

An Improved Unified Scalable Radix-2 Montgomery Multiplier

 David Harris Ram Krishnamurthy, Mark Anders, Sanu Mathew, and Steven Hsu
 Harvey Mudd College Intel Circuits Research Laboratory
 David_Harris@hmc.edu Ram.Krishnamurthy@intel.com

Abstract

This paper describes an improved version of the
Tenca-Koç unified scalable radix-2 Montgomery
multiplier with half the latency for small and moderate
precision operands and half the queue memory
requirement. Like the Tenca-Koç multiplier, this
design is reconfigurable to accept any input precision
in either GF(p) or GF(2n) up to the size of the on-chip
memory. An FPGA implementation can perform
1024-bit modular exponentiation in 16 ms using 5598
4-input lookup tables, making it the fastest unified
scalable design yet reported.

1. Introduction

Multiplication in a finite field is essential to many
encryption algorithms including RSA, Diffie-Hellman
key exchange, the Digital Signature Algorithm, and
elliptic curve cryptography [1]. The two common
finite Galois fields are GF(2n), used for elliptic curves,
and GF(p), used for most other algorithms.
Multiplication in a prime field GF(p) is performed
modulo some prime p. Multiplication in a binary
extension field GF(2n) is performed modulo some
irreducible polynomial f(x) of degree n. It is
implemented identically to GF(p) except that carries
are not propagated. Therefore addition reduces to the
XOR operation.

Cryptographic computations are time-consuming
because they operate on precisions of 256 to 2048 or
more bits and require large numbers of multiplications
to perform exponentiation. The Montgomery
multiplication algorithm [2] is commonly used
because it avoids division by the modulus. Many
software and hardware implementations of
Montgomery multiplication have been proposed.
Software uses repeated multiplication and addition
instructions [3, 4]. Radix-2 hardware designs operate
in a word-serial fashion with addition as the basic
operation [5]. Higher-radix designs use fewer cycles

at the expense of requiring multiplications or
memories containing precomputed multiples [6, 7, 8].
Hardware designs are said to be scalable if they can
work on variable precision limited only by memory
capacity. They are unified if they handle both GF(p)
and GF(2n) on the same array [9].

This paper proposes an improvement on the
Tenca-Koç scalable unified radix-2 Montgomery
multiplier [5] with half the latency for small and
moderate-precision operands. The paper begins by
reviewing Montgomery multiplication and the Tenca-
Koç algorithm. It then describes how to left-shift
input operands rather than right-shift results to avoid a
bottleneck waiting for the most significant bit of each
result word. The queue size is also cut in two by
converting results to nonredundant format before
storing them. Delay, area, and power results for a
Verilog implementation synthesized to a Xilinx FPGA
are discussed.

2. Montgomery Multiplication

We would like to compute Z = X × Y mod M,
where the operands have n bits of precision and M is
an odd number in the range 2n-1 < M < 2n. In GF(p), M
is the prime p. In GF(2n), M is a binary representation
of an irreproducible polynomial and carries are not
propagated between columns in the multiplication.
The modulo operation is expensive because it involves
division.

Montgomery [2] observed that the divisions can
be converted into simple shifts if multiplication is
instead performed on so-called Montgomery residues
(M-residues). The M-residue of an integer a (0 = a <
M) is defined to be moda ar M= where r = 2n. For
example, if r = 16 and M = 11, then we see
3 3 16 mod 11 4= × = . There is an isomorphism
between integers in this range and their Montgomery
residues.

The modular multiplicative inverse b-1 of an
integer b is that number such that bb-1 mod M = 1. For

example, if r = 16 and M = 11, then r-1 = 9 because rr-1
= 16×9 mod 11 = 1. Montgomery multiplication
(MM) of residues is defined as

1(,) modz MM x y xyr M−= =
Observe that

1 1mod mod
() mod mod

z xyr M xryrr M
xy r M zr M

− −= =
= =

so the Montgomery product of two Montgomery
residues is the Montgomery residue of the product of
the two corresponding integers.

