
Parallel High-Radix Montgomery Multipliers

Philip Amberg, Nathaniel Pinckney, and David Money Harris
Harvey Mudd College

301 Platt Blvd. Claremont, CA 91711

{pamberg, npinckney, David_Harris}@hmc.edu

Abstract— This paper describes the algorithm and design

tradeoffs for multiple hardware implementations of parallel

high-radix scalable Montgomery multipliers. Hardware

implementations of Montgomery multipliers require choosing a

radix, shift direction, and whether to use Booth encoding.

Presented are processing element designs exploring combinations

of radices 2, 4, and 8, right vs. left shifting, and Booth encoding.

A radix-4, left-shifting, non-Booth encoded design performs a

1024-bit modular exponentiation in 9.4 ms using 4997 LUTs and

4051 REGs and appears to maximize performance/hardware in

an FPGA implementation. A Booth encoded version of the above

multiplier performs a 1024-bit modular exponentiation in 13 ms

using 4852 LUTs and 2887 REGs. This design may be beneficial

for systems constrained by the cycle time of other elements

because the design minimizes hardware usage and requires no

precomputed multiples. The radix-8, right-shifting, Booth-

encoded design offers no performance/hardware advantage over

a comparable radix-4 design.

I. INTRODUCTION

Public key encryption schemes, including RSA, use

modular exponentiation of large numbers to encrypt data. This

is secure because factoring large numbers is computationally

intensive and becomes intractable for very large numbers.

Modular exponentiation of large numbers is slow because of

repeated modular multiplications with division steps to

calculate the remainder. Montgomery multipliers [1] are

useful because they replace the costly division with a simple

right shift. Hence, they can increase the speed of encryption

systems.

Older Montgomery multipliers are hard-wired to support a

particular operand length, n. Scalable Montgomery

multipliers reuse w-bit processing elements (PEs) many times

to handle the entire n-bit operands, making them suitable to

arbitrary-length operands [2]. Previous scalable Montgomery

multiplier designs include radix-2 [2, 3], radix-4 [4, 5, 6, 7],

radix-8 [8], radix-16 [9], and very high radix [10, 11]. A

scalable radix-2
v
 design processes v bits of the multiplier and

w bits of the multiplicand per step.

The critical path through a PE can be shortened by

reordering the steps of the Montgomery multiplication

algorithm, which parallelizes multiplications within the PE

and simplifies quotient determination [12, 10].

In developing a parallel high radix Montgomery multiplier,

a designer has three primary design choices: radix, left or right

shifting, and use of pre-computed multiples or Booth

encoding. These choices have direct impact on the hardware

footprint and exponentiation time. This paper discusses these

design options and evaluates the tradeoffs in terms of

hardware cost and exponentiation time. This paper also

proposes a novel design for a parallel radix-8, right-shifting,

Booth-encoded Montgomery multiplier.

II. MONTGOMERY MULTIPLICATION

This section summarizes Montgomery multiplication, based

on the treatment from [5, 6]. Montgomery multiplication is

defined as

 Z = (XYR
-1

) mod M

where

X: n-bit multiplier

Y: n-bit multiplicand

M: n-bit odd modulus, typically prime

R: 2
n

R
-1

: modular multiplicative inverse of R

(RR
-1

) mod M = 1.

The steps of Montgomery multiplication are shown in Fig.

1. Because R=2
n

, dividing by R is equivalent to shifting right

by n bits. Q has the property that the lower n bits of

[Z + Q × M] are 0, so no information is lost in this step.

Note that we can skip the normalization step for successive

Montgomery multiplications because if R > 4M and X, Y < 2M

then Z < 2M [14]. To do this we increased the size of the

operands to n1 = n + 1 bits and let R = 22
n

, where n2 = n + 2.

