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Abstract— This paper describes the algorithm and design 

tradeoffs for multiple hardware implementations of parallel 

high-radix scalable Montgomery multipliers.  Hardware 

implementations of Montgomery multipliers require choosing a 

radix, shift direction, and whether to use Booth encoding.  

Presented are processing element designs exploring combinations 

of radices 2, 4, and 8, right vs. left shifting, and Booth encoding.  

A radix-4, left-shifting, non-Booth encoded design performs a 

1024-bit modular exponentiation in 9.4 ms using 4997 LUTs and 

4051 REGs and appears to maximize performance/hardware in 

an FPGA implementation.  A Booth encoded version of the above 

multiplier performs a 1024-bit modular exponentiation in 13 ms 

using 4852 LUTs and 2887 REGs.  This design may be beneficial 

for systems constrained by the cycle time of other elements 

because the design minimizes hardware usage and requires no 

precomputed multiples.  The radix-8, right-shifting, Booth-

encoded design offers no performance/hardware advantage over 

a comparable radix-4 design. 

 

I. INTRODUCTION 

 

Public key encryption schemes, including RSA, use 

modular exponentiation of large numbers to encrypt data. This 

is secure because factoring large numbers is computationally 

intensive and becomes intractable for very large numbers. 

Modular exponentiation of large numbers is slow because of 

repeated modular multiplications with division steps to 

calculate the remainder. Montgomery multipliers [1] are 

useful because they replace the costly division with a simple 

right shift. Hence, they can increase the speed of encryption 

systems. 

Older Montgomery multipliers are hard-wired to support a 

particular operand length, n.  Scalable Montgomery 

multipliers reuse w-bit processing elements (PEs) many times 

to handle the entire n-bit operands, making them suitable to 

arbitrary-length operands [2].  Previous scalable Montgomery 

multiplier designs include radix-2 [2, 3], radix-4 [4, 5, 6, 7], 

radix-8 [8], radix-16 [9], and very high radix [10, 11].  A 

scalable radix-2
v
 design processes v bits of the multiplier and 

w bits of the multiplicand per step. 

The critical path through a PE can be shortened by 

reordering the steps of the Montgomery multiplication 

algorithm, which parallelizes multiplications within the PE 

and simplifies quotient determination [12, 10]. 

In developing a parallel high radix Montgomery multiplier, 

a designer has three primary design choices: radix, left or right 

shifting, and use of pre-computed multiples or Booth 

encoding.  These choices have direct impact on the hardware 

footprint and exponentiation time.  This paper discusses these 

design options and evaluates the tradeoffs in terms of 

hardware cost and exponentiation time.  This paper also 

proposes a novel design for a parallel radix-8, right-shifting, 

Booth-encoded Montgomery multiplier. 

 

II. MONTGOMERY MULTIPLICATION 

 

This section summarizes Montgomery multiplication, based 

on the treatment from [5, 6].  Montgomery multiplication is 

defined as  
 

 Z = (XYR
-1

) mod M 
 

where 
 

X: n-bit multiplier 

Y: n-bit multiplicand 

M: n-bit odd modulus, typically prime 

R: 2
n 

R
-1

:   modular multiplicative inverse of R 

(RR
-1

) mod M = 1. 
 

The steps of Montgomery multiplication are shown in Fig. 

1.  Because R=2
n 

, dividing by R is equivalent to shifting right 

by n bits.  Q has the property that the lower n bits of 

[Z + Q × M] are 0, so no information is lost in this step. 

Note that we can skip the normalization step for successive 

Montgomery multiplications because if R > 4M and X, Y < 2M 

then Z < 2M [14].  To do this we increased the size of the 

operands to n1 = n + 1 bits and let R = 22
n

, where n2 = n + 2. 

 

 

Multiply: Z = X × Y  

Reduce: Q = Z × M ' mod R  

RMQZZ /][ ×+=  

Normalize: if Z ≥ M  then Z = Z − M  

Fig.1: Montgomery multiplication algorithm 



A. Parallel Radix-2
v 
Scalable Algorithm 

The parallel radix-2
v 

Booth and non-Booth algorithms are 

shown in Figs. 2 and 3.  These are equivalent to previous 

algorithms [5, 6, 7, 10] extended to v bits.  The variables are 

defined below. 

