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Abstract - A wide assortment of carry propagate adders offer
varying area-delay tradeoffs.  Wiring and choice of circuit family 
also affect the size and performance. This paper uses the method
of Logical Effort to characterize the effects of architecture, circuit 
family, and wire capacitance on adder delay. Domino logic offers 
about a 30% speedup on most valency-2 adders.  Although Kogge-
Stone adders are fastest in the absence of wire, other architectures
such as variants on the Sklansky adder offer regular layouts and
better delay in the presence of wiring capacitance.

I. INTRODUCTION

Fast adders are widely used in CMOS circuit design.  The 
literature describes many adders including ripple carry, carry 
lookahead, carry select [2], carry skip [12], carry increment [16,
18], Sklansky (conditional sum) [14], Brent-Kung [3], Kogge-
Stone [10], Ladner-Fischer [11], Han-Carlson [7], and Knowles 
[9].  Each architecture offers different tradeoffs between delay, 
area, and wiring complexity.  Analytical delay models help 
designers evaluate these tradeoffs, but simply counting logic
levels is inadequate because circuit delay also depends on 
fanout and wire capacitance.

Huang and Ercegovac [8] used an RC delay model to 
evaluate the effect of architecture and wiring capacitance on the 
Sklansky, Kogge-Stone, and Knowles adder architectures.  The 
method of Logical Effort [15] builds on the RC delay model to 
offer a convenient shorthand for understanding the effects of 
fanout and gate sizing on delay.  Dao and Oklobdzija [5, 6]
applied this method to a few adders and concluded that logical 
effort predicted absolute delays within 5-20% of HSPICE.

This paper applies logical effort to understand the delay of 
eight different adder architectures that can be expressed as 
prefix computations according to the notation of [17].  The 
results show how adder delay depends on the number of inputs, 
the adder architectures, the cost of interconnect, and the circuit 
style.  The model shows that most adder architectures can use 
uniform gate sizes to achieve regular layout with negligible 
performance loss.  An exception is the Sklansky architecture 
that has highly irregular fanouts.  This leads to a proposal for 
“helper” gates to construct very fast adders with regular layouts 
and low wiring cost.

II. LOGICAL EFFORT OF CIRCUIT BUILDING BLOCKS

The three basic building blocks for an adder are the bitwise 
Propagate/Generate (PG) cells, the group PG cells, and the sum 
XORs.  High performance datapath adders often build these 
cells from domino gates while static CMOS is preferable when 

design simplicity and power consumption take precedence over 
utmost performance.

Static CMOS bitwise gates will compute generate as Gi = 
Ai • Bi and propagate as Pi = Ai + Bi. The sum is computed as 

( ) 1:0i i i iS A B G= .  Domino designs require monotonic 
inputs to the sum XOR.  This is best done by calculating bitwise 
and group kill signals (K) and using XOR for propagate so that 
P, G, and K are 1-of-3 hot.

Define the group PG cell input coming from bits i:k as the 
upper input and that from k-1:j as the lower input.  There are 
two types of group PG cells.  Following the notation of [4], we 
call the cells black cells and gray cells.  Black cells compute 
both Gi:j and Pi:j as defined in EQ (3).  Gray cells compute only 
Gi:j.  Black cells are required when the cell output drives the 
upper input of another group PG cell.  The simpler gray cell 
may be used when the output drives only lower inputs or sum 
logic.

Consider four circuit styles: noninverting static CMOS, 
inverting static CMOS, footless domino, and footed domino.
Fig 1 shows the basic cell designs.  Inverting static CMOS gates 
consist of a single stage of logic for each cell (except that the 
final XOR requires an input inverter).  Alternating stages use 
alternating polarities of inputs and outputs.  Black cells contain 
both the group G and P gates while gray cells have only the G
gate.  Noninverting static CMOS gates add an output inverter to 
the bitwise and group static gates.  Therefore, only the AND-
OR and AND functions are required for group G and P,
respectively.  Footless domino gates computing 1-of-3 hot P, G,
and K signals are shown in the second column.  Each consists 
of a dynamic gate followed by an HI-skew inverter.  Keepers 
and secondary precharge transistors are not shown.  The group 
logic is shown for a black cell; a gray cell omits the P output.
In the domino design, 1:0 1:0i iK G=  so monotonic true and 
complementary versions of the carry signals are available at 
each final XOR.  Footed domino gates are identical except for
an extra series clocked evaluation transistor and greater 
transistor widths to compensate.