It may not be immediately obvious that
multiplying by r-1 mod M is an easier problem than
simply multiplying mod M. However, there is a
simple Radix-2 algorithm for doing so, given in Figure
1. This algorithm computes S = MM(X, Y) = XYr-1

mod M. It uses n steps, as in a word-serial
multiplication algorithm. On step i, it adds the Y to the
running sum if the ith bit of X (xi) is true. Also on
each step, it divides by two. If the running sum was
odd, it first adds M so the result can be divided by two
without loss of information. This is permissible
because adding M mod M does not change the result.
After n steps of dividing by two, the algorithm has
divided by r = 2n. The algorithm might produce a
result as large as 2M-1, so it concludes by subtracting
M if necessary to restore the result to the legal range.
The final subtraction can be avoided for repetitive
multiplications used in exponentiation [10], so we will
ignore it through the rest of this paper. In summary,
the algorithm computes the Montgomery product
using only 2n n-bit additions and n one-bit right shifts,
which is substantially simpler than conventional
modular multiplication with division.

Conversion to and from M-residues is
accomplished using Montgomery multiplication:

2 2 1

1 1

(,) mod mod

(,1) 1 mod 1 mod

x MM x r xr r M xr M

x MM x x r M xr r M x

−

− −

= = =

= = = =

Note that r2 mod M should be precomputed to
make this efficient; this is easy for cryptographic
systems that change M infrequently.

Now a long sequence of multiplications, like
those required in exponentiation, can be performed by
converting the operands to M-residues, performing
Montgomery multiplications, and converting the result
back to an integer.

Z is commonly stored in carry-save redundant
format for fast addition. In a unified design, we use a
modified carry-save adder that forces the carry to zero
when operating in GF(2n) [9]. Define a bit cell to
perform addition for one bit of the partial product of xi
and yj. In a typical design, a bit cell would contain
two full adders, two AND gates, and some registers, as

Z = 0
for i = 0 to n-1
 Z = Z + xi × Y
 if Z is odd then Z = Z + M
 Z = Z/2
if Z = M then Z = Z – M

Figure 1. Simple radix-2 Montgomery
multiplication algorithm

Z = 0
for i = 0 to n-1

Ca = Cb =0
 for j = 0 to e

(Ca,Zj) = Ca + xi × Yj + Zj
if (j == 0) odd = z0
if odd then

(Cb,Zj) = Cb + Mj + Zj
()1 1

0 1:1,j j j
wZ Z Z− −

−=

Figure 2. Tenca-Koç multiple word radix-2
Montgomery multiplication algorithm

will be shown later in Figures 5 and 8. Assume the bit
cell requires a full cycle to operate. We will compare
the number of bit cells and the number of cycles
required by various algorithms. The Radix-2
Montgomery Multiplication Algorithm uses n bit cells
and n cycles so its area-delay product is n2.

3. The Tenca-Koç Algorithm

The algorithm of Figure 1 requires an adder with
a precision of n so it is not scalable to different values
of n. Tenca and Koç present a multiple word radix-2
Montgomery multiplication algorithm that uses
hardware with a fixed word width w [5]. We will
review this algorithm and its performance before
describing how to improve it. For n = ew, the
hardware is reused e times. Let M = (M(e-1), …, M1,
M0), Y = (Y(e-1), …, Y1, Y0), Z = (Z(e-1), …, Z1, Z0), X =
(xn-1, …, x1, x0), where words are indicated with
superscripts and bits with subscripts. M, Y, and Z are
zero-extended to e+1 words to avoid overflow.

The algorithm is given in Figure 2. The outer
loop iterates over all n bits of X. The inner loop
iterates over e+1 words of M, Y, and Z. Z is odd if the
least significant bit is 1. Z is right-shifted by one bit at
each step to divide by two. Note that the least
significant bit of Zj must be computed before it can be
right-shifted into the most significant position of Zj-1
on the jth step of the inner loop. This is a critical
limitation of the algorithm.

