
Logical Effort of Carry Propagate Adders
David Harris and Ivan Sutherland

Harvey Mudd College / Sun Microsystems Laboratories
301 E. Twelfth St. Claremont, CA 91711

David_Harris@hmc.edu / Ivan.Sutherland@sun.com

Abstract - A wide assortment of carry propagate adders offer
varying area-delay tradeoffs. Wiring and choice of circuit family
also affect the size and performance. This paper uses the method
of Logical Effort to characterize the effects of architecture, circuit
family, and wire capacitance on adder delay. Domino logic offers
about a 30% speedup on most valency-2 adders. Although Kogge-
Stone adders are fastest in the absence of wire, other architectures
such as variants on the Sklansky adder offer regular layouts and
better delay in the presence of wiring capacitance.

I. INTRODUCTION

Fast adders are widely used in CMOS circuit design. The
literature describes many adders including ripple carry, carry
lookahead, carry select [2], carry skip [12], carry increment [16,
18], Sklansky (conditional sum) [14], Brent-Kung [3], Kogge-
Stone [10], Ladner-Fischer [11], Han-Carlson [7], and Knowles
[9]. Each architecture offers different tradeoffs between delay,
area, and wiring complexity. Analytical delay models help
designers evaluate these tradeoffs, but simply counting logic
levels is inadequate because circuit delay also depends on
fanout and wire capacitance.

Huang and Ercegovac [8] used an RC delay model to
evaluate the effect of architecture and wiring capacitance on the
Sklansky, Kogge-Stone, and Knowles adder architectures. The
method of Logical Effort [15] builds on the RC delay model to
offer a convenient shorthand for understanding the effects of
fanout and gate sizing on delay. Dao and Oklobdzija [5, 6]
applied this method to a few adders and concluded that logical
effort predicted absolute delays within 5-20% of HSPICE.

This paper applies logical effort to understand the delay of
eight different adder architectures that can be expressed as
prefix computations according to the notation of [17]. The
results show how adder delay depends on the number of inputs,
the adder architectures, the cost of interconnect, and the circuit
style. The model shows that most adder architectures can use
uniform gate sizes to achieve regular layout with negligible
performance loss. An exception is the Sklansky architecture
that has highly irregular fanouts. This leads to a proposal for
“helper” gates to construct very fast adders with regular layouts
and low wiring cost.

II. LOGICAL EFFORT OF CIRCUIT BUILDING BLOCKS

The three basic building blocks for an adder are the bitwise
Propagate/Generate (PG) cells, the group PG cells, and the sum
XORs. High performance datapath adders often build these
cells from domino gates while static CMOS is preferable when

design simplicity and power consumption take precedence over
utmost performance.

Static CMOS bitwise gates will compute generate as Gi =
Ai • Bi and propagate as Pi = Ai + Bi. The sum is computed as

() 1:0i i i iS A B G= . Domino designs require monotonic
inputs to the sum XOR. This is best done by calculating bitwise
and group kill signals (K) and using XOR for propagate so that
P, G, and K are 1-of-3 hot.

Define the group PG cell input coming from bits i:k as the
upper input and that from k-1:j as the lower input. There are
two types of group PG cells. Following the notation of [4], we
call the cells black cells and gray cells. Black cells compute
both Gi:j and Pi:j as defined in EQ (3). Gray cells compute only
Gi:j. Black cells are required when the cell output drives the
upper input of another group PG cell. The simpler gray cell
may be used when the output drives only lower inputs or sum
logic.

Consider four circuit styles: noninverting static CMOS,
inverting static CMOS, footless domino, and footed domino.
Fig 1 shows the basic cell designs. Inverting static CMOS gates
consist of a single stage of logic for each cell (except that the
final XOR requires an input inverter). Alternating stages use
alternating polarities of inputs and outputs. Black cells contain
both the group G and P gates while gray cells have only the G
gate. Noninverting static CMOS gates add an output inverter to
the bitwise and group static gates. Therefore, only the AND-
OR and AND functions are required for group G and P,
respectively. Footless domino gates computing 1-of-3 hot P, G,
and K signals are shown in the second column. Each consists
of a dynamic gate followed by an HI-skew inverter. Keepers
and secondary precharge transistors are not shown. The group
logic is shown for a black cell; a gray cell omits the P output.
In the domino design, 1:0 1:0i iK G= so monotonic true and
complementary versions of the carry signals are available at
each final XOR. Footed domino gates are identical except for
an extra series clocked evaluation transistor and greater
transistor widths to compensate.

