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Abstract—Many electrical and computer engineering 
and computer science students take an introductory 
digital design course followed by a computer 
architecture course. This paper describes a curriculum 
to support these courses that culminates in designing a 
simplified ARM® microprocessor on an FPGA. We also 
wrote a supporting textbook to help other instructors 
interested in teaching such a course. The textbook 
includes supplementary hands-on labs and exercises. 
Our experience is that enabling students to understand a 
microprocessor from the underlying gates and 
microarchitecture all the way up to the assembly and 
programming levels empowers them to fully understand 
both computer architecture as well as the design of 
complex digital systems.  
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I.  INTRODUCTION 
Most electrical and computer engineering and 

computer science departments include at least one 
digital design course that is followed by a computer 
architecture course. The course described here covers 
both topics and can be taught as a single-semester 
course or as a multi-semester sequence, depending on 
the needs of the curriculum. The course begins with an 
introduction to digital design, then proceeds to 
introduce more complex digital design problems and 
hardware description languages (HDLs), and 
culminates with introducing computer architecture and 
processor design. The final hands-on lab project is for 
the students to build an ARM processor on an FPGA 
using SystemVerilog.  

This course is an adaptation of a MIPS-based course 
taught at Harvey Mudd College as a single-semester 
sequence and at the University of Nevada, Las Vegas 
as a multi-semester sequence. The authors also wrote 
an accompanying textbook to support the course called 
Digital Design and Computer Architecture: ARM® 
Edition [1]. 

This paper presents the underlying principles, 
structure, and content of the course and its 
accompanying labs. It concludes with a discussion of 
future improvements and a summary of the course 
goals. 

II. GUIDING PRINCIPLES 
We believe that teaching students about a computer 

processor from the ground up is both exciting and 
empowering for students. The proposed course teaches 
students about the underlying gates and architecture of 
an ARM microprocessor all the way up to the 
assembly and programming levels of the 
microprocessor. This helps them fully understand both 
computer architecture as well as the design of complex 
digital systems. 

The ARM microprocessor is a timely example as it 
is currently found in 95% of hand-held devices. Thus, 
students come away from the course with both a broad 
understanding of digital design and computer 
architecture as well as a detailed understanding of this 
microprocessor and the implications of its architecture. 

This course is accessible to a broad range of 
students because it begins at the fundamental level of 
digital design, starting with 0’s and 1’s and proceeding 
to multi-bit numbers, gates, and Boolean functions. 
Students require little, if any, prerequisites for the 
course, although an understanding of algebra and basic 
software programming is useful. 

Students learn best by doing, so the accompanying 
labs are a key part of solidifying the principles taught 
in the course. The labs begin with the students building 
basic digital circuits using 74xx parts. Although these 
parts are archaic, we find that students benefit from 
seeing the logic circuits in action and this lab enhances 
their understanding of fundamental concepts such as 
input variables and equipotential wires, especially as it 
applies to input signals being connected to multiple 



gate inputs. The labs proceed to build on this concept 
using schematic design. Only then do students learn 
design entry using an HDL, SystemVerilog or VHDL. 
We have found that using hands-on design and 
schematic entry first helps students think of the 
hardware they expect their design to produce even 
when they later use HDL design entry. This process of 
starting with schematic entry first, before jumping into 
HDL design, solidifies their understanding of 
hardware design. In contrast, if students start with 
HDL entry first, they tend to think of HDL 
programming as a programming (software) language 
instead of a hardware description language. All of the 
hardware labs are also implemented on an FPGA, 
which solidifies students’ understanding and 
debugging skills. 

After completing increasingly complex digital 
designs including finite state machines (FSMs) on an 
FPGA, the course then moves to the topic of computer 
architecture and the students complete several C and 
ARM assembly language programming labs. The labs 
culminate by bringing both topics together – digital 
design and computer architecture – with the students 
building their own simplified ARM processor using in 
an HDL, their writing an ARM assembly language 
program for that processor, and finally simulating that 
program running on their ARM processor. By starting 
with the fundamental principles of 0’s and 1’s and 
digital design and building up to computer architecture 
and microarchitecture, the students gain a complete 
understanding of the design, the design process, and of 
the hardware/software interface. 