Observe that the only dependency in the outer
loop is that Zj for iteration i must be known before Zj
for iteration i+1 can be computed. A hardware
implementation of the Tenca-Koç algorithm unrolls
the outer loop to use a pipelined kernel of p w-bit
processing elements (PEs). Each PE contains two w-
bit adders and two banks of w AND gates to add xi×Yj
and odd×Mj to Zj and registers to hold the results. A
PE must wait two cycles to kick off after its
predecessor until Z0 is available because Z1 must first
be computed and shifted. In one kernel cycle, p bits of
x are processed. Hence k = n/p kernel cycles are
required to do the entire computation. We will assume
for simplicity that n is divisible by p and w; this is
usually true because all three parameters are typically
powers of 2.

Figure 3 shows a block diagram of the scalable
Montgomery multiplier. The kernel contains p w-bit
PEs for a total of wp bit cells. Z is stored in carry-save
redundant form. If PE p completes Z0 before PE1 has
finished Ze-1, the result must be queued until PE1
becomes available again. The design in [5] queues the
results in redundant form, requiring 2w bits per entry.
For large n the queue consumes significant area, so we
propose converting Z to nonredundant form to save
half the queue space, as shown in Figure 4. On the
first cycle, Z is initialized to 0. When no queuing is
needed, the carry-save redundant Z’ is bypassed
directly to avoid the latency of the carry-propagate
adder. The nonredundant Z result is also an output of
the system.

Figure 5 shows a design of the processing
element. It uses 2w carry-save adders and 2-input
AND gates, a 2:1 multiplexer, and 4w+5 register bits.
The odd parity of the least-significant word of Z is
stored to determine whether M should be added. On
each cycle, Z is right-shifted so that the most
significant bit of the previous word becomes the least
significant bit of the next word.

Figure 6 shows a pipeline diagram of the Tenca-
Koç architecture indicating which bits are processed
on each cycle. There are two dependencies for PE1 to
begin a kernel cycle, indicated by the gray arrows:
PE1 must be finished with the previous cycle, and the
Zw-1:0 result of the previous kernel cycle must be ready
at PE p. We assume that there is a two-cycle latency
to bypass the result from PE p to account for the FIFO
and routing. The computation time in clock cycles is

()
(1) 2(1) 2 1 (Case I)

2 1 2 2 1 (Case II)
k e p e p
k p e e p

+ + − > −
+ + − ≤ −

The first case corresponds to a large number of
words. Each kernel cycle requires e+1 clock cycles
for the first PE to handle one bit of X. The output of
PE p must be queued until the first PE is ready again.

FIFO

0
YM

Mem

X Mem

PE1 PE2 PE3 PE p

Sequence
Control

Result

Z

M
Y

x

Kernel

Z’

Figure 3. Scalable Montgomery multiplier
architecture

Z’ Z

Result

FIFO
(0 or more words)

firs
tcyc

le

bypas
s

1x0

01
00w w

sum

carry C
P

A

Figure 4. Improved queue design

3:2 C
S

A

3:2 C
S

A

(w)

Cin

Cb

x i

odd

Zw-1:0

Mw-1:0
Yw-1:0

Zw-1:0

Yw-1:0

Mw-1:0

Ca

Cout

Ci n

Cout

reset

(w)

Z0

Zw-1

Z0

Figure 5. PE schematic

There are k kernel cycles. Finally, 2(p-1) cycles are
required for the subsequent PEs to complete on the last
kernel cycle.

The second case corresponds to lower precision
where a small number of words are necessary. Each
kernel cycle takes 2p clock cycles before final PE
produces its first word and one more cycle to bypass
the result back. k kernel cycles are needed. Finally e-
2 cycles are required to obtain the more significant
words at the end of the final kernel cycle.

In other words, if there are relatively few small
PEs, the latency is approximately ke = n2/wp, so the
area-delay product is n2; the design is efficient. On the
other hand, if there are many PEs or the PEs are too
wide (wp exceeding approximately n/2), the latency is
approximately 2kp = 2n and the area-delay product is
2nwp > n2. When large amounts of hardware are
available, the minimum latency is a factor of two
worse than the simple radix-2 design. In the next
section, we will see how to improve the latency.