Transistors are annotated with widths measured in
arbitrary units so that each pulldown stack has unit effective
resistance. Table 1 lists the logical effort and parasitic delay of
each cell input for each circuit family. The logical effort LE is
the ratio of the input capacitance of the gate input to the input
capacitance (3 units) of an inverter with the same unit effective
resistance. The parasitic delay PD is estimated by counting the
total transistor width on the output node,

8730-7803-8104-1/03/$17.00 ©2003 IEEE

Fig 1 Adder circuit building blocks

B
itw

ise

Pi:k

Gi:j

Pi:j

Ki:jPk-1:jGk-1:j

Gi:k

Kk-1:j

Ki:k

PiPi'

Gi-1:0

Si_h

Pi

Ki-1:0

Pi'
Si_l

Pi'
Ai_h Ai_l

Bi_h

Gi

Ai_h

Bi_l

Ai_l

Pi

Ki

G
roup

Sum
 XO

R

2 2

2

2

2

2

111

2

1

2 2

1

111

2

2 2

2

2

2

2

11

Gi:k Gk-1:j1 2

2

44

4

Pi:k

Gi:k

Gk-1:j Pi:k

Pi:k

Pk-1:j

2

2

22
Gi:j

Pk-1:jPi:k
Pi:j

22

2

4

4

2

4

4

11

Pk-1:j

Pi:k

Pi:k Pk-1:j

Pi:k

Pi:k

Gk-1:j

Gk-1:j

Gi:k

Gi:k Gi:j Pi:j

2

2

22 4

4

11

Gi

PiAi

Bi

BiAi

Bi

Bi

Ai

Ai

Gi-1:0

Gi-1:0 Gi-1:0
Gi-1:0

Gi-1:0 Gi-1:0

Pi Pi

Pi Pi

Si

4

4

4

4

2

2

2

2

2

1

Inverting Static CMOS Footless Domino

H

H

H

H

H

H

H

H

tiny

assuming diffusion and gate capacitance are approximately
equal. In domino and noninverting static CMOS circuits, the
output inverter also contributes parasitic delay. LE and PD are
used in place of the usual symbols g and p to avoid confusion
with generate and propagate.

Notice that the black cell has four inputs: Gi:k, Gk-1:j, Pi:k,
and Pk-1:j. These are denoted as the upper and lower generate
and propagate signals, gu, gl, pu, and pl, respectively, and each
has a different logical effort. For inverting static CMOS
circuits, the logical effort and parasitic delay are the average of
the two polarities1.

Some paths through the static XOR gate involve only a
single A22OI stage while others also involve the inverter. A
conservative estimate calculates the logical effort for the single
stage path based on the 9 units of input capacitance on the G
input. The parasitic delay is largest for the two-stage path,
consisting of 9/3 for the inverter to drive its own diffusion
parasitics and gate capacitance of the second stage plus 12/3 for
the diffusion parasitics on the second stage.

In certain cases, buffers reduce the capacitance presented
by noncritical forks of the circuit. Assume these buffers have
half the drive (twice the resistance) of an ordinary gate and
hence half the input capacitance. For the purpose of branching,
the buffers therefore contribute only half the capacitance of a
gate with comparable logical effort.

1 If all cell sizes are chosen to provide unit drive as will be
done in Section 4, this gives the correct delay through the path. If
some cell sizes are selected for minimum delay, the logical efforts
should be the geometric means of the efforts of the two polarities.
In this case, the average and geometric mean are nearly identical,
so the distinction is unimportant.

III. ADDER ARCHITECTURES

Adders are distinguished by the arrangement of cells in the
group PG logic. Fig 2 shows eight such architectures for N=16.
The upper box contains the bitwise PG logic and the

Table 1 Logical effort and parasitic delay of adder circuit blocks

Cell Term Noninverting
CMOS

Inverting CMOS Footed Domino Footless Domino

LEbit 9/3 9/3 6/3 * 5/6 4/3 * 5/6 Bitwise
PDbit 6/3 + 1 6/3 7/3 + 5/6 5/3 + 5/6
LEblackgu 5/3 4.5 / 3 1.5/3 * 5/6 1/3 * 5/6
LEblackgl 6/3 6/3 3/3 * 5/6 2/3 * 5/6
LEblackpu 10/3 10.5 / 3 3/3 * 5/6 2/3 * 5/6
LEblackpl 4/3 4.5 / 3 3/3 * 5/6 2/3 * 5/6
PDblackg 7/3 + 1 7.5 / 3 6/3 + 5/6 4/3 + 5/6