Transistors are annotated with widths measured in 
arbitrary units so that each pulldown stack has unit effective 
resistance. Table 1 lists the logical effort and parasitic delay of 
each cell input for each circuit family.  The logical effort LE is 
the ratio of the input capacitance of the gate input to the input 
capacitance (3 units) of an inverter with the same unit effective 
resistance.  The parasitic delay PD is estimated by counting the 
total transistor width on the output node, 
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Fig 1  Adder circuit building blocks
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assuming diffusion and gate capacitance are approximately 
equal.  In domino and noninverting static CMOS circuits, the 
output inverter also contributes parasitic delay. LE and PD are 
used in place of the usual symbols g and p to avoid confusion 
with generate and propagate.

Notice that the black cell has four inputs: Gi:k, Gk-1:j, Pi:k,
and Pk-1:j.  These are denoted as the upper and lower generate 
and propagate signals, gu, gl, pu, and pl, respectively, and each 
has a different logical effort.  For inverting static CMOS 
circuits, the logical effort and parasitic delay are the average of 
the two polarities1.

Some paths through the static XOR gate involve only a 
single A22OI stage while others also involve the inverter.  A 
conservative estimate calculates the logical effort for the single 
stage path based on the 9 units of input capacitance on the G
input.  The parasitic delay is largest for the two-stage path, 
consisting of 9/3 for the inverter to drive its own diffusion 
parasitics and gate capacitance of the second stage plus 12/3 for 
the diffusion parasitics on the second stage.

In certain cases, buffers reduce the capacitance presented 
by noncritical forks of the circuit.  Assume these buffers have 
half the drive (twice the resistance) of an ordinary gate and 
hence half the input capacitance.  For the purpose of branching,
the buffers therefore contribute only half the capacitance of a 
gate with comparable logical effort.

1 If all cell sizes are chosen to provide unit drive as will be 
done in Section 4, this gives the correct delay through the path.  If 
some cell sizes are selected for minimum delay, the logical efforts 
should be the geometric means of the efforts of the two polarities.
In this case, the average and geometric mean are nearly identical, 
so the distinction is unimportant.

III. ADDER ARCHITECTURES

Adders are distinguished by the arrangement of cells in the 
group PG logic. Fig 2 shows eight such architectures for N=16.
The upper box contains the bitwise PG logic and the

Table 1  Logical effort and parasitic delay of adder circuit blocks

Cell Term Noninverting
CMOS

Inverting CMOS Footed Domino Footless Domino

LEbit 9/3 9/3 6/3 * 5/6 4/3 * 5/6 Bitwise
PDbit 6/3 + 1 6/3 7/3 + 5/6 5/3 + 5/6 
LEblackgu 5/3 4.5 / 3 1.5/3 * 5/6 1/3 * 5/6 
LEblackgl 6/3 6/3 3/3 * 5/6 2/3 * 5/6 
LEblackpu 10/3 10.5 / 3 3/3 * 5/6 2/3 * 5/6 
LEblackpl 4/3 4.5 / 3 3/3 * 5/6 2/3 * 5/6 
PDblackg 7/3 + 1 7.5 / 3 6/3 + 5/6 4/3 + 5/6 

Black Cell

PDblackp 6/3 + 1 6/3 4/3 + 5/6 3/3 + 5/6 
LEgraygu 5/3 4.5 / 3 1.5/3 * 5/6 1/3 * 5/6 
LEgraygl 6/3 6/3 3/3 * 5/6 2/3 * 5/6 
LEgraypu 6/3 6/3 3/3 * 5/6 2/3 * 5/6 