K
er

ne
l C

yc
le

 1

Case I: e > 2p-1
e = 4, p = 2

Case II: e < 2p-1
e = 4, p = 4

tim
e

space
PE1 PE2

1 x
0

x1

x0

x1

x0

x
1

x0

x1

x3

x3

x
3

x3

x2

x2

x2

x
2

2

3

4

5

6

7

8

9

10

11

12

13

K
er

ne
l C

yc
le

 2

PE1 PE2 PE3 PE4

Kernel Stall

MY w-1:0
Zw-2:-1

MY 2w-1:w
Z2w-2:w-1

MY 3w-1:2w
Z 3w-2:2w-1

MY
4w-1:3w

Z 4w-2:3w-1

MY w-1:0
Zw-2:-1

MY 2w-1:w
Z

2w-2:w-1

MY
3w-1:2w

Z 3w-2:2w-1

MY 4w-1:3w
Z 4w-2:3w-1

MY
w-1:0

Zw-2:-1

MY2w-1:w
Z2w-2:w-1

MY3w-1:2w
Z3w-2:2w-1

MY4w-1:3w
Z

4w-2:3w-1

MYw-1:0
Zw-2:-1

MY
2w-1:w

Z2w-2:w-1

MY3w-1:2w
Z3w-2:2w-1

MY4w-1:3w
Z4w-2:3w-1

x1
MY5w-1:4w
Z

5w-2:4w-1

x
0

MY 5w-1:4w
Z 5w-2:4w-1

x3

MY
5w-1:4w

Z5w-2:4w-1

x2
MY 5w-1:4w
Z 5w-2:4w-1

x
0

x0

x0

x0

MY w-1:0
Zw-2:-1

MY2w-1:w
Z2w-2:w-1

MY3w-1:2w
Z3w-2:2w-1

MY
4w-1:3w

Z4w-2:3w-1

x
0

MY5w-1:4w
Z5w-2:4w-1

MY w-1:0
Zw-2:-1

MY
2w-1:w

Z2w-2:w-1

MY 3w-1:2w
Z3w-2:2w-1

MY 4w-1:3w
Z4w-2:3w-1

MY 5w-1:4w
Z

5w-2:4w-1

MYw-1:0
Zw-2:-1

MY2w-1:w
Z2w-2:w-1

MY 3w-1:2w
Z

3w-2:2w-1

MY
4w-1:3w

Z4w-2:3w-1

MY 5w-1:4w
Z5w-2:4w-1

MYw-1:0
Z

w-2:-1

MY
2w-1:w

Z2w-2:w-1

MY 3w-1:2w
Z3w-2:2w-1

MY 4w-1:3w
Z4w-2:3w-1

MY 5w-1:4w
Z

5w-2:4w-1

x1

x
2

x3

x1

x2

x3

x
1

x2

x
3

x1

x2

x3

x1

x
2

x3

x0

x0

x0

x
0

MY w-1:0
Zw-2:-1

MY2w-1:w
Z

2w-2:w-1

MY
3w-1:2w

Z3w-2:2w-1

MY4w-1:3w
Z4w-2:3w-1

x0
MY5w-1:4w
Z5w-2:4w-1

MY
w-1:0

Zw-2:-1

MY 2w-1:w
Z2w-2:w-1

MY 3w-1:2w
Z3w-2:2w-1

MY 4w-1:3w
Z4w-2:3w-1

MY
5w-1:4w

Z
5w-2:4w-1

MYw-1:0
Zw-2:-1

MY2w-1:w
Z2w-2:w-1

MY
3w-1:2w

Z
3w-2:2w-1

MY 4w-1:3w
Z4w-2:3w-1

MY 5w-1:4w
Z5w-2:4w-1

MY
w-1:0

Z
w-2:-1

MY 2w-1:w
Z2w-2:w-1

MY 3w-1:2w
Z3w-2:2w-1

MY 4w-1:3w
Z4w-2:3w-1

MY
5w-1:4w

Z
5w-2:4w-1

x1

x2

x3

x
1

x2

x3

x1

x2

x3

x1

x2

x
3

x1

x2

x3

K
er

ne
l C

yc
le

 1
K

er
ne

l C
yc

le
 2

14

15

16

17

18

19

20

K
er

ne
l C

yc
le

 1

Case I: e > p
e = 4, p = 2

Case II: e < p
e = 4, p = 4

tim
e

space
PE1 PE2