Black Cell

PDblackp 6/3 + 1 6/3 4/3 + 5/6 3/3 + 5/6
LEgraygu 5/3 4.5 / 3 1.5/3 * 5/6 1/3 * 5/6
LEgraygl 6/3 6/3 3/3 * 5/6 2/3 * 5/6
LEgraypu 6/3 6/3 3/3 * 5/6 2/3 * 5/6

Gray Cell

PDgray 7/3 + 1 7.5/3 6/3 + 5/6 4/3 + 5/6
Buffer LEbuf 1 * 1/2 1 * 1/2 2/3 * 5/6 *

1/2
1/3 * 5/6 *
1/2

LExor 9/3 9/3 3/3 * 5/6 2/3 * 5/6 Sum XOR
PDxor 9/3 +

12/3
9/3 + 12/3 7/3 + 5/6 5/3 + 5/6

lower box contains the sum logic. In the middle, the prefix tree
is built from black cells, gray cells, and white buffers. The
vertical axis indicates logic level and the critical path is
indicated with a heavy line. For example, the ripple carry adder
in Fig 2a is slow for long additions because the critical path
propagates through N-1 gray cells.

The critical path of each adder is described in more detail
in Table 2. Each row of the table corresponds to the delay of a
cell. The delay has three components: an effort delay F based
on the size of the load, a parasitic delay P based on the cell
itself, and wire delay based on the length of the horizontal wires
between cells (measured in columns traversed). For example,
the ripple carry adder path begins with inputs coming from a
previous unit; these inputs see loading from the bitwise PG cells
(LEbit) but their parasitic delay is not part of the adder delay.
Then the P1 signal is computed and drives the upper propagate
input of a gray cell. The generate output of this cell in turn
drives the lower generate input of the next cell and as well as
the associated sum XOR. This repeats N-1 times. Note that the
final gray cell must drive both the S16 XOR and the Cout gray
cell, so the load is the same as on the other gray cells. Finally,
the sum XOR contributes a parasitic delay. The effort delay
driving the next unit is not counted because an effort delay was
already allocated on the primary inputs.

Several simplifying assumptions have been made:
• All inputs arrive at the same time with equal drive.
• Only horizontal wires are counted in the wire load.

Vertical wires are assumed to be short enough to
neglect (or lump into the parasitic gate delay).

• The i iA B term used to compute the final sum is not
explicitly shown and may use buffered versions of the
inputs to contribute negligible loading.

• Wires are assumed to be short enough that only
capacitance must be considered, not wire RC delay.
This assumption is supported by [8].

874

Note that in the Brent-Kung and Han-Carlson
architectures there is never more than one black or gray cell per
pair of bits in any given row. If pipelining is not required, the
adder may be condensed to half the width, shortening the
lateral wires as indicated in the table.

Fig 2 Adder architectures

(a) Ripple Carry

(b) Carry Increment

3:25:4

6:4

8:7

9:7

12:11

13:11

14:11

15:11

10:7

0123456789101112131415

15:014:013:012:011:010:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0

0123456789101112131415

15:014:0 13:0 12:0 11:0 10:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0

In most of the adder architectures, the stage effort is fairly
constant throughout the adder if wire capacitance is neglected.
We will see that this means uniform gate sizes may be used
throughout with very little loss in performance. In the Sklansky
graph, the fanout increase exponentially along the critical path.
This leads to very poor performance unless cells have greater
drive. One means to provide greater drive is to use larger gates
in specific locations, but this increases the number of cells to
design and verify and leads to irregular layout.

When trains must climb a steep grade with a heavy load,
multiple locomotives are linked together. The extra
locomotives are called helpers. In the Sklansky graph, multiple
cells may be linked together to provide more current to drive
the large fanouts and long wires. Four such adders with helpers
are shown in Fig 3. Each is based on the Sklansky architecture.
They differ in the number of columns required and the space
available for buffers in pipelined adders.