 

 n1: n + v + 1 

 n2: n + v + 2 (or larger [7]) 

 M: n-bit odd modulus 

 M’: n2-bit integer satisfying 12mod)'( 2
=−

n
MM  

 M̂ : n-bit integer vv
MM 2/)1)2mod'(( +×  

 Y: n1-bit multiplicand 

 X: n1-bit multiplier 

 C: 2-bit carry 

 w: scalable inner word length 

 f: outer loop length  vn /2
 

 e: inner loop length  wn /1
 

 

The algorithms are scalable because they iterate over words 

of the operands using fixed-sized PEs.  The superscripts 

denote v-bit words for X and w-bit words for Y, M̂ , and Z.  

There are  wne /
1

=  w-bit words of Y, M̂ , and Z, and 

 vnf /2=  v-bit words of X in a radix-2
v
  design with w-bit 

PEs. 

Encoding is indicated by the Booth() function.  A 2
v

M̂  

multiple must be added to the result at the end of the 

algorithm, if the last Booth encoding for MQ ˆ×  was negative.  

This is not needed for YX ×  because X < 2M and 1

1

−

−

f

vX  is the 

n2 = n + v + 2 bit of X, which will always be zero. 

 

III. HARDWARE IMPLEMENTATION 

 

As Tenca proposed [2], the scalable Montgomery multiplier 

is built from a systolic array of p processing elements (PEs).  

The architecture includes memories for X, Y, and M̂ , a FIFO 

to store partial products, and a sequence controller.  The FIFO 

holds results of the last PE until the first PE has completed 

processing the current operand.  For Booth encoded designs, 

the last M
v ˆ2  multiple is conditionally added in the FIFO 

before storing the result. 

The original Montgomery multiplication algorithm involves 

three dependent multiplications.  Orup showed that the 

algorithm can be sped up by reordering steps and doing a 

precomputation, which eliminates one of the multiplications 

and allows the other two to occur in parallel [12].  Tenca’s 

designs [8] do not use Orup’s parallelization method.  These 

designs use a lookup table to determine Q from the previous 

PE’s result, X, and Y.  The three designs presented in this 

paper both parallelize the multiplications in each PE and 

simplify quotient determination.  Orup’s method prescales X 

by 2
v
, by setting Q

0  
= 0 and setting subsequent Q’s to be the v 

LSBs of the result, simplifying the hardware implementation. 

Before attempting the design of the specific multipliers in 

[6, 7] and this paper, the datapaths were evaluated to get an 

initial estimate of hardware usage, shown in Fig. 4.  The radix-

4, non-Booth encoded architecture was considered the 

baseline.  When adding Booth encoding to this design, no 

precomputed hard-multiples are required, saving registers, and 

the additional hardware required is a Booth encoder and an 

additional input on the product selection multiplexer.  These 

were deemed to be acceptable tradeoffs for study.  The next 

designs considered were radix-8, non-Booth and Booth 

encoded designs.  The radix-8 non-Booth design was not 

pursued, because we think it would not be competitive due to 

the extra flip-flops needed to store all four hard multiples.  

However, the Booth-encoded design would require the same 

amount of registers to store the multiples as the radix-4, 

non-Booth encoded design, making this design also 

worthwhile to study.  A radix-16 design was not considered 

because there did not appear to be any additional advantage 

scaling to radix v = 4. 

 

A. Radix 

As radix increases, the number of bits consumed per step 

increases, resulting in decreased cycle count at the expense of 

more hardware.  The complexity of multipliers within each PE 

also increases with radix.  The smallest radix design is a 

radix-2 design, which consumes one bit of the multiplier X in 

each processing element.  Generating products for this 

processing element requires only an AND2 gate, since the 
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Fig. 2: Parallelized, radix-2v scalable Booth algorithm 
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Fig. 3: Parallelized, radix-2v scalable non-Booth algorithm 

 



multiples can only be 0Y or 1Y.  Radix-4 designs process two 

bits of the multiplier in each processing element, leading to 

four possible multiples.  For non-Booth designs, this changes 

the multiplier from an AND2 gate to a 4:1 MUX, which 

chooses between the products.  The hard multiple 3Y now has 

to be pre-computed and stored.  In general, non-Booth 

encoded radix-2
v
 designs will have 2

v
 possible multiples, 

requiring a 2
v
:1 MUX to choose products and registers to store 

2
v-1

 hard multiples.  The choice of radix also modifies quotient 

determination.  As shown in Fig. 2, the quotient Q is found by 

taking the bottom v bits of the least significant word from each 

PE.  To generate the selector for MQ ˆ×  in the next PE, a v-bit 

CPA is needed to convert the results from redundant to 

non-redundant form. 

 

B. Booth Encoding 

Booth encoding is a technique for avoiding hard 

multiples, such as 3Y, by using negative partial products [15].  