1 MYw-1:0
Zw-2:-1

x0

MYw-2:-1
Zw-3:-2

x1
MY2w-1:w
Z2w-2:w-1

x0

MY2w-2:w-1
Z 2w-3:w-2

x1
MY3w-1:2w
Z 3w-2:2w-1

x0

MY3w-2:2w-1
Z3w-3:2w-2

x1
MY4w-1:3w
Z 4w-2:3w-1

x0

MY4w-2:3w-1
Z4w-3:3w-2

x1

x3

x3

x
3

x3

x2

x2

x2

x
2

2

3

4

5

6

7

8

9

10

11

12

13

K
er

ne
l C

yc
le

 2

K
er

ne
l C

yc
le

 1

PE1 PE2

x0

x1x0

x1x0

x1x0

x1

MYw-3:-2
Zw-4:-3

x2

MY2w-3:w-2
Z2w-4:w-3

x2

MY3w-3:2w-2
Z3w-4:2w-3

x2

MY4w-3:3w-2
Z4w-4:3w-3

x2

MYw-4:-3
Zw-5:-4

x3

MY2w-4:w-3
Z2w-5:w-4

x3

MY3w-4:2w-3
Z3w-5:2w-4

x3

MY4w-4:3w-3
Z4w-5:3w-4

x3

PE3 PE4

K
er

ne
l C

yc
le

 2

x4

x5x4

x
4

x4

x
6

x7

Kernel StallMYw-1:0
Zw-2:-1

MYw-2:-1
Zw-3:-2

MY2w-1:w
Z2w-2:w-1

MY2w-2:w-1
Z 2w-3:w-2

MY3w-1:2w
Z 3w-2:2w-1

MY
3w-2:2w-1

Z
3w-3:2w-2

MY
4w-1:3w

Z
4w-2:3w-1

MY4w-2:3w-1
Z4w-3:3w-2

MYw-1:0
Z w-2:-1

MYw-2:-1
Zw-3:-2

MY2w-1:w
Z2w-2:w-1

MY2w-2:w-1
Z2w-3:w-2

MY3w-1:2w
Z3w-2:2w-1

MY3w-2:2w-1
Z3w-3:2w-2

MY4w-1:3w
Z4w-2:3w-1

MY4w-2:3w-1
Z4w-3:3w-2

MYw-1:0
Z w-2:-1

MYw-2:-1
Zw-3:-2

MY2w-1:w
Z2w-2:w-1

MY
2w-2:w-1

Z
2w-3:w-2

MY
3w-1:2w

Z
3w-2:2w-1

MY3w-2:2w-1
Z 3w-3:2w-2

MY4w-1:3w
Z4w-2:3w-1

MY4w-2:3w-1
Z4w-3:3w-2

MY
w-3:-2

Z
w-4:-3

MY2w-3:w-2
Z2w-4:w-3

MY3w-3:2w-2
Z3w-4:2w-3

MY4w-3:3w-2
Z4w-4:3w-3

MYw-4:-3
Zw-5:-4

MY3w-4:2w-3
Z3w-5:2w-4

MY4w-4:3w-3
Z4w-5:3w-4

MY2w-4:w-3
Z2w-5:w-4

x
5

x6

x7

x5

x6

x7

x5

x6

x7

MY5w-1:4w
Z 5w-2:4w-1

x0

MY5w-2:4w-1
Z5w-3:4w-2

x1

14

MY5w-1:4w
Z 5w-2:4w-1

x2

MY5w-2:4w-1
Z5w-3:4w-2

x3

x0

MY5w-3:4w-2
Z5w-4:4w-3

x2

MY5w-4:4w-3
Z5w-5:4w-4

x3

MY5w-1:4w
Z5w-2:4w-1

x1
MY5w-2:4w-1
Z5w-3:4w-2

x4

MY5w-3:4w-2
Z5w-4:4w-3

x6

MY5w-4:4w-3
Z5w-5:4w-4

x7

MY5w-1:4w
Z5w-2:4w-1

MY5w-2:4w-1
Z5w-3:4w-2

x5

Figure 6. Tenca-Koç pipeline diagram Figure 7. Improved pipeline diagram

4. Improved Scalable Architecture

The fundamental problem with the Tenca-Koç
architecture is the two-cycle latency from one PE to
the next caused by waiting to right shift 1