1:03:25:47:69:811:1013:1215:14

3:05:27:49:611:813:1015:12

5:07:09:211:413:615:8

0123456789101112131415

15:0 14:0 13:0 12:0 11:0 10:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0

(c) Brent-Kung

(d) Sklansky

(e) Kogge-Stone

(f) Han-Carlson

(g) Knowles [2,1,1,1]

1:03:25:47:69:811:1013:1215:14

3:07:411:815:12

7:015:8

11:0

5:09:013:0

0123456789101112131415

15:014:013:0 12:0 11:0 10:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0

1:02:13:24:35:46:57:68:79:810:911:1012:1113:1214:1315:14

3:04:15:26:37:48:59:610:711:812:913:1014:1115:12

4:05:06:07:08:19:210:311:412:513:614:715:8

2:0

0123456789101112131415

15:014:013:0 12:0 11:0 10:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0

1:02:13:24:35:46:57:68:79:810:911:1012:1113:1214:1315:14

3:04:15:26:37:48:59:610:711:812:913:1014:1115:12

4:05:06:07:08:19:210:311:412:513:614:715:8

2:0

0123456789101112131415

15:0 14:0 13:0 12:0 11:0 10:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0

1:0

2:03:0

3:25:47:69:811:1013:1215:14

6:47:410:811:814:1215:12

12:813:814:815:8

0123456789101112131415

15:014:013:0 12:0 11:0 10:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0

1:03:25:47:69:811:1013:12

3:07:411:815:12

5:07:013:815:8

15:14

15:8 13:0 11:0 9:0

0123456789101112131415

15:014:0 13:0 12:0 11:0 10:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0

(h) Ladner-Fischer

875

Table 2 Adder critical paths

F P wire repeats notes
LEbit n/a n/a input -> bit 1
LEgraypu PDbit 0 bit 1 -> gray pu
LEgraygl+LExor PDgray 1 k = 1 … N-1 gray-> gray gl + xorR

ip
pl

e
C

ar
ry

n/a PDxor n/a xor -> output

LEbit n/a n/a input -> bit 1
LEgraygl+LExor PDbit 1 bit 1 -> gray gl and xor
k•LEgraygl+LExor PDgray k

k = 1 .. ~ 2N gray-> many gray gl and xor

LExor PDgray 0 gray-> xorC
ar

ry
In

cr
em

en
t

n/a PDxor n/a xor -> output
LEbit n/a n/a input -> bit 1
LEgraypu PDbit 0 bit 1 -> gray pu
LEgraygl+LEbuf PDgray 2k-1 k = 1 … M - 1 gray-> gray gl + buf
LEgraygl+LEbuf PDbuf 2M-3 buf -> gray gl + buf
LEgraygl+LEbuf PDgray 2M-k-3 k = 1 … M - 2 gray-> gray gl + buf
LExor PDgray 0 gray-> xorBr

en
t-K

un
g

n/a PDxor n/a xor -> output
LEbit n/a n/a input -> bit 1
LEgraypu PDbit 0 bit 1 -> gray pu
LEgraygl+LEbuf PDgray 2k-1 k = 1 … M - 2 gray-> gray gl + buf
2LEgraygl+LEbuf PDgray 2M-2 gray-> 2 gray gl + buf
LEgraygl+LEbuf PDgray 2M-k-3 k = 1 … M - 2 gray-> gray gl + buf
LExor PDgray 0 gray-> xorLa

dn
er

-F
isc

he
r

n/a PDxor n/a xor -> output
LEbit n/a n/a input -> bit 1
LEgraypu PDbit 0 bit 1 -> gray pu
2k•LEgraygl+LEbuf PDgray 2k k = 1 … M - 1 gray-> many gray gl + buf (-> 2k)
LExor + LEgraygl PDgray 1 gray-> xor + coutSk

la
ns

ky

n/a PDxor n/a xor -> output
LEbit n/a n/a input -> bit N/2
LEblackpl + LEblackpu PDbit 1 bit N/2 -> black pu and pl
LEblackpl + LEblackpu PDblackp 2k k = 1 … M - 2 black p -> black pu and pl
LEgraypu PDblackp 2M-1 black p -> gray pu
LExor PDgray 0 gray-> xorK

og
ge

-S
to

ne

n/a PDxor n/a xor -> output
LEbit n/a n/a input -> bit N/2
LEblackpl + LEblackpu PDbit 1 bit N/2 -> black pu and pl
LEblackpl + LEblackpu PDblackp 2k-1 k = 1 … M - 2 black p -> black pu and pl
LEgraypu PDblackp 2M-2 black p -> gray pu
LExor PDgray 0 gray-> xorH

an
-

C
ar

lso
n

n/a PDxor n/a xor -> output
LEbit n/a n/a input -> bit N/2
LEblackpl + LEblackpu PDbit 1 bit N/2 -> black pu and pl
LEblackpl + LEblackpu PDblackp 2k k = 1 … M - 3 black p -> black pu and pl
LEblackpl + LEgraypu PDblackp 2M-2 black p -> gray pu and black pl
2LEgraygl+ LEbuf PDgray 2M-1 gray-> 2gray gl and buf
LExor PDgray 0 gray-> xorK

no
w

les
[2

,1,
…

,1]

n/a PDxor n/a xor -> output

Fig 3 Helper adders

0123456789101112131415

15:0 14:0 13:0 12:0 11:0 10:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0