Consider a multiplication X × Y.  For a radix-2
2
 multiplication 

algorithm, 2-bits of X are consumed each step.  Therefore the 

possible multiples of Y are 0, Y, 2Y, or 3Y.  Note that in radix-

2
2 

multiplication, a multiple of Y becomes 4Y because the next 

two bits of X are being processed.  Observe that 
 

YYY −= 43  
 

so the 3Y multiple can be generated with a –Y in the current 

cycle and a 4Y in the next step.  In general, Booth encoding 

will recode the possible multiples from {0, Y,…, (2
v
-1)Y} to {-

2
v-1

Y,…, 0,…, 2
v-1

Y}. 

For a radix-4 design, the multiple set is recoded from {0, 

1Y, 2Y, 3Y} to {-2Y, -1Y, 0, 1Y, 2Y}.  Therefore with Booth 

encoding, it no longer becomes necessary to precompute and 

store the 3Y multiple.  For right-shifting designs, this reduces 

the required registers for storing multiples from 8w to 4w.  

The cost is additional hardware for the Booth encoding and 

moving from a 4:1 MUX to a 5:1 MUX to choose the partial 

product.  Additionally, special hardware is required to inject 

bits to generate the 2s complement form of negative multiples.  

For left-shifting designs, Booth encoding reduces the required 

registers for storing multiples from 4w to 2w.  However, the 

Booth encoder and its support logic increase the critical path, 

leading to a 29% reduction in clock speed. 

For a radix-8 design, the multiple set is recoded from {0, 

1Y, 2Y, 3Y, 5Y, 6Y, 7Y} to {-4Y, -3Y, -2Y, -1Y, 0, 1Y, 2Y, 3Y, 

4Y}.  Without Booth encoding, it would be necessary to 

precompute and store the 3Y, 5Y, and 7Y multiples.  Booth 

encoding reduces this requirement so only the 3Y multiple 

must be stored.  For a right-shifting design, this reduces the 

required registers for storing multiples from 16w to 8w.  The 

cost is additional hardware for the Booth encoding and 

increasing the product selector size from an 8:1 MUX to a 9:1 

MUX.  Radix-8 designs could in principle achieve similar 

clock speed as radix-4 designs because the only critical path 

change is MUX5 to MUX9. 

Higher radices become difficult because an increasing 

number of hard multiples must be stored, requiring additional 

registers for each multiple or each multiple must be 

dynamically generated within each PE.  Generating the 

multiples within each PE would require large multiplexers to 

choose between the appropriate partial products and using two 

4:2 CSAs rather than two 3:2 CSAs to add them together [8, 

9]. 

 

C. Left vs. Right Shifting 

Traditional Montgomery multipliers shift the result Z right v 

bits between each processing element.  This leads to a cycle 

latency l = 2 between PEs, because the bottom bits of the next 

word must be computed before they are shifted into the top 

bits of the previous word.  For this case, the Montgomery 

multiplication times [7] are 
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Instead of right-shifting the result, the operands Y and M can 

be left shifted v bits, reducing the latency to l = 1 cycle 
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Fig. 4: Parallel High Radix Datapaths. (a) Radix-4 non-Booth. (b) Radix-4 

Booth. (c) Radix-8 Booth 



between PEs.  The total Montgomery multiplication time [5, 6, 

7] is then 
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For large multiplications, left-shifting results in a 

reduction of cycle count. 

An additional benefit of left-shifting is the reduction of the 

number of pipeline registers.  In a right-shifting design, each 

multiple requires 2w registers and the result requires 4w 

registers due to the two cycle latency.  When the latency is 

reduced to one cycle, each multiple only requires w registers 

and only 2w registers are needed to store the result.  Therefore 

left-shifting reduces the number of pipeline registers by 

approximately half. 

However, left shifting adds additional design complexity 

and places strict constraints on word length, and number of 

processing elements in the pipeline.  Left-shifting the operands 

changes the effective least significant bit in the result.  

Therefore, each PE must be customized to its particular 

position in the pipeline to handle carries correctly.  When an 

operand has been completely shifted out of the least 

significant word, that word must be discarded.  For this to 

happen cleanly, w should be a power of 2, p must be a power 

of 2, and vp must be divisible by w.  This limits the possible 

combinations of word length and processing elements.  These 

strict constraints allow for radix 2, 4, and 16 multipliers but 

prevent a radix-8 multiplier (v = 3) from being built with left-

shifting.  An odd v will never satisfy the necessary constraints. 