Multiply: Z = X × Y

Reduce: Q = Z × M ' mod R

RMQZZ /][×+=

Normalize: if Z ≥ M then Z = Z − M

Fig.1: Montgomery multiplication algorithm

A. Parallel Radix-2
v
Scalable Algorithm

The parallel radix-2
v

Booth and non-Booth algorithms are

shown in Figs. 2 and 3. These are equivalent to previous

algorithms [5, 6, 7, 10] extended to v bits. The variables are

defined below.

 n1: n + v + 1

 n2: n + v + 2 (or larger [7])

 M: n-bit odd modulus

 M’: n2-bit integer satisfying 12mod)'(2
=−

n
MM

 M̂ : n-bit integer vv
MM 2/)1)2mod'((+×

 Y: n1-bit multiplicand

 X: n1-bit multiplier

 C: 2-bit carry

 w: scalable inner word length

 f: outer loop length  vn /2

 e: inner loop length  wn /1

The algorithms are scalable because they iterate over words

of the operands using fixed-sized PEs. The superscripts

denote v-bit words for X and w-bit words for Y, M̂ , and Z.

There are  wne /
1

= w-bit words of Y, M̂ , and Z, and

 vnf /2= v-bit words of X in a radix-2
v
 design with w-bit

PEs.

Encoding is indicated by the Booth() function. A 2
v

M̂

multiple must be added to the result at the end of the

algorithm, if the last Booth encoding for MQ ˆ× was negative.

This is not needed for YX × because X < 2M and 1

1

−

−

f

vX is the

n2 = n + v + 2 bit of X, which will always be zero.

III. HARDWARE IMPLEMENTATION

As Tenca proposed [2], the scalable Montgomery multiplier

is built from a systolic array of p processing elements (PEs).

The architecture includes memories for X, Y, and M̂ , a FIFO

to store partial products, and a sequence controller. The FIFO

holds results of the last PE until the first PE has completed

processing the current operand. For Booth encoded designs,

the last M
v ˆ2 multiple is conditionally added in the FIFO

before storing the result.

The original Montgomery multiplication algorithm involves

three dependent multiplications. Orup showed that the

algorithm can be sped up by reordering steps and doing a

precomputation, which eliminates one of the multiplications

and allows the other two to occur in parallel [12]. Tenca’s

designs [8] do not use Orup’s parallelization method. These

designs use a lookup table to determine Q from the previous

PE’s result, X, and Y. The three designs presented in this

paper both parallelize the multiplications in each PE and

simplify quotient determination. Orup’s method prescales X

by 2
v
, by setting Q

0
= 0 and setting subsequent Q’s to be the v

LSBs of the result, simplifying the hardware implementation.

Before attempting the design of the specific multipliers in

[6, 7] and this paper, the datapaths were evaluated to get an

initial estimate of hardware usage, shown in Fig. 4. The radix-

4, non-Booth encoded architecture was considered the

baseline. When adding Booth encoding to this design, no

precomputed hard-multiples are required, saving registers, and

the additional hardware required is a Booth encoder and an

additional input on the product selection multiplexer. These

were deemed to be acceptable tradeoffs for study. The next

designs considered were radix-8, non-Booth and Booth

encoded designs. The radix-8 non-Booth design was not

pursued, because we think it would not be competitive due to

the extra flip-flops needed to store all four hard multiples.

However, the Booth-encoded design would require the same

amount of registers to store the multiples as the radix-4,

non-Booth encoded design, making this design also

worthwhile to study. A radix-16 design was not considered

because there did not appear to be any additional advantage

scaling to radix v = 4.

A. Radix

As radix increases, the number of bits consumed per step

increases, resulting in decreased cycle count at the expense of

more hardware. The complexity of multipliers within each PE

also increases with radix. The smallest radix design is a

radix-2 design, which consumes one bit of the multiplier X in

each processing element. Generating products for this

processing element requires only an AND2 gate, since the

jvjj

f

v

jijij

vw

j

v

j

i

v

ii

i

v

ii

vi

MCZZC

ej

C

Q

YXMQCZZZC

ej

C

XXX

QQQ

ZQ

fi

Z

ˆ2),(

1to0for

0

1If

ˆ),(),(

1to0for

0

),(Booth

),(Booth

2mod

1to0for

0

1

''

:1

1

0:1

1'

1'

