
ARM-based Digital Design and Computer
Architecture Curriculum

Sarah L. Harris
Department of Electrical and Computer Engineering

University of Nevada, Las Vegas
Las Vegas, NV, U.S.A.
sarah.harris@unlv.edu

David M. Harris
Department of Engineering

Harvey Mudd College
Claremont, CA, U.S.A.
david.harris@hmc.edu

Abstract—Many electrical and computer engineering
and computer science students take an introductory
digital design course followed by a computer
architecture course. This paper describes a curriculum
to support these courses that culminates in designing a
simplified ARM® microprocessor on an FPGA. We also
wrote a supporting textbook to help other instructors
interested in teaching such a course. The textbook
includes supplementary hands-on labs and exercises.
Our experience is that enabling students to understand a
microprocessor from the underlying gates and
microarchitecture all the way up to the assembly and
programming levels empowers them to fully understand
both computer architecture as well as the design of
complex digital systems.

Keywords—Computer Engineering Education, Digital
Design, ARM Processor, Microprocessors, FPGA,
Computer Architecture

I. INTRODUCTION
Most electrical and computer engineering and

computer science departments include at least one
digital design course that is followed by a computer
architecture course. The course described here covers
both topics and can be taught as a single-semester
course or as a multi-semester sequence, depending on
the needs of the curriculum. The course begins with an
introduction to digital design, then proceeds to
introduce more complex digital design problems and
hardware description languages (HDLs), and
culminates with introducing computer architecture and
processor design. The final hands-on lab project is for
the students to build an ARM processor on an FPGA
using SystemVerilog.

This course is an adaptation of a MIPS-based course
taught at Harvey Mudd College as a single-semester
sequence and at the University of Nevada, Las Vegas
as a multi-semester sequence. The authors also wrote
an accompanying textbook to support the course called
Digital Design and Computer Architecture: ARM®
Edition [1].

This paper presents the underlying principles,
structure, and content of the course and its
accompanying labs. It concludes with a discussion of
future improvements and a summary of the course
goals.

II. GUIDING PRINCIPLES
We believe that teaching students about a computer

processor from the ground up is both exciting and
empowering for students. The proposed course teaches
students about the underlying gates and architecture of
an ARM microprocessor all the way up to the
assembly and programming levels of the
microprocessor. This helps them fully understand both
computer architecture as well as the design of complex
digital systems.

The ARM microprocessor is a timely example as it
is currently found in 95% of hand-held devices. Thus,
students come away from the course with both a broad
understanding of digital design and computer
architecture as well as a detailed understanding of this
microprocessor and the implications of its architecture.

This course is accessible to a broad range of
students because it begins at the fundamental level of
digital design, starting with 0’s and 1’s and proceeding
to multi-bit numbers, gates, and Boolean functions.
Students require little, if any, prerequisites for the
course, although an understanding of algebra and basic
software programming is useful.

Students learn best by doing, so the accompanying
labs are a key part of solidifying the principles taught
in the course. The labs begin with the students building
basic digital circuits using 74xx parts. Although these
parts are archaic, we find that students benefit from
seeing the logic circuits in action and this lab enhances
their understanding of fundamental concepts such as
input variables and equipotential wires, especially as it
applies to input signals being connected to multiple

gate inputs. The labs proceed to build on this concept
using schematic design. Only then do students learn
design entry using an HDL, SystemVerilog or VHDL.
We have found that using hands-on design and
schematic entry first helps students think of the
hardware they expect their design to produce even
when they later use HDL design entry. This process of
starting with schematic entry first, before jumping into
HDL design, solidifies their understanding of
hardware design. In contrast, if students start with
HDL entry first, they tend to think of HDL
programming as a programming (software) language
instead of a hardware description language. All of the
hardware labs are also implemented on an FPGA,
which solidifies students’ understanding and
debugging skills.

After completing increasingly complex digital
designs including finite state machines (FSMs) on an
FPGA, the course then moves to the topic of computer
architecture and the students complete several C and
ARM assembly language programming labs. The labs
culminate by bringing both topics together – digital
design and computer architecture – with the students
building their own simplified ARM processor using in
an HDL, their writing an ARM assembly language
program for that processor, and finally simulating that
program running on their ARM processor. By starting
with the fundamental principles of 0’s and 1’s and
digital design and building up to computer architecture
and microarchitecture, the students gain a complete
understanding of the design, the design process, and of
the hardware/software interface.

III. COURSE STRUCTURE
The course is typically taken by students in their

sophomore or junior year. It is structured with weekly
lectures, readings, written assignments, and labs.
When taught as a single-semester (15-week) course,
students complete fewer exercises on any given
material but cover the same overall topics. The course
may also be taught as a multi-semester, and typically a
two-semester, sequence. In that case, the students may
complete more exercises and hands-on projects but
they will still cover the same topics overall as in the
single-semester course. For example, at Harvey Mudd
College, we have taught the course as a one-semester
course because students earn a general engineering
degree, so their schedule is compressed due to the
demand of also taking courses in other engineering
disciplines, beyond electrical and computer
engineering. However, we have taught this course as a
two- to three-semester sequence at the University of
Nevada, Las Vegas to computer and electrical
engineering students and computer science students

where these students focus their major on computer
and hardware design and use instead of general
engineering.

The course also includes lectures and accompanying
readings in the textbook. The weekly lectures,
typically two 75-minute lectures per week, introduce
material and work through examples. Students are to
complete the readings before attending lecture. Thus,
they are introduced to the material on their own first,
at their own pace, and then they can ask questions and
fill in gaps in their understanding during lecture.

The weekly written assignments then help students
solidify fundamental concepts introduced in the
lectures and reading, such as binary addition,
simplifying Boolean equations, FSM design, ARM
assembly programming, and ARM processor
modifications. These written assignments are
complemented by the students completing hands-on
labs using the principles they have previously
practiced in written assignments. The written
assignments offer a lighter-weight means of practicing
the material while the labs solidify understanding of
the material. This allows the students to complete
more exercises that would be too time-consuming to
complete in lab. The assignments require relatively
less work for any given design or exercise – for
example, students can design an FSM on paper but not
need to then complete the extra steps required in the
lab of entering the design into the FPGA design
software, compiling, simulating, synthesizing, and
testing the design on the FPGA. The written exercises
also prepare students for exams and future interviews
and industry positions.

This complementary learning structure of lectures
and readings with written exercises and hands-on labs
actively supports various learning styles from hands-
on learning to group learning to individual learning at
a student’s own pace. It allows students to work
through mistakes in the lower-stakes environment of
in-class examples, in-class group activities, and written
exercises before they practice what they have learned
and strengthen their understanding during the labs and
exams.

The structure of including readings, lectures, written
assignments, hands-on labs, and exams also
encourages mastery learning of the material as the
students practice and experiment with the topics in
increasingly higher-stakes environments – first during
the reading and in class during lecture, followed by
working through the exercises, and finally in lab and
on the exams.

Table 1 shows our course syllabus when taught in a
single semester. When taught as a two-semester

Table 1. Course Syllabus (Single-Semester Version)
Date Topic Assignment
1 26-Aug Introduction: digital abstraction; binary numbers; bits and bytes; logic gates
2 28-Aug Transistor-level implementation; truth tables, Boolean expressions
3 2-Sep Boolean algebra; K-maps PS 1
4 4-Sep X’s and Z’s; timing, hazards Lab 1
5 9-Sep Sequential circuits: SR latches, D latches, flip-flops, clocking PS 2
6 11-Sep Finite State Machines Lab 2
7 16-Sep *Optional: Dynamic discipline; metastability PS 3
8 18-Sep Introduction to Hardware Description Languages (HDLs): Verilog Lab 3
9 23-Sep More Verilog PS 4
10 25-Sep Building Blocks I: mux, decoder, priority encoder, counter, comparator Lab 4
11 30-Sept Building Blocks II: Arrays: RAMs, ROMs, PLAs, FPGAs
 2-Oct Midterm 1
12 7-Oct Number systems: fixed & floating point, unsigned & signed PS 5
13 9-Oct Arithmetic: addition & subtraction, multiplication Lab 5
14 14-Oct ARM instruction set and registers PS 6
15 16-Oct Branches & procedure calls Lab 6
16 21-Oct Addressing modes PS 7
17 23-Oct Linking & launching applications Lab 7
18 28-Oct Single-cycle processor datapath PS 8
19 30-Oct Single-cycle processor control Lab 8
20 4-Nov Multicycle processor PS 9
21 6-Nov Exceptions Lab 9
 11-Nov Midterm 2
22 13-Nov Pipelining
23 18-Nov Pipelining hazards and stalls PS 10
24 20-Nov Memory-mapped I/O Lab 10
26 25-Nov Memory hierarchy, latency & throughput Caches PS 11
27 27-Nov Memory system optimization, Virtual memory Lab 11
28 2-Dec Advanced architecture: a sampler PS 12
29 4-Dec Course Review
 9-Dec Final Exam

sequence, we cover the same overall topics, but we
spend additional time on most topics. For example, we
spend 2-3 weeks each, instead of one, on topics such
as Boolean algebra, number systems (binary and other
bases), finite state machines, introducing the ARM
instruction set, etc.

IV. WRITTEN EXERCISES
Students complete weekly exercises on the topics

covered in lecture. This enables them to practice and
experiment with the material before completing hands-
on labs that require that understanding. Because a given
week’s material builds on topics learned in prior weeks,
this also helps students solidify their understanding
before building on that understanding in the material
that follows. The weekly homework consists of a
selection of exercises from the back of each chapter,
and it can also include variations of those exercises.

V. LAB ASSIGNMENTS
The course includes 11 core labs, as shown in Table

2, that allow the students to experiment with topics
ranging from digital design – starting with simple

designs and then increasing in complexity – to ARM
assembly language programming and then ARM
processor design.

Students complete the labs using an FPGA board
for the hardware design labs and, for the C and ARM
assembly programming labs, using the Raspberry Pi, a
single-board computer developed by the Raspberry Pi
Foundation. The FPGA labs can be completed using
either Verilog or VHDL, both of which are supported
by the textbook. The labs are designed for the Intel
Altera FPGA boards and design software, specifically
the DE2 (or DE2-115) FPGA board and the Quartus
design software. But instructors could readily adapt
these labs to use Xilinx FPGA boards and design
software, such as the Nexys4-DDR or Basys3 boards
and the Vivado IDE (Integrated Design Environment).

In the first lab, the students design a simple digital
circuit, a 1-bit full adder, in schematic by hand first and
then using the Quartus software. The students then
simulate their design using ModelSim and synthesize
the design onto the FPGA on the DE2 board. The
students then use 74xx parts on a breadboard to build

the 1-bit adder. Although the last step, breadboard
design, is optional, it is recommended that the students
complete that step because it helps them understand
fundamental principles such as the importance of
connecting power and ground, the principle of a wire
being equipotential and connecting to multiple gate
inputs, and the concept of 1 and 0 as 5V and ground
(GND).

Table 2. Laboratory Assignments
Lab Description Method
1 1-bit Full Adder Schematic
2 Seven-Segment Display
3 Adventure Game Finite State Machine
4 Turn Signal Finite State Machine (FSM) HDL
5 32-bit ALU
6 C Programming: Fibonacci numbers + C
7 C Programming: Temperature control
8 ARM Assembly Language Programming Assembly
9 ARM Single-Cycle Processor HDL &

Assembly 10 ARM Multicycle Processor Control
11 ARM Multicycle Processor Datapath

In labs two and three the students build increasingly

complex digital circuits, a seven-segment display and a
finite state machine (FSM), using schematic entry and
then simulating, synthesizing, and building their design
in hardware on the DE2 board. We have found that it is
critical for students to first create designs in schematic
before entering their designs using a hardware
description language (HDL). By so doing, the students
become grounded in thinking of digital designs in
terms of gates and, more broadly, in terms of
combinational logic and registers. Without this
foundation, students who begin their digital design by
going directly to an HDL are at risk of viewing their
HDL designs as software instead of thinking about the
gates and hardware their HDL modules imply.

In labs four and five the students begin entering
their designs using an HDL, either Verilog or VHDL.
Lab 4 is a Thunderbird turn signal FSM. By proceeding
from Lab 3, implementing an FSM in schematic,
directly to Lab 4, students can clearly see the parallels
between schematic entry and HDL entry. In Lab 5, a
32-bit ALU design, students also learn how to write an
HDL testbench.

Labs six and seven introduce students to C
programming using the Raspberry Pi, a single-board
computer developed by the Raspberry Pi Foundation.
This board includes the Broadcom BCM2835 system-
on-a-chip (SoC), a processor based on the ARMv6
architecture. In Lab 6, students write three C programs:
one that calculates the Fibonacci sequence, another that
scrolls through lighting up the board’s LEDs, and a
third that is a number guessing game. These programs
also interface with the Raspberry Pi’s I/O (LEDs,
switches, and the console). In Lab 7, the students write
a temperature control program in C and build a custom

temperature control circuit that they interface with the
Raspberry Pi board.

In Lab 8, students practice their ARM assembly
language programming skills by first writing an
assembly program to calculate the Fibonacci sequence,
one of the same programs they wrote in C in Lab 6, and
then writing a second assembly program to compute
floating point addition.

Labs 9-11 bring together the topics of digital design
and computer architecture by guiding students in
designing, building, and testing two simplified ARM
processors in hardware. The students also write ARM
assembly programs in both assembly and machine code
to test their processors. In Lab 9, the students are given
the HDL code for the simplified ARM processor that
we discuss in lecture. That simplified processor
performs the ADD, SUB, AND, ORR, LDR, STR, and B
ARM assembly instructions only [5]. The students add
their 32-bit ALU from Lab 5 to complete the design.
After testing and examining the single-cycle processor
using a provided testbench and ARM assembly
program, they then expand the single-cycle ARM
processor to include two additional instructions, EOR
(exclusive OR) and LDRB (load register byte). They
sketch their modifications by hand on the schematic
from the textbook and then modify the HDL to include
these new instructions. They then also translate an
ARM assembly program into machine code, load it
onto the processor in hardware, and write a testbench
(i.e., modify the provided testbench) to determine
whether the processor worked correctly.

In Labs 10 and 11, the students build on the
knowledge they gained in all of the prior labs by
building a simplified multicycle processor from
scratch. Although the HDL design must be their own,
they may use the building blocks provided in Lab 9
such as register files, memories, and multiplexers.

Throughout the labs the students also practice the
guiding design principles of abstraction, modularity,
hierarchy, and regularity. For example, throughout each
lab, both hardware and software labs, students learn the
importance of abstraction – that is, abstracting away
unnecessary details – and modularity, having clearly
defined interfaces and functions. In fact, as the labs
increase in complexity, these design concepts become
increasingly important. For example, a student using a
multiplexer in Lab 5 must have, at that point, already
gone through the work or completely understanding a
multiplexer at the lower level and then be able to
abstract away the details so that they can focus on its
function. Abstraction, modularity, and regularity are
also explicitly practiced as students build HDL
modules that abstract away underlying details, have
well defined interfaces, and that are then used and re-
used in their design.

Table 3. Textbook Contents

1. From Zero to One
1.1 The Game Plan
1.2 The Art of Managing Complexity
1.3 The Digital Abstraction
1.4 Number Systems
1.5 Logic Gates
1.6 Beneath the Digital Abstraction
1.7 CMOS Transistors
1.8 Power Consumption
1.9 Summary and A Look Ahead

2 Combinational Logic Design
2.1 Introduction
2.2 Boolean Equations
2.3 Boolean Algebra
2.4 From Logic to Gates
2.5 Multilevel Combinational Logic
2.6 X's and Z's, Oh My
2.7 Karnaugh Maps
2.8 Combinational Building Blocks
2.9 Timing
2.10 Summary

3 Sequential Logic Design
3.1 Introduction
3.2 Latches and Flip-Flops
3.3 Synchronous Logic Design
3.4 Finite State Machines
3.5 Timing of Sequential Logic
3.6 Parallelism
3.7 Summary

4 Hardware Description Languages
4.1 Introduction
4.2 Combinational Logic
4.3 Structural Modeling
4.4 Sequential Logic
4.5 More Combinational Logic
4.6 Finite State Machines
4.7 Data Types
4.8 Parameterized Modules
4.9 Testbenches
4.10 Summary

5 Digital Building Blocks
5.1 Introduction
5.2 Arithmetic Circuits
5.3 Number Systems
5.4 Sequential Building Blocks
5.5 Memory Arrays
5.6 Logic Arrays
5.7 Summary

6 Architecture
6.1 Introduction
6.2 Assembly Language
6.3 Programming
6.4 Machine Language
6.5 Lights, Camera, Action: Compiling,
 Assembling, and Loading
6.6 Odds and Ends
6.7 Evolution of ARM Architecture
6.8 Another Perspective: x86 Architecture
6.9 Summary

7 Microarchitecture
7.1 Introduction
7.2 Performance Analysis
7.3 Single-Cycle Processor
7.4 Multicycle Processor
7.5 Pipelined Processor
7.6 HDL Representation
7.7 Advanced Microarchitecture
7.8 Real-World Perspective: Evolution of
 ARM
7.9 Summary

8 Memory Systems
8.1 Introduction
8.2 Memory System Performance Analysis
8.3 Caches
8.4 Virtual Memory
8.5 Summary

9 I/O Systems
9.1 Introduction
9.2 Memory-Mapped I/O
9.3 Embedded I/O Systems
9.4 Other Microcontroller Peripherals
9.5 Bus Interfaces
9.6 PC I/O Systems
9.7 Summary

Appendix A: Digital System
 Implementation
Appendix B: ARM Instructions
Appendix C: C Programming

The principle of hierarchy is also practiced as students
build increasingly complex designs. For example, by
dividing the final ARM multicycle processor design
into two labs, Labs 10 and 11, the students learn to
design with clearly defined interfaces and functions
(modularity) and they practice and understand the use
of hierarchy – building a processor from multiple
layers of submodules and, perhaps most importantly,
testing those submodules independently before
combining them into the overall module.

Instructors who choose to run the course as a 2-
semester sequence may either run the labs every other
week or add other labs to give the students more
practice with the material. For example, the first lab of
building the 1-bit adder could be followed by another
lab that builds additional simple digital circuits such as
a majority circuit or a priority encoder. Likewise, the
two finite state machine (FSM) labs, Labs 3 and 4,
could be duplicated and then modified to include
additional FSM implementations. In some iterations of
the 2-semester version of the course, we have
introduced a simpler FSM lab that preceded Lab 3, the
Adventure Game FSM, and then also introduced a
follow on FSM lab to Lab 4, the Thunderbird Turn
Signal lab, so that the students gain more experience in
building FSMs using an HDL. Additional C or ARM
assembly language programming labs can also easily
be introduced. In some iterations of our multi-semester

course, we have also had the students follow Labs 9-11
with their building a pipelined processor.

The hardware required to support the labs are a DE2
(or DE2-115) FPGA board, an inexpensive Raspberry
Pi board, and various electronic parts. The cost of these
parts is listed in Table 4. Although the hardware labs
are targeted to the DE2 or DE2-115 board, an
institution that already has other FPGA platforms could
readily adapt the labs to target that FPGA instead. The
HDL programming portions of the labs would remain
the same; only the instructions for targeting a given
board would need to be changed.

Table 4. Laboratory Parts
Description Cost
DE2-115 FPGA Board $309

(academic price)
Raspberry Pi Model B $35
Various electronics: 74xx
parts, etc.

$1 - $5

Breadboard Typically
available

Even if an institution does not have the resources to

purchase the hardware listed in Table 4, the majority of
the labs can be completed using simulation as the final
step. While the students would miss out on debugging

their design in hardware and learning from the
hardware implementation, much of the learning goals
can be met even without completing the hardware
designs if necessary. However, if resources are
available, the relatively inexpensive cost to support
hardware implementation pays off as students
transition to hands-on projects and to industry jobs.

The labs are supported by a TA who is available for
5-10 hours per week for a class of 45-60 students. The
lab space can be run as an open lab, which is preferable
if the resources are available, or as a scheduled lab with
a fixed time for the students to complete the lab. The
open lab format is preferable because it allows students
to work on the material on their own and at their own
pace and to hone their debugging skills. In that case,
the TA hours are available to students typically after
the students have tried it themselves first. The TA is
then available to help them develop their design or
debug their design or hardware.

VI. TEXTBOOK
The textbook that supports this course, Digital

Design and Computer Architecture: ARM Edition [1],
was written by the co-authors of this paper. In previous
versions of the course [2][4], we have taught the
material using another MIPS-based textbook, Digital
Design and Computer Architecture [3], also written by
this paper’s authors. While the first half of the book,
which focuses on digital design, is similar in both
textbooks, the latter half of the new ARM edition
focuses on the ARM processor instead of MIPS while
still building on the same fundamental computer
architecture principles as in the MIPS version.

The course transitioned to using the ARM processor
because of that processor’s prevalence in the current
computer industry, particularly in embedded systems.
ARM processors are in 95% of hand-held devices and
are used world-wide.

The ARM computer architecture is also an
interesting and timely case study because, although it is
a RISC (reduced instruction set computer) architecture,
it includes some features of CISC (complex instruction
set computer) architectures that make it well-suited for
embedded systems such as hand-held devices. In
particular, the ARM architecture includes conditional
execution and a large number of indexing modes, such
as pre-indexing, post-indexing, and using an immediate
offset or an optionally shifted register offset. These
features increase the complexity of the hardware
somewhat but enable smaller program size. ARM
assembly programs are typically 75% of the size of
other assembly programs, which makes them well-
suited for the smaller memory sizes and the demand for
lower power consumption of hand-held devices.

VII. FUTURE ENHANCEMENTS
Because the course offers hands-on instruction in

designing, building, and testing digital circuits and in
software (C and ARM assembly) programming, the
tools that support these hands-on labs are often
updated. However, forthe updates to the existing tools,
such as compilers and FPGA design tools, are often
incremental, so the lab instructions remain accurate.
However, the lab instructions require incremental
updates as the tools change.

Additionally, a parallel set of labs could be
developed to include instructions for Xilinx-based
FPGA boards, such as the Nexys4-DDR board, using
the Xilinx design suite, Vivado.

VIII. CONCLUSION
The ARM architecture is a widely-used architecture

in the computer industry, particularly in hand-held
devices, and includes features such as conditional
execution that enhance student understanding of both
digital design and computer architecture. By including
a broad range of learning tools, especially hands-on
labs, the course proposed here enables students to learn
digital design and computer architecture using the
ARM-based processor as a case study. By showing
students how to design an ARM processor from the
underlying gates to the high-level architecture, students
gain a thorough and clear understanding of processor
design and the implications of design choices from
both a hardware and software perspective.

IX. REFERENCES
[1] Harris, Sarah L., and Harris, David Money, Digital
Design and Computer Architecture: ARM® Edition,
Elsevier Publishers, May 6, 2015

[2] Harris, David Money, and Sarah Harris,
Introductory Digital Design and Computer
Architecture Curriculum, Microelectronic Systems
Education Conference, June 2013, Austin, Texas.

[3] Harris, David Money, and Harris, Sarah L., Digital
Design and Computer Architecture, 2nd Edition,
Elsevier Publishers, August 1, 2012

[4] Harris, David Money, and Harris, Sarah L., From
Zero to One: An Introduction to Digital Design and
Computer Architecture, the First International
Workshop on Reconfigurable Computing Education,
March 1, 2006, Karlsruhe, Germany

[5] ARMv4 Architecture Reference Manual, ARM
Limited, © 2005

