puters, pp. 1196–1200, November 2005.

[4] D. Harris, M. Krishnamurthy, M. Anders, S. Mathew, and S. Hsu, “An
improved unified scalable radix-2 Montgomery multiplier,” Proc. 17th
IEEE Symp. Computer Arithmetic, pp. 172–178, 2005.

[5] N. Jiang and D. Harris, “Parallelized radix-2 scalable Montgomery
multiplier,” IFIP Intl. Conf. on VLSI, 2007.

[6] N. Pinckney and D. Harris, “Parallelized radix-4 scalable Montgomery
multipliers,” J. Integrated Circuits and Systems, vol. 3, no. 1, pp. 39–45,
March 2008.

[7] N. Pinckney, A. Amberg, and D. Harris, “Parallelized booth-encoded
radix-4 scalable Montgomery multipliers,” VLSI SOC, 2008.

����

