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Abstract 
 

This paper describes an improved version of the 
Tenca-Koç unified scalable radix-2 Montgomery 
multiplier with half the latency for small and moderate 
precision operands and half the queue memory 
requirement.  Like the Tenca-Koç multiplier, this 
design is reconfigurable to accept any input precision 
in either GF(p) or GF(2n) up to the size of the on-chip 
memory.  An FPGA implementation can perform 
1024-bit modular exponentiation in 16 ms using 5598 
4-input lookup tables, making it the fastest unified 
scalable design yet reported. 
 
1. Introduction 

Multiplication in a finite field is essential to many 
encryption algorithms including RSA, Diffie-Hellman 
key exchange, the Digital Signature Algorithm, and 
elliptic curve cryptography [1].  The two common 
finite Galois fields are GF(2n), used for elliptic curves, 
and GF(p), used for most other algorithms.  
Multiplication in a prime field GF(p) is performed 
modulo some prime p.  Multiplication in a binary 
extension field GF(2n) is performed modulo some 
irreducible polynomial f(x) of degree n.  It is 
implemented identically to GF(p) except that carries 
are not propagated. Therefore addition reduces to the 
XOR operation. 

Cryptographic computations are time-consuming 
because they operate on precisions of 256 to 2048 or 
more bits and require large numbers of multiplications 
to perform exponentiation.  The Montgomery 
multiplication algorithm [2] is commonly used 
because it avoids division by the modulus.  Many 
software and hardware implementations of 
Montgomery multiplication have been proposed.  
Software uses repeated multiplication and addition 
instructions [3, 4].  Radix-2 hardware designs operate 
in a word-serial fashion with addition as the basic 
operation [5].  Higher-radix designs use fewer cycles 

at the expense of requiring multiplications or 
memories containing precomputed multiples [6, 7, 8].  
Hardware designs are said to be scalable if they can 
work on variable precision limited only by memory 
capacity.  They are unified if they handle both GF(p) 
and GF(2n) on the same array [9]. 

This paper proposes an improvement on the 
Tenca-Koç scalable unified radix-2 Montgomery 
multiplier [5] with half the latency for small and 
moderate-precision operands.  The paper begins by 
reviewing Montgomery multiplication and the Tenca-
Koç algorithm.  It then describes how to left-shift 
input operands rather than right-shift results to avoid a 
bottleneck waiting for the most significant bit of each 
result word.  The queue size is also cut in two by 
converting results to nonredundant format before 
storing them.  Delay, area, and power results for a 
Verilog implementation synthesized to a Xilinx FPGA 
are discussed.   

 
2. Montgomery Multiplication 

We would like to compute Z = X × Y mod M, 
where the operands have n bits of precision and M is 
an odd number in the range 2n-1 < M < 2n.  In GF(p), M 
is the prime p.  In GF(2n), M is a binary representation 
of an irreproducible polynomial and carries are not 
propagated between columns in the multiplication.  
The modulo operation is expensive because it involves 
division. 

Montgomery [2] observed that the divisions can 
be converted into simple shifts if multiplication is 
instead performed on so-called Montgomery residues 
(M-residues).  The M-residue of an integer a (0 = a < 
M) is defined to be moda ar M= where r = 2n.  For 
example, if r = 16 and M = 11, then we see 
3 3 16 mod 11 4= × = .  There is an isomorphism 
between integers in this range and their Montgomery 
residues.   

The modular multiplicative inverse b-1 of an 
integer b is that number such that bb-1 mod M = 1.  For 



example, if r = 16 and M = 11, then r-1 = 9 because rr-1 
= 16×9 mod 11 = 1.  Montgomery multiplication 
(MM) of residues is defined as  

1( , ) modz MM x y xyr M−= =  
Observe that 

1 1mod mod
( ) mod mod

z xyr M xryrr M
xy r M zr M

− −= =
= =

 

so the Montgomery product of two Montgomery 
residues is the Montgomery residue of the product of 
the two corresponding integers. 

It may not be immediately obvious that 
multiplying by r-1 mod M is an easier problem than 
simply multiplying mod M.  However, there is a 
simple Radix-2 algorithm for doing so, given in Figure 
1.  This algorithm computes S = MM(X, Y) = XYr-1 

mod M.  It uses n steps, as in a word-serial 
multiplication algorithm.  On step i, it adds the Y to the 
running sum if the ith bit of X (xi) is true.  Also on 
each step, it divides by two.  If the running sum was 
odd, it first adds M so the result can be divided by two 
without loss of information.  This is permissible 
because adding M mod M does not change the result.  
After n steps of dividing by two, the algorithm has 
divided by r = 2n.  The algorithm might produce a 
result as large as 2M-1, so it concludes by subtracting 
M if necessary to restore the result to the legal range.  
The final subtraction can be avoided for repetitive 
multiplications used in exponentiation [10], so we will 
ignore it through the rest of this paper. In summary, 
the algorithm computes the Montgomery product 
using only 2n n-bit additions and n one-bit right shifts, 
which is substantially simpler than conventional 
modular multiplication with division. 

Conversion to and from M-residues is 
accomplished using Montgomery multiplication: 

2 2 1

1 1

( , ) mod mod

( ,1) 1 mod 1 mod

x MM x r xr r M xr M

x MM x x r M xr r M x

−

− −

= = =

= = = =
 

Note that r2 mod M should be precomputed to 
make this efficient; this is easy for cryptographic 
systems that change M infrequently. 

Now a long sequence of multiplications, like 
those required in exponentiation, can be performed by 
converting the operands to M-residues, performing 
Montgomery multiplications, and converting the result 
back to an integer. 

Z is commonly stored in carry-save redundant 
format for fast addition.  In a unified design, we use a 
modified carry-save adder that forces the carry to zero 
when operating in GF(2n) [9].  Define a bit cell to 
perform addition for one bit of the partial product of xi 
and yj.  In a typical design, a bit cell would contain 
two full adders, two AND gates, and some registers, as  

Z = 0 
for i = 0 to n-1 
 Z = Z + xi × Y 
 if Z is odd then Z = Z + M 
 Z = Z/2 
if Z = M then Z = Z – M 

Figure 1.  Simple radix-2 Montgomery 
multiplication algorithm 

 
Z = 0 
for i = 0 to n-1 

Ca = Cb =0 
 for j = 0 to e 

(Ca,Zj) = Ca + xi × Yj + Zj 
if (j == 0) odd = z0 
if odd then  

(Cb,Zj) = Cb + Mj + Zj 
( )1 1

0 1:1,j j j
wZ Z Z− −

−=  

Figure 2.  Tenca-Koç multiple word radix-2 
Montgomery multiplication algorithm 

 
will be shown later in Figures 5 and 8.  Assume the bit 
cell requires a full cycle to operate.  We will compare 
the number of bit cells and the number of cycles 
required by various algorithms. The Radix-2 
Montgomery Multiplication Algorithm uses n bit cells 
and n cycles so its area-delay product is n2. 

 
3. The Tenca-Koç Algorithm 

The algorithm of Figure 1 requires an adder with 
a precision of n so it is not scalable to different values 
of n.  Tenca and Koç present a multiple word radix-2 
Montgomery multiplication algorithm that uses 
hardware with a fixed word width w [5].  We will 
review this algorithm and its performance before 
describing how to improve it.  For n = ew, the 
hardware is reused e times.  Let M = (M(e-1), …, M1, 
M0), Y = (Y(e-1), …, Y1, Y0), Z = (Z(e-1), …, Z1, Z0), X = 
(xn-1, …, x1, x0), where words are indicated with 
superscripts and bits with subscripts.  M, Y, and Z are 
zero-extended to e+1 words to avoid overflow. 

The algorithm is given in Figure 2.  The outer 
loop iterates over all n bits of X.  The inner loop 
iterates over e+1 words of M, Y, and Z.  Z is odd if the 
least significant bit is 1.  Z is right-shifted by one bit at 
each step to divide by two.  Note that the least 
significant bit of Zj must be computed before it can be 
right-shifted into the most significant position of Zj-1 
on the jth step of the inner loop.  This is a critical 
limitation of the algorithm. 



Observe that the only dependency in the outer 
loop is that Zj for iteration i must be known before Zj 
for iteration i+1 can be computed.  A hardware 
implementation of the Tenca-Koç algorithm unrolls 
the outer loop to use a pipelined kernel of p w-bit 
processing elements (PEs).  Each PE contains two w-
bit adders and two banks of w AND gates to add xi×Yj 
and odd×Mj to Zj and registers to hold the results.  A 
PE must wait two cycles to kick off after its 
predecessor until Z0 is available because Z1 must first 
be computed and shifted.  In one kernel cycle, p bits of 
x are processed.  Hence k = n/p kernel cycles are 
required to do the entire computation.  We will assume 
for simplicity that n is divisible by p and w; this is 
usually true because all three parameters are typically 
powers of 2. 

Figure 3 shows a block diagram of the scalable 
Montgomery multiplier.  The kernel contains p w-bit 
PEs for a total of wp bit cells.  Z is stored in carry-save 
redundant form.  If PE p completes Z0 before PE1 has 
finished Ze-1, the result must be queued until PE1 
becomes available again.  The design in [5] queues the 
results in redundant form, requiring 2w bits per entry.  
For large n the queue consumes significant area, so we 
propose converting Z to nonredundant form to save 
half the queue space, as shown in Figure 4.  On the 
first cycle, Z is initialized to 0.  When no queuing is 
needed, the carry-save redundant Z’ is bypassed 
directly to avoid the latency of the carry-propagate 
adder.  The nonredundant Z result is also an output of 
the system. 

Figure 5 shows a design of the processing 
element.  It uses 2w carry-save adders and 2-input 
AND gates, a 2:1 multiplexer, and 4w+5 register bits.  
The odd parity of the least-significant word of Z is 
stored to determine whether M should be added.  On 
each cycle, Z is right-shifted so that the most 
significant bit of the previous word becomes the least 
significant bit of the next word. 

Figure 6 shows a pipeline diagram of the Tenca-
Koç architecture indicating which bits are processed 
on each cycle.  There are two dependencies for PE1 to 
begin a kernel cycle, indicated by the gray arrows: 
PE1 must be finished with the previous cycle, and the 
Zw-1:0 result of the previous kernel cycle must be ready 
at PE p.  We assume that there is a two-cycle latency 
to bypass the result from PE p to account for the FIFO 
and routing.  The computation time in clock cycles is 

( )
( 1) 2( 1) 2 1 (Case I)

2 1 2 2 1 (Case II)
k e p e p
k p e e p

+ + − > −
+ + − ≤ −

 

The first case corresponds to a large number of 
words.  Each kernel cycle requires e+1 clock cycles 
for the first PE to handle one bit of X.  The output of 
PE p must be queued until the first PE is ready again.   

FIFO

0
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Mem

X Mem
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Figure 3.  Scalable Montgomery multiplier 
architecture 
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There are k kernel cycles.  Finally, 2(p-1) cycles are 
required for the subsequent PEs to complete on the last 
kernel cycle. 

The second case corresponds to lower precision 
where a small number of words are necessary.  Each 
kernel cycle takes 2p clock cycles before final PE 
produces its first word and one more cycle to bypass 
the result back.  k kernel cycles are needed.  Finally e-
2 cycles are required to obtain the more significant 
words at the end of the final kernel cycle.   

In other words, if there are relatively few small 
PEs, the latency is approximately ke = n2/wp, so the 
area-delay product is n2; the design is efficient.  On the 
other hand, if there are many PEs or the PEs are too 
wide (wp exceeding approximately n/2), the latency is 
approximately 2kp = 2n and the area-delay product is 
2nwp > n2.  When large amounts of hardware are 
available, the minimum latency is a factor of two 
worse than the simple radix-2 design.  In the next 
section, we will see how to improve the latency. 
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Figure 6.  Tenca-Koç pipeline diagram Figure 7.  Improved pipeline diagram

4. Improved Scalable Architecture 

The fundamental problem with the Tenca-Koç 
architecture is the two-cycle latency from one PE to 
the next caused by waiting to right shift 1

0Z  into 0
1wZ −  

before processing 0Z .  Instead, we propose to begin 
operating on the least significant bits of Z as soon as 
they are available.  Rather than right-shifting Z, we 
left-shift Y and M at each step.  Now, each PE can 
begin immediately after its predecessor.  At the end of 
each kernel cycle, p/w additional cycles are necessary 
to complete the most significant words rather than the 
single cycle previously used to handle overflow.  For 
convenience, we assume that p is a multiple of w. 

Figure 7 shows a pipeline diagram for the 
improved scalable Montgomery multiplier.  The bits 
with negative indices are insignificant trailing zeros.  
Each of the first k-1 kernel cycles takes max(e, p) + 
p/w + 1 clock cycles before the next can begin (cases I 
and II, respectively).  The final kernel cycle takes e + 
p + p/w cycles to produce the last word.  In case I, the 
system is still limited by the time for PE1 to complete 
and the latency is only slightly better.  In case II, the  

system is limited by the time for PE p to complete and 
speeds up significantly.  Substituting kp/w = e, the 
latencies simplify to 

( )( )
( )
1 1 2 (Case I)

1 2 1 (Case II)
k e p e p
k p e e p
+ + + − >

+ + − ≤
  

Again, for Case I the latency simplifies to 
approximate n2/wp so the area-delay product is n2.  In 
case II, the latency is approximately n so the area-
delay product is nwp, which is ideal.  Both the latency 
and area-delay product improve by a factor of two.  

The overall architecture is unchanged from Figure 
3; the differences lie in the shifting done by the PEs 
and the timing from the sequence controller.  Figure 8 
shows a schematic of the improved w-bit processing 
element.  It contains the same critical path and amount 
of hardware as the Tenca-Koç design. 

 
5. Results 

Table 1 lists the cycle count for various choices of 
w, p, and n for the Tenca-Koç and improved 
multipliers.  For operand precisions n up to the 
number of bit cells wp, the new design is about twice  
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as fast.  For larger operands, the two designs are 
comparable.  Selecting w = p gives a good balance for 
latency, but large w leads to a long CPA delay in the 
result adder (although this delay could be pipelined).  
Hence, we evaluate designs with w = 16. 

The improved design was coded in Verilog 
parameterized by p and w.  It was verified against a C 
reference based on the simple radix-2 algorithm of 
Figure 1.  It was synthesized using Synplify Pro 
targeting a Xilinx Virtex-II speed grade 6 XC2V250-6  
FPGA [11].  The results were not verified on an actual 
chip. Each PE has 4w + 6 flip-flops and 5w + 1 4-input 
lookup tables (LUTs).  The sequencer is designed with 
16-bit counters to handle e and k up to 215.  The 
sequencer accounts for another 53 flip-flops and 95 
LUTs.  The final CPA and queue control logic 
contains 64 flip-flops and 90 LUTs.  RAMs for the 
input and output operands and queue depend on the 
operand precision and are not considered, but would 
add approximately 4n bits of storage for X, Y, M, and 
Z, and n-wp bits for the queue. 

Putting this all together, the complete 16×16 
Montgomery multiplier contains 1233 flip-flops and 
1514 LUTs including buffers and taking advantage of 
optimization across modules.  A 64×16 Montgomery 
multiplier contains 4466 flip-flops and 5598 LUTs.  
Both designs operate at a worst-case 6.9 ns clock 
period, limited by the 16-bit counter in the sequencer. 

n-bit modular exponentiation requires at most 2n 
+ 2 modular multiplications including the conversion 
to and from M-residues.  Table 2 compares the time 
for 256-bit and 1024-bit exponentiation using various 
recent hardware and software implementations.  For 
reference, a CLB in a Xilinx 4000XV-series chip 
contains 32 bits of RAM or two flip-flops and two 
LUTs. 

The improved scalable design is significantly 
faster than the Tenca-Koç design because of both the 
architecture and the faster clock rate.  It appears to be 
comparable in performance and to use less hardware 
than the nonscalable radix-2 systolic design of Blum 
[12].  However, Blum’s radix-16 nonscalable design 
[6] is faster because it processes four times as many 

bits of X per cycle per PE using 1.5x as much 
hardware.  This suggests that it would be interesting to 
further investigate higher-radix scalable designs, 
although [13, 14] did not achieve as dramatic an area-
delay improvement. 

Mukaida [7] uses an entirely different approach 
based on a large multiplier for GF(p).  The approach 
scales to multiple word lengths by reusing the 
multiplier, but does not support GF(2n).  The paper 
does not report times for modular exponentiation, but 
it appears to be extremely fast at generating digital 
signatures. 