III. COURSE STRUCTURE 
The course is typically taken by students in their 

sophomore or junior year. It is structured with weekly 
lectures, readings, written assignments, and labs. 
When taught as a single-semester (15-week) course, 
students complete fewer exercises on any given 
material but cover the same overall topics. The course 
may also be taught as a multi-semester, and typically a 
two-semester, sequence. In that case, the students may 
complete more exercises and hands-on projects but 
they will still cover the same topics overall as in the 
single-semester course. For example, at Harvey Mudd 
College, we have taught the course as a one-semester 
course because students earn a general engineering 
degree, so their schedule is compressed due to the 
demand of also taking courses in other engineering 
disciplines, beyond electrical and computer 
engineering. However, we have taught this course as a 
two- to three-semester sequence at the University of 
Nevada, Las Vegas to computer and electrical 
engineering students and computer science students 

where these students focus their major on computer 
and hardware design and use instead of general 
engineering. 

The course also includes lectures and accompanying 
readings in the textbook. The weekly lectures, 
typically two 75-minute lectures per week, introduce 
material and work through examples. Students are to 
complete the readings before attending lecture. Thus, 
they are introduced to the material on their own first, 
at their own pace, and then they can ask questions and 
fill in gaps in their understanding during lecture.  

The weekly written assignments then help students 
solidify fundamental concepts introduced in the 
lectures and reading, such as binary addition, 
simplifying Boolean equations, FSM design, ARM 
assembly programming, and ARM processor 
modifications. These written assignments are 
complemented by the students completing hands-on 
labs using the principles they have previously 
practiced in written assignments. The written 
assignments offer a lighter-weight means of practicing 
the material while the labs solidify understanding of 
the material. This allows the students to complete 
more exercises that would be too time-consuming to 
complete in lab. The assignments require relatively 
less work for any given design or exercise – for 
example, students can design an FSM on paper but not 
need to then complete the extra steps required in the 
lab of entering the design into the FPGA design 
software, compiling, simulating, synthesizing, and 
testing the design on the FPGA. The written exercises 
also prepare students for exams and future interviews 
and industry positions. 

This complementary learning structure of lectures 
and readings with written exercises and hands-on labs 
actively supports various learning styles from hands-
on learning to group learning to individual learning at 
a student’s own pace. It allows students to work 
through mistakes in the lower-stakes environment of 
in-class examples, in-class group activities, and written 
exercises before they practice what they have learned 
and strengthen their understanding during the labs and 
exams. 

The structure of including readings, lectures, written 
assignments, hands-on labs, and exams also 
encourages mastery learning of the material as the 
students practice and experiment with the topics in 
increasingly higher-stakes environments – first during 
the reading and in class during lecture, followed by 
working through the exercises, and finally in lab and 
on the exams. 

Table 1 shows our course syllabus when taught in a 
single semester. When taught as a two-semester 



Table 1. Course Syllabus (Single-Semester Version) 
# Date Topic Assignment 
1 26-Aug Introduction: digital abstraction; binary numbers; bits and bytes; logic gates  
2 28-Aug Transistor-level implementation; truth tables, Boolean expressions  
3 2-Sep Boolean algebra; K-maps PS 1  
4 4-Sep X’s and Z’s; timing, hazards Lab 1 
5 9-Sep Sequential circuits: SR latches, D latches, flip-flops, clocking PS 2 
6 11-Sep Finite State Machines Lab 2 
7 16-Sep *Optional: Dynamic discipline; metastability PS 3 
8 18-Sep Introduction to Hardware Description Languages (HDLs): Verilog Lab 3 
9 23-Sep More Verilog PS 4 
10 25-Sep Building Blocks I: mux, decoder, priority encoder, counter, comparator Lab 4 
11 30-Sept Building Blocks II: Arrays: RAMs, ROMs, PLAs, FPGAs  
 2-Oct Midterm 1   
12 7-Oct Number systems: fixed & floating point, unsigned & signed PS 5 
13 9-Oct Arithmetic: addition & subtraction, multiplication Lab 5 
14 14-Oct ARM instruction set and registers PS 6 
15 16-Oct Branches & procedure calls Lab 6 
16 21-Oct Addressing modes PS 7 
17 23-Oct Linking & launching applications Lab 7 
18 28-Oct Single-cycle processor datapath PS 8 
19 30-Oct Single-cycle processor control Lab 8 
20 4-Nov Multicycle processor PS 9 
21 6-Nov Exceptions Lab 9 
 11-Nov Midterm 2  
22 13-Nov Pipelining   
23 18-Nov Pipelining hazards and stalls PS 10  
24 20-Nov Memory-mapped I/O Lab 10 
26 25-Nov Memory hierarchy, latency & throughput Caches PS 11 
27 27-Nov Memory system optimization, Virtual memory Lab 11 
28 2-Dec Advanced architecture: a sampler PS 12 
29 4-Dec Course Review  
 9-Dec Final Exam   