0

++=

−=

=

==

×+×++=

−=

=

=

=

=

−=

=

−

−

+

−

−

−

Fig. 2: Parallelized, radix-2v scalable Booth algorithm

jijij

vw

j

v

j

vi

YXMQCZZZC

ej

C

ZQ

fi

Z

×+×++=

−=

=

=

−=

=

−

+

−

ˆ),(),(

1to0for

0

2mod

1to0for

0

:1

1

0:1

0

Fig. 3: Parallelized, radix-2v scalable non-Booth algorithm

multiples can only be 0Y or 1Y. Radix-4 designs process two

bits of the multiplier in each processing element, leading to

four possible multiples. For non-Booth designs, this changes

the multiplier from an AND2 gate to a 4:1 MUX, which

chooses between the products. The hard multiple 3Y now has

to be pre-computed and stored. In general, non-Booth

encoded radix-2
v
 designs will have 2

v
 possible multiples,

requiring a 2
v
:1 MUX to choose products and registers to store

2
v-1

 hard multiples. The choice of radix also modifies quotient

determination. As shown in Fig. 2, the quotient Q is found by

taking the bottom v bits of the least significant word from each

PE. To generate the selector for MQ ˆ× in the next PE, a v-bit

CPA is needed to convert the results from redundant to

non-redundant form.

B. Booth Encoding

Booth encoding is a technique for avoiding hard

multiples, such as 3Y, by using negative partial products [15].

Consider a multiplication X × Y. For a radix-2
2
 multiplication

algorithm, 2-bits of X are consumed each step. Therefore the

possible multiples of Y are 0, Y, 2Y, or 3Y. Note that in radix-

2
2

multiplication, a multiple of Y becomes 4Y because the next

two bits of X are being processed. Observe that

YYY −= 43

so the 3Y multiple can be generated with a –Y in the current

cycle and a 4Y in the next step. In general, Booth encoding

will recode the possible multiples from {0, Y,…, (2
v
-1)Y} to {-

2
v-1

Y,…, 0,…, 2
v-1

Y}.

For a radix-4 design, the multiple set is recoded from {0,

1Y, 2Y, 3Y} to {-2Y, -1Y, 0, 1Y, 2Y}. Therefore with Booth

encoding, it no longer becomes necessary to precompute and

store the 3Y multiple. For right-shifting designs, this reduces

the required registers for storing multiples from 8w to 4w.

The cost is additional hardware for the Booth encoding and

moving from a 4:1 MUX to a 5:1 MUX to choose the partial

product. Additionally, special hardware is required to inject

bits to generate the 2s complement form of negative multiples.

For left-shifting designs, Booth encoding reduces the required

registers for storing multiples from 4w to 2w. However, the

Booth encoder and its support logic increase the critical path,

leading to a 29% reduction in clock speed.

For a radix-8 design, the multiple set is recoded from {0,

1Y, 2Y, 3Y, 5Y, 6Y, 7Y} to {-4Y, -3Y, -2Y, -1Y, 0, 1Y, 2Y, 3Y,

4Y}. Without Booth encoding, it would be necessary to

precompute and store the 3Y, 5Y, and 7Y multiples. Booth

encoding reduces this requirement so only the 3Y multiple

must be stored. For a right-shifting design, this reduces the

required registers for storing multiples from 16w to 8w. The

cost is additional hardware for the Booth encoding and

increasing the product selector size from an 8:1 MUX to a 9:1

MUX. Radix-8 designs could in principle achieve similar

clock speed as radix-4 designs because the only critical path

change is MUX5 to MUX9.

Higher radices become difficult because an increasing

number of hard multiples must be stored, requiring additional

registers for each multiple or each multiple must be

dynamically generated within each PE. Generating the

multiples within each PE would require large multiplexers to

choose between the appropriate partial products and using two

4:2 CSAs rather than two 3:2 CSAs to add them together [8,

9].

C. Left vs. Right Shifting

Traditional Montgomery multipliers shift the result Z right v

bits between each processing element. This leads to a cycle

latency l = 2 between PEs, because the bottom bits of the next

word must be computed before they are shifted into the top

bits of the previous word. For this case, the Montgomery

multiplication times [7] are

blpeTblpkT

blpeTekT

c

c

+<+=

+≥=

for)(

for)(

2

1

Instead of right-shifting the result, the operands Y and M can

be left shifted v bits, reducing the latency to l = 1 cycle

CSA CSA

M

3M

Y

3Y

Z

0

1Y

2Y

3Y

X
0

0

1M

2M

3M

Q
0

(a)

<<1

<<1

CSA CSA

M

Y

Z

Xbooth

0

(b)

-2Y

-1Y

0

1Y

2Y<<1

Qbooth

0

-2M

-1M

0

1M

2M<<1

CSA CSA

Y

3Y

Z

0

1Y

2Y

3Y

X

0

(c)

-4Y

-3Y

-2Y

-1Y

0

1Y

2Y

3Y

4Y
<<1

<<1

M

3M

0

1Y

2Y

3Y

X

0

-4M

-3M

-2M

-1M

0

1M

2M

3M

4M
<<1

<<1

Qbooth

Xbooth

Fig. 4: Parallel High Radix Datapaths. (a) Radix-4 non-Booth. (b) Radix-4

Booth. (c) Radix-8 Booth

between PEs. The total Montgomery multiplication time [5, 6,

7] is then

bwvplpeTbwvplpkT

bwvplpeTekT

c

c

++<++=

++≥+=

/for)/(

/for)1(

2

1

For large multiplications, left-shifting results in a

reduction of cycle count.

An additional benefit of left-shifting is the reduction of the

number of pipeline registers. In a right-shifting design, each

multiple requires 2w registers and the result requires 4w

registers due to the two cycle latency. When the latency is

reduced to one cycle, each multiple only requires w registers

and only 2w registers are needed to store the result. Therefore

left-shifting reduces the number of pipeline registers by

approximately half.

However, left shifting adds additional design complexity

and places strict constraints on word length, and number of

processing elements in the pipeline. Left-shifting the operands

changes the effective least significant bit in the result.

Therefore, each PE must be customized to its particular

position in the pipeline to handle carries correctly. When an

operand has been completely shifted out of the least

significant word, that word must be discarded. For this to

happen cleanly, w should be a power of 2, p must be a power

of 2, and vp must be divisible by w. This limits the possible

combinations of word length and processing elements. These

strict constraints allow for radix 2, 4, and 16 multipliers but

prevent a radix-8 multiplier (v = 3) from being built with left-

shifting. An odd v will never satisfy the necessary constraints.

IV. RADIX-8 PROCESSING ELEMENT

The parallelized, right-shifting, Booth-encoded, Radix-8

processing element is shown in Fig 5. This design processes

v = 3 bits of the multiplier X in each PE.

Each PE contains twelve w-bit registers, two w-bit Booth

selectors, two w-bit CSAs, a 3-bit CPA and assorted support

logic. This PE design stores the hard 3 M̂ /3Y multiple in a

register. Negative multiples from Booth encoding and

carry-injection are handled the same as in [7].

V. RESULTS

The processing elements were coded in Verilog and

simulated in ModelSim. Verilog for all the Montgomery

multiplier designs has been synthesized in Synplify Pro onto

the Xilinx XC2V2000-6 Virtex II FPGA with “Sequential

Optimizations” disabled to prevent flip-flops from being

optimized into shift registers. Critical paths were obtained by

synthesizing the kernel with p = 2. A comparison of the

parallelized high radix scalable Booth designs is shown in

Table I.

For right shifting, Booth encoded designs, the critical path is

through an inverter, the Booth selector (2
v
+ 1-input

multiplexer), two CSAs, a 2-input sign extension multiplexer,

and a register.

For left shifting, Booth encoded designs, the critical path is

through a Booth encoder, the Booth selector, an AND gate for

masking the lower bits, and two CSAs. The longer critical

path for this design increases the cycle time over the right-

shifting design. The right shifting design is able to pipeline

the Booth encoder and CPA into the first stage to reduce the

critical path.

For left shifting, non-Booth encoded designs, the critical

path is through a product selector (2
v
-input multiplexer), and 2

CSAs. Left shifting, non-Booth encoded designs have the

shortest critical path and simplest hardware implantation at the

cost of having to store 2
v-1

 hard multiples.