0Z into 0
1wZ −

before processing 0Z . Instead, we propose to begin
operating on the least significant bits of Z as soon as
they are available. Rather than right-shifting Z, we
left-shift Y and M at each step. Now, each PE can
begin immediately after its predecessor. At the end of
each kernel cycle, p/w additional cycles are necessary
to complete the most significant words rather than the
single cycle previously used to handle overflow. For
convenience, we assume that p is a multiple of w.

Figure 7 shows a pipeline diagram for the
improved scalable Montgomery multiplier. The bits
with negative indices are insignificant trailing zeros.
Each of the first k-1 kernel cycles takes max(e, p) +
p/w + 1 clock cycles before the next can begin (cases I
and II, respectively). The final kernel cycle takes e +
p + p/w cycles to produce the last word. In case I, the
system is still limited by the time for PE1 to complete
and the latency is only slightly better. In case II, the

system is limited by the time for PE p to complete and
speeds up significantly. Substituting kp/w = e, the
latencies simplify to

()()
()
1 1 2 (Case I)

1 2 1 (Case II)
k e p e p
k p e e p
+ + + − >

+ + − ≤

Again, for Case I the latency simplifies to
approximate n2/wp so the area-delay product is n2. In
case II, the latency is approximately n so the area-
delay product is nwp, which is ideal. Both the latency
and area-delay product improve by a factor of two.

The overall architecture is unchanged from Figure
3; the differences lie in the shifting done by the PEs
and the timing from the sequence controller. Figure 8
shows a schematic of the improved w-bit processing
element. It contains the same critical path and amount
of hardware as the Tenca-Koç design.

5. Results

Table 1 lists the cycle count for various choices of
w, p, and n for the Tenca-Koç and improved
multipliers. For operand precisions n up to the
number of bit cells wp, the new design is about twice

3:2
 C

S
A

3:2
 C

S
A

(w)

Cin

Cb

x i

odd

Zw-1:0

Mw-1:0
Yw-1:0

M-1

Zw -2:-1

Yw-2:-1

Mw -2:-1

Mw-1

Ca

Cout

Cin

Cout

reset

(w)

Yw-1

Y-1

Z0

Figure 8. Improved PE schematic

as fast. For larger operands, the two designs are
comparable. Selecting w = p gives a good balance for
latency, but large w leads to a long CPA delay in the
result adder (although this delay could be pipelined).
Hence, we evaluate designs with w = 16.

The improved design was coded in Verilog
parameterized by p and w. It was verified against a C
reference based on the simple radix-2 algorithm of
Figure 1. It was synthesized using Synplify Pro
targeting a Xilinx Virtex-II speed grade 6 XC2V250-6
FPGA [11]. The results were not verified on an actual
chip. Each PE has 4w + 6 flip-flops and 5w + 1 4-input
lookup tables (LUTs). The sequencer is designed with
16-bit counters to handle e and k up to 215. The
sequencer accounts for another 53 flip-flops and 95
LUTs. The final CPA and queue control logic
contains 64 flip-flops and 90 LUTs. RAMs for the
input and output operands and queue depend on the
operand precision and are not considered, but would
add approximately 4n bits of storage for X, Y, M, and
Z, and n-wp bits for the queue.

Putting this all together, the complete 16×16
Montgomery multiplier contains 1233 flip-flops and
1514 LUTs including buffers and taking advantage of
optimization across modules. A 64×16 Montgomery
multiplier contains 4466 flip-flops and 5598 LUTs.
Both designs operate at a worst-case 6.9 ns clock
period, limited by the 16-bit counter in the sequencer.

n-bit modular exponentiation requires at most 2n
+ 2 modular multiplications including the conversion
to and from M-residues. Table 2 compares the time
for 256-bit and 1024-bit exponentiation using various
recent hardware and software implementations. For
reference, a CLB in a Xilinx 4000XV-series chip
contains 32 bits of RAM or two flip-flops and two
LUTs.