 
sequence, we cover the same overall topics, but we 
spend additional time on most topics. For example, we 
spend 2-3 weeks each, instead of one, on topics such 
as Boolean algebra, number systems (binary and other 
bases), finite state machines, introducing the ARM 
instruction set, etc. 

IV. WRITTEN EXERCISES 
Students complete weekly exercises on the topics 

covered in lecture. This enables them to practice and 
experiment with the material before completing hands-
on labs that require that understanding. Because a given 
week’s material builds on topics learned in prior weeks, 
this also helps students solidify their understanding 
before building on that understanding in the material 
that follows. The weekly homework consists of a 
selection of exercises from the back of each chapter, 
and it can also include variations of those exercises. 

V. LAB ASSIGNMENTS 
The course includes 11 core labs, as shown in Table 

2, that allow the students to experiment with topics 
ranging from digital design – starting with simple 

designs and then increasing in complexity – to ARM 
assembly language programming and then ARM 
processor design. 

Students complete the labs using an FPGA board 
for the hardware design labs and, for the C and ARM 
assembly programming labs, using the Raspberry Pi, a 
single-board computer developed by the Raspberry Pi 
Foundation. The FPGA labs can be completed using 
either Verilog or VHDL, both of which are supported 
by the textbook. The labs are designed for the Intel 
Altera FPGA boards and design software, specifically 
the DE2 (or DE2-115) FPGA board and the Quartus 
design software. But instructors could readily adapt 
these labs to use Xilinx FPGA boards and design 
software, such as the Nexys4-DDR or Basys3 boards 
and the Vivado IDE (Integrated Design Environment). 

In the first lab, the students design a simple digital 
circuit, a 1-bit full adder, in schematic by hand first and 
then using the Quartus software. The students then 
simulate their design using ModelSim and synthesize 
the design onto the FPGA on the DE2 board. The 
students then use 74xx parts on a breadboard to build 



the 1-bit adder. Although the last step, breadboard 
design, is optional, it is recommended that the students 
complete that step because it helps them understand 
fundamental principles such as the importance of 
connecting power and ground, the principle of a wire 
being equipotential and connecting to multiple gate 
inputs, and the concept of 1 and 0 as 5V and ground 
(GND). 

Table 2. Laboratory Assignments 
Lab Description Method 
1 1-bit Full Adder Schematic 
2 Seven-Segment Display 
3 Adventure Game Finite State Machine 
4 Turn Signal Finite State Machine (FSM) HDL 
5 32-bit ALU 
6 C Programming: Fibonacci numbers + C 
7 C Programming: Temperature control 
8 ARM Assembly Language Programming Assembly 
9 ARM Single-Cycle Processor HDL & 

Assembly 10 ARM Multicycle Processor Control 
11 ARM Multicycle Processor Datapath 

 
In labs two and three the students build increasingly 

complex digital circuits, a seven-segment display and a 
finite state machine (FSM), using schematic entry and 
then simulating, synthesizing, and building their design 
in hardware on the DE2 board. We have found that it is 
critical for students to first create designs in schematic 
before entering their designs using a hardware 
description language (HDL). By so doing, the students 
become grounded in thinking of digital designs in 
terms of gates and, more broadly, in terms of 
combinational logic and registers. Without this 
foundation, students who begin their digital design by 
going directly to an HDL are at risk of viewing their 
HDL designs as software instead of thinking about the 
gates and hardware their HDL modules imply. 