 

IV. RADIX-8 PROCESSING ELEMENT 

 

The parallelized, right-shifting, Booth-encoded, Radix-8 

processing element is shown in Fig 5.  This design processes 

v = 3 bits of the multiplier X in each PE. 

Each PE contains twelve w-bit registers, two w-bit Booth 

selectors, two w-bit CSAs, a 3-bit CPA and assorted support 

logic.  This PE design stores the hard 3 M̂ /3Y multiple in a 

register.  Negative multiples from Booth encoding and 

carry-injection are handled the same as in [7]. 

 

V. RESULTS 

 

The processing elements were coded in Verilog and 

simulated in ModelSim.  Verilog for all the Montgomery 

multiplier designs has been synthesized in Synplify Pro onto 

the Xilinx XC2V2000-6 Virtex II FPGA with “Sequential 

Optimizations” disabled to prevent flip-flops from being 

optimized into shift registers.  Critical paths were obtained by 

synthesizing the kernel with p = 2.  A comparison of the 

parallelized high radix scalable Booth designs is shown in 

Table I. 

For right shifting, Booth encoded designs, the critical path is 

through an inverter, the Booth selector (2
v 
+ 1-input 

multiplexer), two CSAs, a 2-input sign extension multiplexer, 

and a register. 

For left shifting, Booth encoded designs, the critical path is 

through a Booth encoder, the Booth selector, an AND gate for 

masking the lower bits, and two CSAs.  The longer critical 

path for this design increases the cycle time over the right-

shifting design.  The right shifting design is able to pipeline 

the Booth encoder and CPA into the first stage to reduce the 

critical path. 

For left shifting, non-Booth encoded designs, the critical 

path is through a product selector (2
v
-input multiplexer), and 2 

CSAs.  Left shifting, non-Booth encoded designs have the 

shortest critical path and simplest hardware implantation at the 

cost of having to store 2
v-1

 hard multiples. 

A comparison of hardware usage and exponentiation time 

for the parallelized high radix Booth designs is shown in 

Figures 6 and 7.  The data includes the hardware in the kernel 

and controller, but not RAM bits or logic in the memories and 

FIFO (which are roughly the same for all designs).  The 

amount of hardware was increase by increasing the pipeline 

length.  The curves end when the pipeline reaches 100% 

utilization and more PEs do not increase performance.  The 

modular exponentiation time is the time for 2n+2 Montgomery 

multiplies. 

 

VI. CONCLUSIONS 

 

This paper described the algorithms and design tradeoffs for 

high radix Montgomery multipliers.  Left-shifting designs are 

uniformly better than right-shifting designs because fewer 

cycles and pipeline registers are needed.  Of these designs, a 

radix-4, left-shifting, non-Booth encoded design has the best 

performance per unit of hardware.   

For systems constrained by the cycle time of other elements, 

a radix-4, left-shifting, Booth encoded design is best.  It has 

virtually identical performance per unit of hardware to the 

non-Booth encoded design but does not require precomputing 

the 3Y and 3 M̂  multiples. 
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TABLE  I 

COMPARISON OF PE FPGA RESOURCE USAGE AND CLOCK SPEED 

 

Architecture Ref. Shift 

Dir. 

w v 4-input 

LUTs/

PE 

Registers 

/PE 

Critical Path Clock 

Speed 

(MHz) 

Parallel radix-8 scalable Booth This work R 4 3 80 71 INV + MUX9 + 2CSA + MUX2 + REG 263 

8 3 179 130 240 

16 3 295 222 212 

Parallel radix-4 scalable Booth [7] R 4 2 50 49 INV + MUX5 + 2CSA + MUX2 + REG 259 

8 2 91 87 249 

16 2 154 149 248 

Parallel radix-4 scalable Booth [7] L 4 2 54 41 ENC + INV + MUX5 + 2CSA + AND + 

2MUX2 + REG 

216 

8 2 102 60 213 

16 2 176 89 186 

Parallel radix-4 scalable non-Booth [6] L 16 2 132 120 2CSA + BUF + MUX4 + REG 248 

Parallel radix-2 scalable [14] L 16 1 94 72 AND + 2CSA + BUF + REG 318 

Improved radix-2 scalable [3] L 16 1 95 72 2AND + 2CSA + BUF + MUX2 + REG 285 
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Fig. 7: Hardware/performance tradeoff for high-radix Montgomery 

multipliers.  All PEs are set to same operating frequency. 

 

Fig. 6: Hardware/performance tradeoff for high-radix Montgomery 

multipliers. 

 