A comparison of hardware usage and exponentiation time

for the parallelized high radix Booth designs is shown in

Figures 6 and 7. The data includes the hardware in the kernel

and controller, but not RAM bits or logic in the memories and

FIFO (which are roughly the same for all designs). The

amount of hardware was increase by increasing the pipeline

length. The curves end when the pipeline reaches 100%

utilization and more PEs do not increase performance. The

modular exponentiation time is the time for 2n+2 Montgomery

multiplies.

VI. CONCLUSIONS

This paper described the algorithms and design tradeoffs for

high radix Montgomery multipliers. Left-shifting designs are

uniformly better than right-shifting designs because fewer

cycles and pipeline registers are needed. Of these designs, a

radix-4, left-shifting, non-Booth encoded design has the best

performance per unit of hardware.

For systems constrained by the cycle time of other elements,

a radix-4, left-shifting, Booth encoded design is best. It has

virtually identical performance per unit of hardware to the

non-Booth encoded design but does not require precomputing

the 3Y and 3 M̂ multiples.

REFERENCES

[1] P. Montgomery, “Modular multiplication without trial division,” Math.

of Computation, vol. 44, no. 170, pp. 519-521, April 1985.

C

P

A

E

Z (sum)
[w-1:0]

Z (carry)
[w-1:0]

[w-1:3]

[w-1:3]

[w-4:0]

[w-4:0]

[w-1:w-3]

[2:0]

[w-1:w-3][2:0]

[w-1:0]

[w-1:0] [w] [0][w-1:1]

[w-1:0]

[w-1:0]

Z

[w] [0][w-1:1]

[w-1:0]

0

10

[2:0]

[2:0]

[2:0][w-1]

1

0

Y

M

[w-1:0]

[w-1:0]

Y

M

3Y

3M

[w-1:0]

[w-1:0]

3Y

3M

Booth

Encoder

Booth

Encoder

[w-2]

[w-1]

Booth

Selector

C

S

A

[w-2]

[w-1]

Booth

Selector

SQ

MSBx

MSBQ

Q (sum)
[2:0]

[2:0]
Q (carry)

x

Q

[2:0]

[2]

[2] E MSBQ

MSBX

SQ

Q

SX

H

xptr

xptr_delayed

xptr_delayed

0

1

C

S

A

0

1

[w-1]

[2:0]

Fig. 5: Radix-8 PE

[2] A. Tenca and Ç. Koç, “A scalable architecture for modular

multiplication based on Montgomery’s algorithm,” IEEE Trans.

Computers, vol. 52, no. 9, Sept. 2003, pp. 1215-1221.

[3] D. Harris, R. Krishnamurthy, M. Anders, S. Mathew, and S. Hsu, “An

improved unified scalable radix-2 Montgomery multiplier,” Proc. 17th

IEEE Symp. Computer Arithmetic, pp. 172-178, 2005.

[4] A. Tenca and L. Tawalbeh, “An efficient and scalable radix-4 modular

multiplier design using recoding techniques,” Proc. Asilomar Conf.

Signals, Systems, and Computers, pp. 1445-1450, 2003.

[5] N. Pinckney and D. Harris, “Parallelized radix-4 scalable Montgomery

multipliers,” Proc. 20th SBCCI Conf. on Integrated Circuits and

Systems Design, pp. 306-311, 2007.

[6] N. Pinckney and D. Harris, “Parallelized radix-4 scalable Montgomery

multipliers,” submitted to Journal of Integrated Circuits and Systems,

Feb. 2008.

[7] N. Pinckney, P. Amberg, and D. Harris, “Parallelized Booth-Encoded

Radix-4 Montgomery Multipliers,” submitted to VLSI SOC 2008.

[8] A. Tenca, G. Todorov, and Ç. Koç, “High--radix design of a scalable

modular multiplier,” Cryptographic Hardware and Embedded Systems,

Ç. Koç and C. Paar, eds., 2001, Lecutre notes in Computer Science,

No. 1717, pp. 189-206, Springer, Berlin, Germany.