In labs four and five the students begin entering 
their designs using an HDL, either Verilog or VHDL. 
Lab 4 is a Thunderbird turn signal FSM. By proceeding 
from Lab 3, implementing an FSM in schematic, 
directly to Lab 4, students can clearly see the parallels 
between schematic entry and HDL entry. In Lab 5, a 
32-bit ALU design, students also learn how to write an 
HDL testbench. 

Labs six and seven introduce students to C 
programming using the Raspberry Pi, a single-board 
computer developed by the Raspberry Pi Foundation. 
This board includes the Broadcom BCM2835 system-
on-a-chip (SoC), a processor based on the ARMv6 
architecture. In Lab 6, students write three C programs: 
one that calculates the Fibonacci sequence, another that 
scrolls through lighting up the board’s LEDs, and a 
third that is a number guessing game. These programs 
also interface with the Raspberry Pi’s I/O (LEDs, 
switches, and the console). In Lab 7, the students write 
a temperature control program in C and build a custom 

temperature control circuit that they interface with the 
Raspberry Pi board. 

In Lab 8, students practice their ARM assembly 
language programming skills by first writing an 
assembly program to calculate the Fibonacci sequence, 
one of the same programs they wrote in C in Lab 6, and 
then writing a second assembly program to compute 
floating point addition. 

Labs 9-11 bring together the topics of digital design 
and computer architecture by guiding students in 
designing, building, and testing two simplified ARM 
processors in hardware. The students also write ARM 
assembly programs in both assembly and machine code 
to test their processors. In Lab 9, the students are given 
the HDL code for the simplified ARM processor that 
we discuss in lecture. That simplified processor 
performs the ADD, SUB, AND, ORR, LDR, STR, and B 
ARM assembly instructions only [5]. The students add 
their 32-bit ALU from Lab 5 to complete the design. 
After testing and examining the single-cycle processor 
using a provided testbench and ARM assembly 
program, they then expand the single-cycle ARM 
processor to include two additional instructions, EOR 
(exclusive OR) and LDRB (load register byte). They 
sketch their modifications by hand on the schematic 
from the textbook and then modify the HDL to include 
these new instructions. They then also translate an 
ARM assembly program into machine code, load it 
onto the processor in hardware, and write a testbench 
(i.e., modify the provided testbench) to determine 
whether the processor worked correctly. 

In Labs 10 and 11, the students build on the 
knowledge they gained in all of the prior labs by 
building a simplified multicycle processor from 
scratch. Although the HDL design must be their own, 
they may use the building blocks provided in Lab 9 
such as register files, memories, and multiplexers.  

Throughout the labs the students also practice the 
guiding design principles of abstraction, modularity, 
hierarchy, and regularity. For example, throughout each 
lab, both hardware and software labs, students learn the 
importance of abstraction – that is, abstracting away 
unnecessary details – and modularity, having clearly 
defined interfaces and functions. In fact, as the labs 
increase in complexity, these design concepts become 
increasingly important. For example, a student using a 
multiplexer in Lab 5 must have, at that point, already 
gone through the work or completely understanding a 
multiplexer at the lower level and then be able to 
abstract away the details so that they can focus on its 
function. Abstraction, modularity, and regularity are 
also explicitly practiced as students build HDL 
modules that abstract away underlying details, have 
well defined interfaces, and that are then used and re-
used in their design.  

 



 
Table 3. Textbook Contents 

1. From Zero to One 
1.1 The Game Plan 
1.2 The Art of Managing Complexity 
1.3 The Digital Abstraction 
1.4 Number Systems 
1.5 Logic Gates 
1.6 Beneath the Digital Abstraction 
1.7 CMOS Transistors 
1.8 Power Consumption 
1.9 Summary and A Look Ahead 
 
2 Combinational Logic Design 
2.1 Introduction 
2.2 Boolean Equations 
2.3 Boolean Algebra 
2.4 From Logic to Gates 
2.5 Multilevel Combinational Logic 
2.6 X's and Z's, Oh My 
2.7 Karnaugh Maps 
2.8 Combinational Building Blocks 
2.9 Timing 
2.10 Summary 
 
3 Sequential Logic Design 
3.1 Introduction 
3.2 Latches and Flip-Flops 
3.3 Synchronous Logic Design 
3.4 Finite State Machines 
3.5 Timing of Sequential Logic 
3.6 Parallelism 
3.7 Summary 