Gray Cell

PDgray 7/3 + 1 7.5/3 6/3 + 5/6 4/3 + 5/6 
Buffer LEbuf 1 * 1/2 1 * 1/2 2/3 * 5/6 * 

1/2 
1/3 * 5/6 * 
1/2 

LExor 9/3 9/3 3/3 * 5/6 2/3 * 5/6 Sum XOR
PDxor 9/3 + 

12/3 
9/3 + 12/3 7/3 + 5/6 5/3 + 5/6 

lower box contains the sum logic.  In the middle, the prefix tree 
is built from black cells, gray cells, and white buffers.  The 
vertical axis indicates logic level and the critical path is 
indicated with a heavy line.  For example, the ripple carry adder 
in Fig 2a is slow for long additions because the critical path 
propagates through N-1 gray cells.

The critical path of each adder is described in more detail 
in Table 2.  Each row of the table corresponds to the delay of a 
cell.  The delay has three components: an effort delay F based 
on the size of the load, a parasitic delay P based on the cell 
itself, and wire delay based on the length of the horizontal wires 
between cells (measured in columns traversed).  For example, 
the ripple carry adder path begins with inputs coming from a 
previous unit; these inputs see loading from the bitwise PG cells 
(LEbit) but their parasitic delay is not part of the adder delay.
Then the P1 signal is computed and drives the upper propagate 
input of a gray cell.  The generate output of this cell in turn 
drives the lower generate input of the next cell and as well as 
the associated sum XOR.  This repeats N-1 times.  Note that the 
final gray cell must drive both the S16 XOR and the Cout gray 
cell, so the load is the same as on the other gray cells.  Finally, 
the sum XOR contributes a parasitic delay.  The effort delay 
driving the next unit is not counted because an effort delay was 
already allocated on the primary inputs.

Several simplifying assumptions have been made:
• All inputs arrive at the same time with equal drive.
• Only horizontal wires are counted in the wire load.

Vertical wires are assumed to be short enough to 
neglect (or lump into the parasitic gate delay).

• The i iA B term used to compute the final sum is not 
explicitly shown and may use buffered versions of the 
inputs to contribute negligible loading.

• Wires are assumed to be short enough that only 
capacitance must be considered, not wire RC delay.
This assumption is supported by [8].
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Note that in the Brent-Kung and Han-Carlson
architectures there is never more than one black or gray cell per 
pair of bits in any given row.  If pipelining is not required, the 
adder may be condensed to half the width, shortening the 
lateral wires as indicated in the table.

Fig 2  Adder architectures
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In most of the adder architectures, the stage effort is fairly 
constant throughout the adder if wire capacitance is neglected.
We will see that this means uniform gate sizes may be used 
throughout with very little loss in performance.  In the Sklansky 
graph, the fanout increase exponentially along the critical path.
This leads to very poor performance unless cells have greater 
drive.  One means to provide greater drive is to use larger gates 
in specific locations, but this increases the number of cells to 
design and verify and leads to irregular layout.

When trains must climb a steep grade with a heavy load, 
multiple locomotives are linked together.  The extra 
locomotives are called helpers.  In the Sklansky graph, multiple 
cells may be linked together to provide more current to drive 
the large fanouts and long wires.  Four such adders with helpers 
are shown in Fig 3.  Each is based on the Sklansky architecture.
They differ in the number of columns required and the space 
available for buffers in pipelined adders.
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Table 2  Adder critical paths