The improved scalable design is significantly
faster than the Tenca-Koç design because of both the
architecture and the faster clock rate. It appears to be
comparable in performance and to use less hardware
than the nonscalable radix-2 systolic design of Blum
[12]. However, Blum’s radix-16 nonscalable design
[6] is faster because it processes four times as many

bits of X per cycle per PE using 1.5x as much
hardware. This suggests that it would be interesting to
further investigate higher-radix scalable designs,
although [13, 14] did not achieve as dramatic an area-
delay improvement.

Mukaida [7] uses an entirely different approach
based on a large multiplier for GF(p). The approach
scales to multiple word lengths by reusing the
multiplier, but does not support GF(2n). The paper
does not report times for modular exponentiation, but
it appears to be extremely fast at generating digital
signatures.

A 16×16 Montgomery multiplier has also been
simulated in a 90 nm process using VDD = 1.2 V [15].
Static circuits with high Vt devices are used
exclusively. The clock frequency of 2.4 GHz is
limited by the critical path through the 16-bit CPA. If
this were pipelined, the limiting path through the bit
cell operates at 3.2 GHz. The kernel has an area of
354 µm × 146 µm based on a trial layout. The
complete unit draws 69 mW on a random test case, of
which 23 mW is leakage power.

6. Conclusion

This paper has described an improvement on the
Tenca-Koç unified scalable radix-2 Montgomery
multiplier. The design left-shifts the input operands
rather than right-shifting the result to reduce the
latency by nearly a factor of two for operand
precisions up to the size of the array. It also converts
intermediate results to nonredundant form to cut the
queue memory requirement in half. The proposed
multiplier has been synthesized for a Xilinx Virtex-II
FPGA. It is the fastest scalable unified design
reported in the literature.

This work might be extended to higher radix
multipliers. It would also be useful to better
understand the tradeoffs between architectures with a
large number of bit cells and those with a large
conventional multiplier array using reduction steps
from [3].

Acknowledgments

This work was sponsored by and done at the Intel
Circuit Research Lab, Hillsboro, OR.

Table 1. Montgomery multiplier latencies (clock cycles)

Bit
cells

w p n e k Tenca-
Koç

This
work

%
Improvement

256 32 8 550 327 41
512 64 16 1102 1135 -3
1024 128 32 4190 4287 -2

8 32

2048 256 64 16510 16735 -1
256 16 16 542 303 44
512 32 32 1086 1103 -2
1024 64 64 4190 4239 -1

256

16 16

2048 128 128 16542 16655 0
256 32 2 544 321 41
512 64 4 1090 643 41
1024 128 8 2182 1287 41

8 128

2048 256 16 4366 4495 -3
256 16 4 530 291 45
512 32 8 1062 583 45
1024 64 16 2126 1167 45

16 64

2048 128 32 4254 4319 -2
256 8 8 526 279 47
512 16 16 1054 559 47
1024 32 32 2110 1119 47

1024

32 32

2048 64 64 4222 4255 -1

Table 2. Comparison of modular exponentiation times

Description Technology Hardware Clock
Speed

Scalable /
Unified

Source 256-bit
time (ms)

1024-bit
time (ms)