A 16×16 Montgomery multiplier has also been 
simulated in a 90 nm process using VDD = 1.2 V [15]. 
Static circuits with high Vt devices are used 
exclusively.  The clock frequency of 2.4 GHz is 
limited by the critical path through the 16-bit CPA.  If 
this were pipelined, the limiting path through the bit 
cell operates at 3.2 GHz.  The kernel has an area of 
354 µm × 146 µm based on a trial layout.  The 
complete unit draws 69 mW on a random test case, of 
which 23 mW is leakage power. 

 
6. Conclusion 

This paper has described an improvement on the 
Tenca-Koç unified scalable radix-2 Montgomery 
multiplier.  The design left-shifts the input operands 
rather than right-shifting the result to reduce the 
latency by nearly a factor of two for operand 
precisions up to the size of the array.  It also converts 
intermediate results to nonredundant form to cut the 
queue memory requirement in half. The proposed 
multiplier has been synthesized for a Xilinx Virtex-II 
FPGA.  It is the fastest scalable unified design 
reported in the literature. 

This work might be extended to higher radix 
multipliers.  It would also be useful to better 
understand the tradeoffs between architectures with a 
large number of bit cells and those with a large 
conventional multiplier array using reduction steps 
from [3]. 
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Table 1.  Montgomery multiplier latencies (clock cycles) 

Bit 
cells  

w p n e k Tenca-
Koç 

This 
work 

% 
Improvement 

256 32 8 550 327 41 
512 64 16 1102 1135 -3 
1024 128 32 4190 4287 -2 

8 32 

2048 256 64 16510 16735 -1 
256 16 16 542 303 44 
512 32 32 1086 1103 -2 
1024 64 64 4190 4239 -1 

256 

16 16 

2048 128 128 16542 16655 0 
256 32 2 544 321 41 
512 64 4 1090 643 41 
1024 128 8 2182 1287 41 

8 128 

2048 256 16 4366 4495 -3 
256 16 4 530 291 45 
512 32 8 1062 583 45 
1024 64 16 2126 1167 45 

16 64 

2048 128 32 4254 4319 -2 
256 8 8 526 279 47 
512 16 16 1054 559 47 
1024 32 32 2110 1119 47 

1024 

32 32 

2048 64 64 4222 4255 -1 

 

Table 2.  Comparison of modular exponentiation times 

Description Technology Hardware  Clock 
Speed 

Scalable / 
Unified 

Source 256-bit  
time (ms) 

1024-bit  
time (ms) 

Improved 16 PEs 
x 16 bits 

Xilinx Virtex Pro  1514 LUTs 
+ ~5n bits 
RAM 

144 MHz Yes / Yes This work 1.1 59 

Improved 64 PEs 
x 16 bits 

Xilinx Virtex Pro  5598 LUTs 
+ ~5n bits 
RAM 

144 MHz Yes / Yes This work 1.0 16 

Tenca-Koç  
40 PEs x 8 bits 

0.5 µm CMOS 
synthesized 

28 Kgates 
(kernel 
only) 

80 MHz Yes / Yes [5] 3.8 88.2 

Scalable radix 8 
16 PEs x 16 bits 

0.5 µm CMOS 
synthesized 

28 Kgates 64 MHz Yes / No [14] 1.6 46 

Scalable high 
radix 

0.5 µm CMOS 
estimated 

33 Kgates 
(estimated) 

44 MHz Yes / Yes [13] 1.8 82 

32-bit ARM 
processor 

 n/a 80 MHz Yes / No [5, 3] 21.8 117 

Systolic Radix-2 
256-bit  

Xilinx 
XC40150XV-08 

1307 CLBs 57 MHz No / No [12] 2.4 n/a 

Systolic Radix-2 
1024-bit  

Xilinx 
XC40150XV-08 

4865 CLBs 52 MHz No / No [12] n/a 40.0 

Systolic Radix-
16 256-bit  

Xilinx 
XC40150XV-08 

1818 CLBs 47 MHz No / No [6] 0.73 n/a 

Systolic Radix-
16 1024-bit  

Xilinx 
XC40250XV-09 

6633 CLBs 45 MHz No / No [6] n/a 12.0 
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