F P wire repeats notes
LEbit n/a n/a input -> bit 1
LEgraypu PDbit 0 bit 1 -> gray pu
LEgraygl+LExor PDgray 1 k = 1 … N-1 gray-> gray gl + xorR

ip
pl

e
C

ar
ry

n/a PDxor n/a xor -> output

LEbit n/a n/a input -> bit 1 
LEgraygl+LExor PDbit 1 bit 1 -> gray gl and xor
k•LEgraygl+LExor PDgray k

k = 1 .. ~ 2N gray-> many gray gl and xor

LExor PDgray 0 gray-> xorC
ar

ry
In

cr
em

en
t

n/a PDxor n/a xor -> output
LEbit n/a n/a input -> bit 1
LEgraypu PDbit 0 bit 1 -> gray pu
LEgraygl+LEbuf PDgray 2k-1 k = 1 … M - 1 gray-> gray gl + buf
LEgraygl+LEbuf PDbuf 2M-3 buf -> gray gl + buf
LEgraygl+LEbuf PDgray 2M-k-3 k = 1 … M - 2 gray-> gray gl + buf
LExor PDgray 0 gray-> xorBr

en
t-K

un
g

n/a PDxor n/a xor -> output
LEbit n/a n/a input -> bit 1
LEgraypu PDbit 0 bit 1 -> gray pu
LEgraygl+LEbuf PDgray 2k-1 k = 1 … M - 2 gray-> gray gl + buf
2LEgraygl+LEbuf PDgray 2M-2 gray-> 2 gray gl + buf
LEgraygl+LEbuf PDgray 2M-k-3 k = 1 … M - 2 gray-> gray gl + buf
LExor PDgray 0 gray-> xorLa

dn
er

-F
isc

he
r

n/a PDxor n/a xor -> output
LEbit n/a n/a input -> bit 1
LEgraypu PDbit 0 bit 1 -> gray pu
2k•LEgraygl+LEbuf PDgray 2k k = 1 … M - 1 gray-> many gray gl + buf (-> 2k)
LExor + LEgraygl PDgray 1 gray-> xor + coutSk

la
ns

ky

n/a PDxor n/a xor -> output
LEbit n/a n/a input -> bit N/2
LEblackpl + LEblackpu PDbit 1 bit N/2 -> black pu and pl
LEblackpl + LEblackpu PDblackp 2k k = 1 … M - 2 black p -> black pu and pl
LEgraypu PDblackp 2M-1 black p -> gray pu 
LExor PDgray 0 gray-> xorK
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Fig 3  Helper adders
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IV. LOGICAL EFFORT DELAY MODEL

The method of Logical Effort provides a simple method for 
determining a lower bound on critical path delay in circuits 
with negligible wire capacitance.  If the path has M stages, a 
path effort of F, and a parasitic delay of PD, the delay (in )
achieved with best transistor sizes is

1/ M
FD D PD MF PD= + = + (1)

where D is measured in units of , the delay of an ideal inverter 
with no parasitic capacitance driving an identical inverter.
Delay is often normalized to that of a fanout-of-4 inverter with 
the conversion 1 FO4 ˜ 5 .  In a 180 nm process, 1 FO4 ˜ 60
ps.  To illustrate the delay model, consider an N=4-bit ripple 
carry adder.  According to the data from the previous sections 
the least delay is given below.  Note that the inverting design is 
faster because the extra inverters in the noninverting CMOS 
version.

Inverting CMOS:
M = N+1 = 5
F = (LEbit)(LEgraypu)(LEgraygl + LExor)3

= (9/3)(6/3)(6/3 + 9/3)3 = 750
DF = 5(750)1/5 = 18.8 
PD = PDbit + 3PDgray + PDxor

=  (6/3) + 3(7.5/3) + (9/3 + 12/3) = 16.5 
D = 18.8 + 16.5 = 35.3  = 7.1 FO4

Noninverting CMOS:
M = 2(N+1) = 10
F = (LEbit)(LEgraypu)(LEgraygl + LExor)3

= (9/3)(6/3)(6/3 + 9/3)3 = 750
DF = 10(750)1/10 = 19.4 
PD = PDbit + 3PDgray + PDxor