Improved 16 PEs
x 16 bits

Xilinx Virtex Pro 1514 LUTs
+ ~5n bits
RAM

144 MHz Yes / Yes This work 1.1 59

Improved 64 PEs
x 16 bits

Xilinx Virtex Pro 5598 LUTs
+ ~5n bits
RAM

144 MHz Yes / Yes This work 1.0 16

Tenca-Koç
40 PEs x 8 bits

0.5 µm CMOS
synthesized

28 Kgates
(kernel
only)

80 MHz Yes / Yes [5] 3.8 88.2

Scalable radix 8
16 PEs x 16 bits

0.5 µm CMOS
synthesized

28 Kgates 64 MHz Yes / No [14] 1.6 46

Scalable high
radix

0.5 µm CMOS
estimated

33 Kgates
(estimated)

44 MHz Yes / Yes [13] 1.8 82

32-bit ARM
processor

 n/a 80 MHz Yes / No [5, 3] 21.8 117

Systolic Radix-2
256-bit

Xilinx
XC40150XV-08

1307 CLBs 57 MHz No / No [12] 2.4 n/a

Systolic Radix-2
1024-bit

Xilinx
XC40150XV-08

4865 CLBs 52 MHz No / No [12] n/a 40.0

Systolic Radix-
16 256-bit

Xilinx
XC40150XV-08

1818 CLBs 47 MHz No / No [6] 0.73 n/a

Systolic Radix-
16 1024-bit

Xilinx
XC40250XV-09

6633 CLBs 45 MHz No / No [6] n/a 12.0

References

[1] B. Schneier, Applied Cryptography, New York: John

Wiley, 1996.
[2] P. Montgomery, “Modular multiplication without

trial division,” Math. of Computation, vol. 44, no.
170, pp. 519-521, April 1985.

 [3] Ç. Koç, T. Acar, and B. Kaliski, “Analyzing and
comparing Montgomery multiplication algorithms,”
IEEE Micro, June 1996, pp. 26-33.

[4] B. Phillips and N. Burgess, “Implementing 1024-bit
RSA exponentiation on a 32-bit processor core,”
Proc. IEEE Intl. Conf. Application-Specific Systems,
Architectures, and Processors, pp. 127-137, July
2000.

[5] A. Tenca and Ç. Koç, “A scalable architecture for
modular multiplication based on Montgomery’s
algorithm,” IEEE Trans. Computers, vol. 52, no. 9,
Sept. 2003, pp. 1215-1221.

[6] T. Blum and C. Paar, “High-radix Montgomery
multiplication on reconfigurable hardware,” IEEE
Trans. Computers, vol. 50, no. 7, July 2001, pp. 759-
764.

[7] K. Mukaida, M. Takenaka, N. Torii, and S. Masui,
“Design of high-speed and area-efficient
Montgomery modular multiplier for RSA algorithm,”
IEEE Symp. VLSI Circuits, pp. 320-323, 2004.

[8] A. Tenca and L. Tawalbeh, “An efficient and
scalable radix-4 modular multiplier design using
recoding techniques,” Proc. Asilomar Conf. Signals,
Systems, and Computers, pp. 1445-1450, 2003.

[9] A. Savas, A. Tenca, M. Çiftçibasi, and Ç. Koç,
“Multiplier architectures for GF(p) and GF(2n),” IEE
Proc. Comput. Digit. Techn., vol. 151, no. 2, March
2004, pp. 147-160.

[10] G. Hachez and J. Quisquater, “Montgomery
exponentiation with no final subtractions: improved
results,” Lecture Notes in Computer Science, C. Koç
and C. Paar, eds., vol. 1965, pp. 293-301, 2000.

[11] Xilinx, Virtex-II Pro and Virtex-II Pro X Platform
FPGAs Datasheet, June 30, 2004, www.xilinx.com.

[12] T. Blum and C. Paar, “Montgomery modular
exponentiation on reconfigurable hardware,” Proc.
14th Symp. Computer Arithmetic, pp. 70-77, 1999.

[13] G. Gaubatz, Versatile Montgomery multiplier
architectures, M. S. Thesis, Worcester Polytechnic
Institute, Dept. of Electrical Engineering, April 2002.

[14] G. Todorov, ASIC design, implementation and
analysis of a scalable high-radix Montgomery
multiplier, M. S. Thesis, Oregon State University,
June 2001.

[15] S. Thompson, et al., “A 90 nm logic technology
featuring 50 nm strained silicon channel transistors, 7
layers of Cu interconnects, low k ILD, and 1 µm2
SRAM cell,” Proc. Intl. Electron Device Meeting,
pp. 61-64, Dec. 2002.