(a) Helper 1a

(c) Helper 1.5

15:0 14:0 13:0 12:0 11:0 10:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0

0123456789101112131415

0123456789101112131415

15:014:0 13:012:0 11:010:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0

0123456789101112131415

15:0 14:0 13:0 12:0 11:0 10:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0

(b) Helper 1b

(d) Helper 2

IV. LOGICAL EFFORT DELAY MODEL

The method of Logical Effort provides a simple method for
determining a lower bound on critical path delay in circuits
with negligible wire capacitance. If the path has M stages, a
path effort of F, and a parasitic delay of PD, the delay (in)
achieved with best transistor sizes is

1/ M
FD D PD MF PD= + = + (1)

where D is measured in units of , the delay of an ideal inverter
with no parasitic capacitance driving an identical inverter.
Delay is often normalized to that of a fanout-of-4 inverter with
the conversion 1 FO4 ˜ 5 . In a 180 nm process, 1 FO4 ˜ 60
ps. To illustrate the delay model, consider an N=4-bit ripple
carry adder. According to the data from the previous sections
the least delay is given below. Note that the inverting design is
faster because the extra inverters in the noninverting CMOS
version.

Inverting CMOS:
M = N+1 = 5
F = (LEbit)(LEgraypu)(LEgraygl + LExor)3

= (9/3)(6/3)(6/3 + 9/3)3 = 750
DF = 5(750)1/5 = 18.8
PD = PDbit + 3PDgray + PDxor

= (6/3) + 3(7.5/3) + (9/3 + 12/3) = 16.5
D = 18.8 + 16.5 = 35.3 = 7.1 FO4

Noninverting CMOS:
M = 2(N+1) = 10
F = (LEbit)(LEgraypu)(LEgraygl + LExor)3

= (9/3)(6/3)(6/3 + 9/3)3 = 750
DF = 10(750)1/10 = 19.4
PD = PDbit + 3PDgray + PDxor

= (6/3 +1) + 3(7/3 + 1) + (9/3 + 12/3) = 20
D = 19.4 + 20 = 39.4 = 7.9 FO4

In general, achieving least delay requires using different
transistor sizes in each gate (although this delay model has
assumed that all transistors in a branch scale uniformly). A
regular layout with consistent transistor sizes in each type of
cell is easier to build but may sacrifice performance. Consider
designing all cells to have an arbitrary unit drive (i.e. output
conductance). Define an inverter with unit drive to have unit
input capacitance. For circuits with a single stage per cell (e.g.
inverting static CMOS), the path effort delay is simply the sum
of the effort delays of each stage:

1

M

F i
i

D f
=

= (2)

The total delay is still the sum of the path effort and
parasitic delays. In a 4-bit ripple carry adder built from
inverting static CMOS gates the delay is

876

Inverting CMOS:
DF = LEbit + LEgraypu + 3(LEgraygl + LExor)

= 9/3 + 6/3 + 3(6/3 + 9/3) = 20
D = 20 + 16.5 = 36.5 = 7.3 FO4

In a circuit with two stages per cell (e.g. noninverting static
CMOS or domino), let us design the first stage to have unit
drive. Choose the size of the second stage for least delay. If the
path has C = M/2 cells and the effort of the ith cell is Fi, the
path effort delay is

1

2
C

F i
i

D F
=

= (3)

In a 4-bit ripple carry adder built from noninverting static
CMOS gates the delay is

Inverting CMOS:
2 2 3 2

2 9 / 3 2 6 / 3 3 2 6 / 3 9 / 3
19.7

F bit graypu graygl xorD LE LE LE LE

τ

= + + +

= + + +
=

i

i

D = 19.7 + 20 = 39.7 = 7.9 FO4

These delays are only slightly slower than ideal, justifying
the use of a regular layout. The two-stage cell delay estimate is
optimistic because in a regular design the second stage size will
be fixed for each cell. However, the results from the single-
stage cell estimate suggest the penalty is not large.