4 Hardware Description Languages 
4.1 Introduction 
4.2 Combinational Logic 
4.3 Structural Modeling 
4.4 Sequential Logic 
4.5 More Combinational Logic 
4.6 Finite State Machines 
4.7 Data Types 
4.8 Parameterized Modules 
4.9 Testbenches 
4.10 Summary 
 
5 Digital Building Blocks 
5.1 Introduction 
5.2 Arithmetic Circuits 
5.3 Number Systems 
5.4 Sequential Building Blocks 
5.5 Memory Arrays 
5.6 Logic Arrays 
5.7 Summary 
 
6 Architecture 
6.1 Introduction 
6.2 Assembly Language 
6.3 Programming 
6.4 Machine Language 
6.5 Lights, Camera, Action: Compiling,  
      Assembling, and Loading 
6.6 Odds and Ends 
6.7 Evolution of ARM Architecture 
6.8 Another Perspective: x86 Architecture 
6.9 Summary 

7 Microarchitecture 
7.1 Introduction 
7.2 Performance Analysis 
7.3 Single-Cycle Processor 
7.4 Multicycle Processor 
7.5 Pipelined Processor 
7.6 HDL Representation 
7.7 Advanced Microarchitecture 
7.8 Real-World Perspective: Evolution of  
      ARM 
7.9 Summary 
 
8 Memory Systems 
8.1 Introduction 
8.2 Memory System Performance Analysis 
8.3 Caches 
8.4 Virtual Memory 
8.5 Summary 
 
9 I/O Systems 
9.1 Introduction 
9.2 Memory-Mapped I/O 
9.3 Embedded I/O Systems 
9.4 Other Microcontroller Peripherals 
9.5 Bus Interfaces 
9.6 PC I/O Systems 
9.7 Summary 
 
Appendix A: Digital System  
                       Implementation 
Appendix B: ARM Instructions 
Appendix C: C Programming 

 
The principle of hierarchy is also practiced as students 
build increasingly complex designs. For example, by 
dividing the final ARM multicycle processor design 
into two labs, Labs 10 and 11, the students learn to 
design with clearly defined interfaces and functions 
(modularity) and they practice and understand the use 
of hierarchy – building a processor from multiple 
layers of submodules and, perhaps most importantly, 
testing those submodules independently before 
combining them into the overall module. 

Instructors who choose to run the course as a 2-
semester sequence may either run the labs every other 
week or add other labs to give the students more 
practice with the material. For example, the first lab of 
building the 1-bit adder could be followed by another 
lab that builds additional simple digital circuits such as 
a majority circuit or a priority encoder. Likewise, the 
two finite state machine (FSM) labs, Labs 3 and 4, 
could be duplicated and then modified to include 
additional FSM implementations. In some iterations of 
the 2-semester version of the course, we have 
introduced a simpler FSM lab that preceded Lab 3, the 
Adventure Game FSM, and then also introduced a 
follow on FSM lab to Lab 4, the Thunderbird Turn 
Signal lab, so that the students gain more experience in 
building FSMs using an HDL. Additional C or ARM 
assembly language programming labs can also easily 
be introduced. In some iterations of our multi-semester 

course, we have also had the students follow Labs 9-11 
with their building a pipelined processor. 

The hardware required to support the labs are a DE2 
(or DE2-115) FPGA board, an inexpensive Raspberry 
Pi board, and various electronic parts. The cost of these 
parts is listed in Table 4. Although the hardware labs 
are targeted to the DE2 or DE2-115 board, an 
institution that already has other FPGA platforms could 
readily adapt the labs to target that FPGA instead. The 
HDL programming portions of the labs would remain 
the same; only the instructions for targeting a given 
board would need to be changed. 

Table 4. Laboratory Parts 
Description Cost 
DE2-115 FPGA Board $309  

(academic price) 
Raspberry Pi Model B $35 
Various electronics: 74xx 
parts, etc. 

$1 - $5 

Breadboard Typically 
available 

 
Even if an institution does not have the resources to 

purchase the hardware listed in Table 4, the majority of 
the labs can be completed using simulation as the final 
step. While the students would miss out on debugging 



their design in hardware and learning from the 
hardware implementation, much of the learning goals 
can be met even without completing the hardware 
designs if necessary. However, if resources are 
available, the relatively inexpensive cost to support 
hardware implementation pays off as students 
transition to hands-on projects and to industry jobs. 