[9] Y. Fan, X. Zeng, Y, Yu, G. Wang, and Q. Zhang, “A modified

high-radix scalable Montgomery multiplier,” Proc. Intl. Symp. Circuits

and Systems, pp. 3382-3385, 2006.

[10] K. Kelley and D. Harris, “Parallelized very high radix scalable

Montgomery multipliers,” Proc. Asilomar Conf. Signals, Systems, and

Computers, pp. 1196-1200, Nov. 2005.

[11] K. Kelley and D. Harris, “Very high radix scalable Montgomery

multipliers,” Proc. 5th Intl. Workshop on System-on-Chip, pp. 400-404,

July 2005.

[12] H. Orup, “Simplified quotient determination in high-radix modular

multiplication,” Proc. 12th IEEE Symp. Computer Arithmetic,

pp. 193-199, July 1995.

[13] G. Hachez and J. Quisquater, “Montgomery exponentiation with no final

subtractions: improved results,” Lecture Notes in Computer Science,

Ç. Koç and C. Paar, eds., vol. 1965, pp. 293-301, 2000.
[14] N. Jiang and D. Harris, “Parallelized Radix-2 Scalable Montgomery

Multiplier,” IFIP Intl. Conf. on VLSI, 2007.

[15] A. Booth, “A signed binary multiplication technique,” Quarterly J.

Mechanics and Applied Mathematics, vol. IV, part 2, pp. 236-240,

June 1951.

TABLE I

COMPARISON OF PE FPGA RESOURCE USAGE AND CLOCK SPEED

Architecture Ref. Shift

Dir.

w v 4-input

LUTs/

PE

Registers

/PE

Critical Path Clock

Speed

(MHz)

Parallel radix-8 scalable Booth This work R 4 3 80 71 INV + MUX9 + 2CSA + MUX2 + REG 263

8 3 179 130 240

16 3 295 222 212

Parallel radix-4 scalable Booth [7] R 4 2 50 49 INV + MUX5 + 2CSA + MUX2 + REG 259

8 2 91 87 249

16 2 154 149 248

Parallel radix-4 scalable Booth [7] L 4 2 54 41 ENC + INV + MUX5 + 2CSA + AND +

2MUX2 + REG

216

8 2 102 60 213

16 2 176 89 186

Parallel radix-4 scalable non-Booth [6] L 16 2 132 120 2CSA + BUF + MUX4 + REG 248

Parallel radix-2 scalable [14] L 16 1 94 72 AND + 2CSA + BUF + REG 318

Improved radix-2 scalable [3] L 16 1 95 72 2AND + 2CSA + BUF + MUX2 + REG 285

0 5000 10000 15000
0

5

10

15

20

25

30

Hardware/Performance Tradeoff For High-Radix Montgomery Multipliers

Hardware (LUTs+REGs)

E
x
p

o
n

e
n

tia
tio

n
 T

im
e

 (
m

s
)

0 5000 10000 15000
0

5

10

15

20

25

30

Hardware/Performance Tradeoff For High-Radix Montgomery Multipliers (Constrained Freq.)

Hardware (LUTs+REGs)

E
x
p

o
n

e
n

tia
tio

n
 T

im
e

 (
m

s
)

Radix-8, Right-Shifting, Booth (T
min

=7.0 ms)

Radix-4, Right-Shifting, Booth (T
min

=8.8 ms)

Radix-4, Left-Shifting, Booth (T
min

=6.7 ms)

Radix-4, Left-Shifting, non-Booth (T
min

=5.3 ms)

Radix-2, Left-Shifting, non-Booth (T
min

=7.3 ms)

Radix-8, Right-Shifting, Booth (T
min

=12.6 ms)

Radix-4, Right-Shifting, Booth (T
min

=11.7 ms)

Radix-4, Left-Shifting, Booth (T
min

=6.7 ms)

Radix-4, Left-Shifting, non-Booth (T
min

=6.7 ms)

Radix-2, Left-Shifting, non-Booth (T
min

=7.3 ms)

Fig. 7: Hardware/performance tradeoff for high-radix Montgomery

multipliers. All PEs are set to same operating frequency.

Fig. 6: Hardware/performance tradeoff for high-radix Montgomery

multipliers.