Horizontal wires add capacitance to the load of each stage.
Let the wire capacitance be w units per column spanned. w
depends on the width of each column, the width and spacing
between wires, and the size of a unit transistor; in a trial layout
in a 180 nm process, w ˜ 0.5. While there is no closed-form
solution for the minimum-delay problem with wire capacitance,
the delay assuming fixed cell sizes is readily calculated by
adding the wire capacitance to the stage effort fi or Fi in EQ (2)
or (3).

V. RESULTS

The adder delays were evaluated using a MATLAB script.
Table 3 lists delay (in FO4 inverter delays) for various adder
architectures and widths assuming no wire capacitance and
inverting static CMOS cells. It compares the delay achieved
using best transistor sizes with the delay using uniform cell
sizes. Observe that the penalty for uniform cell sizes is small in
all cases except carry increment and Sklansky (where the
fanouts vary wildly from one stage to another). This justifies
using uniform cell sizes for most adders and for employing
helpers on the Sklansky architecture to drive the high fanouts.

The remaining results are based on uniform cell sizes.
Table 4 evaluates the effect of adder size by listing the delay of
inverting static CMOS and footed domino adders assuming
wiring capacitance w=0.5. Table 5 evaluates the impact of
effect of circuit family, again assuming w=0.5. Table 6 evaluates

the impact of wire capacitance on inverting static CMOS
adders.

The Kogge-Stone, Han-Carlson, and Knowles adders
require a large number of parallel wiring tracks for wide adders.
This generally entails packing the wires close together,
increasing the coupling capacitance on each wire. Huang and
Ercegovac [8] found this nearly doubles the wire capacitance;
therefore these architectures may be evaluated using the w=1.0
column of Table 6 compared against the w=0.5 column for
adders with fewer wires.

The critical paths of most architectures (excluding Kogge-
Stone, Han-Carlson, and Knowles) pass through a series of gray
cell lower generate inputs. These adders may be sped up with
asymmetric gray cells that reduce the logical effort LEgraygl at the
expense of the other inputs [15]. This provides on average 9%
speedup on the footed domino circuits, but almost none on the
static CMOS circuits where noncritical transistors must be
enlarged to preserve unit drive and thus increase parasitic delay.

VI. CONCLUSIONS

The logical effort model facilitates rapid comparison of a
wide variety of adder architectures using multiple circuit
families while accounting for the costs of fanout and
interconnect.

The Sklansky architecture is slowed by its high fanout
along the critical path. This may be addressed at the expense of
regularity by using larger gates along the path. The helper
architectures proposed in this paper gang together multiple cells
to drive the high fanout nodes while maintaining regularity.
Regular designs with unit drive work well in architectures with
relatively constant stage efforts, i.e. all except Sklansky and
carry increment.

In the absence of wiring capacitance, the Kogge-Stone
adder is fastest because of its low number of stages and low
fanout. When interconnect is considered, the Han-Carlson and
helper adders become most attractive. Han-Carlson requires
only half the number of columns, while helper adders are
slightly faster at driving the long wires, especially when
coupling capacitance is considered.

Fast static CMOS adders have a delay of about 10, 12,
14.5, and 17 FO4 for 16, 32, 64, and 128-bit widths,
respectively. Most adders have a relatively low stage effort so
the footed domino designs are only about 30% faster than the
inverting static CMOS architectures because the high drive
capability of domino is not fully exploited. This supports the
use of higher-valency [1] domino designs. Asymmetric domino
gates achieve another 9% speedup. Inverting static CMOS
gates are also slightly faster than their noninverting
counterparts except where high fanout capability is needed;
however, the difference is much smaller than a method of
“counting logic levels” would predict.

The delays estimated from logical effort are in good
agreement with the HSPICE results of [1], [5], and [9].
However, the best 64-bit footless domino adder delays of 9-10

877

FO4 are still distinctly longer than the 7 FO4 delays achieved
by the Naffziger domino Ling adder [13]. The differences may
be attributed to the fact that velocity saturation makes tall
domino gates slightly faster than simple logical effort models
predict, the use of valency-4 cells and asymmetric gates biased
to favor the critical path, and the logic level saved with the Ling
algorithm. The fraction of the delay attributed to wires is
important but significantly less than in [8] because this study
assumed layouts with larger input transistors and a narrower
column pitch to reduce the impact of wire capacitance.