=  (6/3 +1) + 3(7/3 + 1) + (9/3 + 12/3) = 20 
D = 19.4 + 20 = 39.4  = 7.9 FO4

In general, achieving least delay requires using different 
transistor sizes in each gate (although this delay model has 
assumed that all transistors in a branch scale uniformly).  A 
regular layout with consistent transistor sizes in each type of 
cell is easier to build but may sacrifice performance.  Consider 
designing all cells to have an arbitrary unit drive (i.e. output 
conductance).  Define an inverter with unit drive to have unit 
input capacitance.  For circuits with a single stage per cell (e.g. 
inverting static CMOS), the path effort delay is simply the sum 
of the effort delays of each stage:

1

M

F i
i

D f
=

= (2)

The total delay is still the sum of the path effort and
parasitic delays.  In a 4-bit ripple carry adder built from
inverting static CMOS gates the delay is
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Inverting CMOS:
DF = LEbit + LEgraypu + 3(LEgraygl + LExor)

= 9/3 + 6/3 + 3(6/3 + 9/3) = 20 
D = 20 + 16.5 = 36.5  = 7.3 FO4

In a circuit with two stages per cell (e.g. noninverting static 
CMOS or domino), let us design the first stage to have unit 
drive.  Choose the size of the second stage for least delay.  If the 
path has C = M/2 cells and the effort of the ith cell is Fi, the 
path effort delay is

1

2
C

F i
i

D F
=

= (3)

In a 4-bit ripple carry adder built from noninverting static 
CMOS gates the delay is

Inverting CMOS:
2 2 3 2

2 9 / 3 2 6 / 3 3 2 6 / 3 9 / 3
19.7

F bit graypu graygl xorD LE LE LE LE

τ

= + + +

= + + +
=

i

i

D    = 19.7 + 20 = 39.7  = 7.9 FO4

These delays are only slightly slower than ideal, justifying 
the use of a regular layout.  The two-stage cell delay estimate is 
optimistic because in a regular design the second stage size will 
be fixed for each cell.  However, the results from the single-
stage cell estimate suggest the penalty is not large.

Horizontal wires add capacitance to the load of each stage.
Let the wire capacitance be w units per column spanned. w
depends on the width of each column, the width and spacing 
between wires, and the size of a unit transistor; in a trial layout 
in a 180 nm process, w ˜ 0.5.  While there is no closed-form
solution for the minimum-delay problem with wire capacitance, 
the delay assuming fixed cell sizes is readily calculated by 
adding the wire capacitance to the stage effort fi or Fi in EQ (2)
or (3).

V. RESULTS

The adder delays were evaluated using a MATLAB script. 
Table 3 lists delay (in FO4 inverter delays) for various adder 
architectures and widths assuming no wire capacitance and 
inverting static CMOS cells.  It compares the delay achieved 
using best transistor sizes with the delay using uniform cell 
sizes.  Observe that the penalty for uniform cell sizes is small in 
all cases except carry increment and Sklansky (where the 
fanouts vary wildly from one stage to another).  This justifies 
using uniform cell sizes for most adders and for employing 
helpers on the Sklansky architecture to drive the high fanouts.

The remaining results are based on uniform cell sizes.
Table 4 evaluates the effect of adder size by listing the delay of 
inverting static CMOS and footed domino adders assuming 
wiring capacitance w=0.5. Table 5 evaluates the impact of 
effect of circuit family, again assuming w=0.5. Table 6 evaluates 

the impact of wire capacitance on inverting static CMOS 
adders.

The Kogge-Stone, Han-Carlson, and Knowles adders 
require a large number of parallel wiring tracks for wide adders.
This generally entails packing the wires close together, 
increasing the coupling capacitance on each wire.  Huang and 
Ercegovac [8] found this nearly doubles the wire capacitance; 
therefore these architectures may be evaluated using the w=1.0
column of Table 6 compared against the w=0.5 column for 
adders with fewer wires.

The critical paths of most architectures (excluding Kogge-
Stone, Han-Carlson, and Knowles) pass through a series of gray 
cell lower generate inputs.  These adders may be sped up with 
asymmetric gray cells that reduce the logical effort LEgraygl at the 
expense of the other inputs [15]. This provides on average 9% 
speedup on the footed domino circuits, but almost none on the 
static CMOS circuits where noncritical transistors must be 
enlarged to preserve unit drive and thus increase parasitic delay.