The labs are supported by a TA who is available for 
5-10 hours per week for a class of 45-60 students. The 
lab space can be run as an open lab, which is preferable 
if the resources are available, or as a scheduled lab with 
a fixed time for the students to complete the lab. The 
open lab format is preferable because it allows students 
to work on the material on their own and at their own 
pace and to hone their debugging skills. In that case, 
the TA hours are available to students typically after 
the students have tried it themselves first. The TA is 
then available to help them develop their design or 
debug their design or hardware. 

VI. TEXTBOOK 
The textbook that supports this course, Digital 

Design and Computer Architecture: ARM Edition [1], 
was written by the co-authors of this paper. In previous 
versions of the course [2][4], we have taught the 
material using another MIPS-based textbook, Digital 
Design and Computer Architecture [3], also written by 
this paper’s authors. While the first half of the book, 
which focuses on digital design, is similar in both 
textbooks, the latter half of the new ARM edition 
focuses on the ARM processor instead of MIPS while 
still building on the same fundamental computer 
architecture principles as in the MIPS version. 

The course transitioned to using the ARM processor 
because of that processor’s prevalence in the current 
computer industry, particularly in embedded systems. 
ARM processors are in 95% of hand-held devices and 
are used world-wide. 

The ARM computer architecture is also an 
interesting and timely case study because, although it is 
a RISC (reduced instruction set computer) architecture, 
it includes some features of CISC (complex instruction 
set computer) architectures that make it well-suited for 
embedded systems such as hand-held devices. In 
particular, the ARM architecture includes conditional 
execution and a large number of indexing modes, such 
as pre-indexing, post-indexing, and using an immediate 
offset or an optionally shifted register offset. These 
features increase the complexity of the hardware 
somewhat but enable smaller program size. ARM 
assembly programs are typically 75% of the size of 
other assembly programs, which makes them well-
suited for the smaller memory sizes and the demand for 
lower power consumption of hand-held devices. 

VII. FUTURE ENHANCEMENTS 
Because the course offers hands-on instruction in 

designing, building, and testing digital circuits and in 
software (C and ARM assembly) programming, the 
tools that support these hands-on labs are often 
updated. However, forthe updates to the existing tools, 
such as compilers and FPGA design tools, are often 
incremental, so the lab instructions remain accurate. 
However, the lab instructions require incremental 
updates as the tools change. 

Additionally, a parallel set of labs could be 
developed to include instructions for Xilinx-based 
FPGA boards, such as the Nexys4-DDR board, using 
the Xilinx design suite, Vivado.   

VIII. CONCLUSION 
The ARM architecture is a widely-used architecture 

in the computer industry, particularly in hand-held 
devices, and includes features such as conditional 
execution that enhance student understanding of both 
digital design and computer architecture. By including 
a broad range of learning tools, especially hands-on 
labs, the course proposed here enables students to learn 
digital design and computer architecture using the 
ARM-based processor as a case study. By showing 
students how to design an ARM processor from the 
underlying gates to the high-level architecture, students 
gain a thorough and clear understanding of processor 
design and the implications of design choices from 
both a hardware and software perspective. 

IX. REFERENCES 
[1] Harris, Sarah L., and Harris, David Money, Digital 
Design and Computer Architecture: ARM® Edition, 
Elsevier Publishers, May 6, 2015 
 
[2] Harris, David Money, and Sarah Harris, 
Introductory Digital Design and Computer 
Architecture Curriculum, Microelectronic Systems 
Education Conference, June 2013, Austin, Texas.  
 
[3] Harris, David Money, and Harris, Sarah L., Digital 
Design and Computer Architecture, 2nd Edition, 
Elsevier Publishers, August 1, 2012 
 
[4] Harris, David Money, and Harris, Sarah L., From 
Zero to One: An Introduction to Digital Design and 
Computer Architecture, the First International 
Workshop on Reconfigurable Computing Education, 
March 1, 2006, Karlsruhe, Germany 
 
[5] ARMv4 Architecture Reference Manual, ARM 
Limited, © 2005 
 
 
 
 