REFERENCES

1 A. Beaumont-Smith and C. Lim, “Parallel prefix adder design,”
Proc. 15th IEEE Symp. Comp. Arith, pp. 218-225, June 2001.

2 O. Bedrij, “Carry-select adder,” IRE Trans. Electronic Computers,
vol. EC-11, June 1962, pp. 340-346.

3 R. Brent and H. Kung, “A regular layout for parallel adders,” IEEE
Trans. Computers, vol. C-31, no. 3, pp. 260-264, March 1982.

4 N. Burgess, “Accelerated carry-skip adders with low hardware
cost,” Proc. 35th Asilomar Conf. Signals, Systems, and Computers,
vol. 1, pp. 852-856, 2001.

5 H. Dao and V. Oklobdzija, “Application of logical effort on delay
analysis of 64-bit static carry-lookahead adder,” Proc. 35th

Asilomar Conf. Signals, Systems, and Computers, vol. 2, pp. 1322-
1324, 2001.

6 H. Dao and V. Oklobdzija, “Application of logical effort
techniques for speed optimization and analysis of representative
adders,” Proc. 35th Asilomar Conf. Signals, Systems, and
Computers, vol. 2, pp. 1666-1669, 2001.

7 T. Han and D. Carlson, “Fast area-efficient VLSI adders,” Proc. 8th

Symp. Comp. Arith., pp. 49-56, Sept. 1987.
8 Z. Huang and M. Ercegovac, “Effect of wire delay on the design of

prefix adders in deep submicron technology,” Proc. 34th Asilomar
Conf. Signals, Systems, and Computers, vol. 2, pp. 1713-1717,
2000.

9 S. Knowles, “A family of adders,” Proc 14th IEEE Symp. Comp.
Arch., 1999 reprinted with corrections in Proc. 15th IEEE Symp.
Comp. Arith., pp. 277-281, June 2001.

10 P. Kogge and H. Stone, “A parallel algorithm for the efficient
solution of a general class of recurrence relations,” IEEE Trans.
Computers, vol. C- 22, no. 8, pp. 786-793, Aug. 1973.

11 R. Ladner and M. Fischer, “Parallel prefix computation,” J. ACM,
vol. 27, no. 4, pp. 831-838, Oct. 1980.

12 M. Lehman and N. Burla, “Skip techniques for high-speed carry
propagation in binary arithmetic units,” IRE Trans. Electron
Computers, EC-10, Dec. 1962, pp. 691-698.

13 S. Naffziger, “A subnanosecond 0.5 m 64b adder design,” Intl.
Solid-state Circuits Conf., 1996, pp. 362-363.

14 J. Sklansky, “Conditional-sum addition logic,” IRE Trans.
Electronic Computing, vol. EC-9, June 1960, pp. 226-231.

15 I. Sutherland, R. Sproull, and D. Harris, Logical Effort, San
Francisco: Morgan Kaufmann Publishers, 1999.

16 A. Tyagi, “A reduced-area scheme for carry-select adders,” IEEE
Trans. Computers, vol. 42, no. 10, pp. 1162-1170, Oct. 1993.

17 N. Weste and D. Harris, CMOS VLSI Design, Addison-Wesley,
2004.

18 R. Zimmermann, “Non-heuristic optimization and synthesis of
parallel-prefix adders,” Proc. Intl. Workshop on Logic and
Architecture Synthesis, pp. 123-132, Grenoble, France, Dec. 1996.

Table 3 Adder delays: w=0; inverting static CMOS

Minimum Delay Uniform Cell Size Delay
N = 16 N = 32 N = 64 N = 128 N = 16 N = 32 N = 64 N = 128

Ripple 24.7 48.7 96.7 192.7 25.1 49.1 97.1 193.1
Increment 13.0 21.7 34.5 59.5 14.3 24.4 40.5 71.6
B-K 9.4 11.4 13.4 15.4 9.4 11.4 13.4 15.4
L-F 9.0 11.0 13.0 14.0 9.1 11.1 13.1 15.1
Sklansky 9.8 13.5 18.9 26.7 11.5 18.5 31.9 58.1
K-S 7.6 9.0 10.4 11.8 7.9 9.3 10.7 12.1
H-C 8.8 10.2 11.6 13.0 9.1 10.5 11.9 13.3
Knowles 8.1 9.5 10.8 12.2 8.2 9.6 11.0 12.4
Helper 1a 8.7 10.5 12.5 14.4 9.2 11.2 13.2 15.3
Helper 1b 8.5 10.3 12.2 14.1 8.6 10.5 12.4 14.5
Helper 1.5 8.5 10.3 12.2 14.1 8.6 10.5 12.4 14.5
Helper 2 8.2 9.8 11.4 13.1 8.6 10.2 11.8 13.5