VI. CONCLUSIONS

The logical effort model facilitates rapid comparison of a 
wide variety of adder architectures using multiple circuit 
families while accounting for the costs of fanout and 
interconnect.

The Sklansky architecture is slowed by its high fanout 
along the critical path.  This may be addressed at the expense of 
regularity by using larger gates along the path.  The helper 
architectures proposed in this paper gang together multiple cells 
to drive the high fanout nodes while maintaining regularity.
Regular designs with unit drive work well in architectures with 
relatively constant stage efforts, i.e. all except Sklansky and 
carry increment.

In the absence of wiring capacitance, the Kogge-Stone
adder is fastest because of its low number of stages and low 
fanout.  When interconnect is considered, the Han-Carlson and 
helper adders become most attractive.  Han-Carlson requires 
only half the number of columns, while helper adders are 
slightly faster at driving the long wires, especially when 
coupling capacitance is considered.

Fast static CMOS adders have a delay of about 10, 12, 
14.5, and 17 FO4 for 16, 32, 64, and 128-bit widths, 
respectively.  Most adders have a relatively low stage effort so 
the footed domino designs are only about 30% faster than the 
inverting static CMOS architectures because the high drive 
capability of domino is not fully exploited.  This supports the 
use of higher-valency [1] domino designs.  Asymmetric domino 
gates achieve another 9% speedup.  Inverting static CMOS 
gates are also slightly faster than their noninverting 
counterparts except where high fanout capability is needed; 
however, the difference is much smaller than a method of 
“counting logic levels” would predict.

The delays estimated from logical effort are in good 
agreement with the HSPICE results of [1], [5], and [9].
However, the best 64-bit footless domino adder delays of 9-10
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FO4 are still distinctly longer than the 7 FO4 delays achieved 
by the Naffziger domino Ling adder [13].  The differences may 
be attributed to the fact that velocity saturation makes tall 
domino gates slightly faster than simple logical effort models 
predict, the use of valency-4 cells and asymmetric gates biased 
to favor the critical path, and the logic level saved with the Ling 
algorithm. The fraction of the delay attributed to wires is 
important but significantly less than in [8] because this study 
assumed layouts with larger input transistors and a narrower 
column pitch to reduce the impact of wire capacitance.
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Table 3  Adder delays: w=0; inverting static CMOS

Minimum Delay Uniform Cell Size Delay
N = 16 N = 32 N = 64 N = 128 N = 16 N = 32 N = 64 N = 128

Ripple 24.7 48.7 96.7  192.7  25.1 49.1 97.1 193.1 
Increment 13.0 21.7  34.5  59.5  14.3 24.4 40.5 71.6 
B-K 9.4  11.4  13.4  15.4  9.4 11.4 13.4 15.4 
L-F 9.0 11.0  13.0  14.0  9.1 11.1 13.1 15.1 
Sklansky 9.8 13.5  18.9  26.7  11.5 18.5 31.9 58.1 
K-S 7.6 9.0  10.4  11.8  7.9 9.3 10.7 12.1 
H-C 8.8 10.2  11.6  13.0  9.1 10.5 11.9 13.3 
Knowles 8.1 9.5  10.8  12.2  8.2 9.6 11.0 12.4 
Helper 1a 8.7 10.5  12.5  14.4  9.2 11.2 13.2 15.3 
Helper 1b 8.5 10.3  12.2  14.1  8.6 10.5 12.4 14.5 
Helper 1.5 8.5 10.3  12.2  14.1  8.6 10.5 12.4 14.5 
Helper 2 8.2  9.8  11.4  13.1  8.6 10.2 11.8 13.5 

Table 4  Adder delays: w=0.5; uniform cell size

Inverting Static CMOS Footed Domino
N = 16 N = 32 N = 64 N = 128 N = 16 N = 32 N = 64 N = 128

Ripple 26.6  52.2  103.4  205.8  19.9 38.8 76.7 152.4 
Increment 15.7  27.5  46.8  84.3  10.0 16.2 24.9 40.9 
B-K 10.4  13.7  18.1  24.9  9.9 13.0 17.4 24.2 
L-F 9.9  12.9  16.9  22.9  9.0 12.0 16.0 21.9 
Sklansky 13.0  21.6  38.2  70.8  8.8 12.4 18.3 28.2 
K-S 9.4  12.4  17.0  24.8  7.4 10.0 14.1 21.5 
H-C 9.9  12.1  15.1  19.7  7.7 9.4 12.0 16.1 
Knowles 9.7  12.7  17.3  25.1  7.8 10.3 14.5 21.8 
Helper 1a 10.1  12.5  15.0  17.4  7.8 9.4 11.1 12.8 
Helper 1b 9.4  11.6  14.0  16.4  7.5 9.1 10.7 12.4 
Helper 1.5 9.7  12.0  14.6  17.2  7.8 9.5 11.3 13.2 
Helper 2 9.7  11.7  13.7  15.7  7.8 9.3 10.9 12.5 

Table 5  Adder delays: w=0.5; uniform cell size
(1) Inverting CMOS, (2) Noninverting CMOS,

(3) Footed Domino, (4) Footless Domino

N=32 N=64
(1) (2) (3) (4) (1) (2) (3) (4)

Ripple 52.2  54.6  38.8  31.3  103.4 107.7 76.7 61.9 
Increment 27.5  22.1  16.2  13.5   46.8  33.3 24.9 21.1 
B-K 13.7  16.8  13.0  10.7   18.1  21.8 17.4 14.6 
L-F 12.9  15.6  12.0   9.8   16.9  20.2 16.0 13.3 
Sklansky 21.6  16.3  12.4  10.5   38.2  23.4 18.3 15.9 
K-S 12.4  13.4  10.0   8.7   17.0  18.0 14.1 12.7 
H-C 12.1  13.3   9.4   7.9   15.1  16.4 12.0 10.3 
Knowles 12.7  13.6  10.3 8.9  17.3  18.3 14.5 12.9 
Helper 1a 12.5  12.6   9.4   7.7   15.0  14.8 11.1  9.2 
Helper 1b 11.6  12.2   9.1   7.5   14.0  14.4 10.7  8.8 
Helper 1.5 12.0  12.6   9.5   7.9   14.6  14.9 11.3  9.4 
Helper 2 11.7  12.4   9.3   7.7   13.7  14.4 10.9 9.0 

Table 6  Adder delays: inverting static CMOS; uniform cell size

N=64 N = 32
w = 1/4 w = 1/2 w = 3/4 w = 1 w = 1/4 w = 1/2 w = 3/4 w = 1

Ripple 50.6  52.2  53.8  55.3  100.3 103.4 106.6 109.7 
Increment 25.9  27.5  29.1  30.6   43.6  46.8  50.0  53.1 
B-K 12.5  13.7  14.8  15.9   15.7  18.1  20.4  22.7 
L-F 12.0  12.9  13.9  14.8   15.0  16.9  18.9  20.8 
Sklansky 20.1  21.6  23.1  24.7   35.0  38.2  41.4  44.5 
K-S 10.9  12.4  13.9  15.5   13.9  17.0  20.1  23.3 
H-C 11.3  12.1  12.9  13.7   13.5  15.1  16.7  18.3 
Knowles 11.2  12.7  14.3  15.8   14.2  17.3  20.4  23.6 
Helper 1a 11.9  12.5  13.2  13.8   14.1  15.0  15.8  16.7 
Helper 1b 11.1  11.6  12.2  12.8   13.2  14.0  14.7  15.5 
Helper 1.5 11.3  12.0  12.8  13.6   13.5  14.6  15.6  16.7 
Helper 2 10.9  11.7  12.4  13.1   12.7  13.7  14.6  15.5 
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