Table 4 Adder delays: w=0.5; uniform cell size

Inverting Static CMOS Footed Domino
N = 16 N = 32 N = 64 N = 128 N = 16 N = 32 N = 64 N = 128

Ripple 26.6 52.2 103.4 205.8 19.9 38.8 76.7 152.4
Increment 15.7 27.5 46.8 84.3 10.0 16.2 24.9 40.9
B-K 10.4 13.7 18.1 24.9 9.9 13.0 17.4 24.2
L-F 9.9 12.9 16.9 22.9 9.0 12.0 16.0 21.9
Sklansky 13.0 21.6 38.2 70.8 8.8 12.4 18.3 28.2
K-S 9.4 12.4 17.0 24.8 7.4 10.0 14.1 21.5
H-C 9.9 12.1 15.1 19.7 7.7 9.4 12.0 16.1
Knowles 9.7 12.7 17.3 25.1 7.8 10.3 14.5 21.8
Helper 1a 10.1 12.5 15.0 17.4 7.8 9.4 11.1 12.8
Helper 1b 9.4 11.6 14.0 16.4 7.5 9.1 10.7 12.4
Helper 1.5 9.7 12.0 14.6 17.2 7.8 9.5 11.3 13.2
Helper 2 9.7 11.7 13.7 15.7 7.8 9.3 10.9 12.5

Table 5 Adder delays: w=0.5; uniform cell size
(1) Inverting CMOS, (2) Noninverting CMOS,

(3) Footed Domino, (4) Footless Domino

N=32 N=64
(1) (2) (3) (4) (1) (2) (3) (4)

Ripple 52.2 54.6 38.8 31.3 103.4 107.7 76.7 61.9
Increment 27.5 22.1 16.2 13.5 46.8 33.3 24.9 21.1
B-K 13.7 16.8 13.0 10.7 18.1 21.8 17.4 14.6
L-F 12.9 15.6 12.0 9.8 16.9 20.2 16.0 13.3
Sklansky 21.6 16.3 12.4 10.5 38.2 23.4 18.3 15.9
K-S 12.4 13.4 10.0 8.7 17.0 18.0 14.1 12.7
H-C 12.1 13.3 9.4 7.9 15.1 16.4 12.0 10.3
Knowles 12.7 13.6 10.3 8.9 17.3 18.3 14.5 12.9
Helper 1a 12.5 12.6 9.4 7.7 15.0 14.8 11.1 9.2
Helper 1b 11.6 12.2 9.1 7.5 14.0 14.4 10.7 8.8
Helper 1.5 12.0 12.6 9.5 7.9 14.6 14.9 11.3 9.4
Helper 2 11.7 12.4 9.3 7.7 13.7 14.4 10.9 9.0

Table 6 Adder delays: inverting static CMOS; uniform cell size

N=64 N = 32
w = 1/4 w = 1/2 w = 3/4 w = 1 w = 1/4 w = 1/2 w = 3/4 w = 1

Ripple 50.6 52.2 53.8 55.3 100.3 103.4 106.6 109.7
Increment 25.9 27.5 29.1 30.6 43.6 46.8 50.0 53.1
B-K 12.5 13.7 14.8 15.9 15.7 18.1 20.4 22.7
L-F 12.0 12.9 13.9 14.8 15.0 16.9 18.9 20.8
Sklansky 20.1 21.6 23.1 24.7 35.0 38.2 41.4 44.5
K-S 10.9 12.4 13.9 15.5 13.9 17.0 20.1 23.3
H-C 11.3 12.1 12.9 13.7 13.5 15.1 16.7 18.3
Knowles 11.2 12.7 14.3 15.8 14.2 17.3 20.4 23.6
Helper 1a 11.9 12.5 13.2 13.8 14.1 15.0 15.8 16.7
Helper 1b 11.1 11.6 12.2 12.8 13.2 14.0 14.7 15.5
Helper 1.5 11.3 12.0 12.8 13.6 13.5 14.6 15.6 16.7
Helper 2 10.9 11.7 12.4 13.1 12.7 13.7 14.6 15.5

878

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

