
Digital Design and RISC-V Computer Architecture Textbook

Sarah L. Harris†
 Electrical and Computer Eng.

University of Nevada
Las Vegas, NV USA

 Sarah.Harris@unlv.edu

David Harris
Department of Engineering

Harvey Mudd College
 Claremont, CA USA

David_Harris@hmc.edu

ABSTRACT

This paper describes the authors’ Digital Design and Computer

Architecture: RISC-V Edition textbook. The book presents a

unified 1- or 2-semester course on digital design and computer

architecture. We have found that learning these topics together

clarifies and solidifies understanding of both concepts. The

textbook begins by describing digital design concepts and

techniques, from number systems, logic gates, and transistor-

level gate design to synchronous sequential circuits such as

finite state machines and other common digital building blocks.

It then builds on these concepts to teach computer architecture

and processor design by introducing the RISC-V instruction set

architecture (ISA), showing how to design three RISC-V

processors with limited instructions, and describing various

memory organizations, including caches and virtual memory.

The textbook also describes logic design using hardware

description languages (HDLs), covering SystemVerilog and

VHDL side-by-side. The optional appendices and online

chapters introduce the C programming language, embedded

system design, and practical aspects of digital design including

breadboarding, ASIC design, and transmission lines.

CCS CONCEPTS

• Architectures • Embedded Systems • Logic

KEYWORDS

Digital Design; Computer Architecture; RISC-V; Education

1 Introduction

The RISC-V computer architecture is the first widely adopted

open-source computer architecture. Its open-source nature

makes it particularly accessible, and its relevance to both

current and emerging processors and systems is increasingly

important. We have written a new textbook, Digital Design and

Computer Architecture: RISC-V Edition, © Elsevier, 2021 [1], to

teach logic design principles and then build on that foundation

to teach the RISC-V computer architecture and processor

design.

We have taught digital design and computer architecture as

an integrated single-semester or multi-semester sequence for

over 15 years using our prior textbooks, which also cover

digital design and computer architecture but focus on the MIPS

[2] and ARM® [3] architectures. We have found that

connecting the dots between these two topics provides deeper

understanding of both concepts, enables hands-on learning,

and empowers the students to build on both concepts to design

more complex digital circuits and to use computer architecture

principles in applications including software algorithms and

embedded system design [4, 5].

This approach has been effective and popular world-wide.

For example, in the U.S. in 2020 alone, prior editions of our

book, which focus on the MIPS and ARM® architectures, were

used by 10,000 university students. These prior editions are

available in seven languages (English, Chinese, Japanese,

Korean, Spanish, Russian, and Portuguese), and we expect the

RISC-V Edition will also be translated into other languages.

2 Textbook Content

This new textbook describes digital design techniques and

building blocks in the first half of the textbook and then shows

how to use these building blocks to design a RISC-V processor

and memory system in the second half of the textbook. Table 1

shows the textbook’s table of contents.

The book starts by describing digital design principles,

beginning with binary numbers, addition, and logic gates

(Chapter 1) and moving on to combinational and sequential

logic design (Chapters 2 and 3) and then common building

blocks such as adders, multipliers, and memories (Chapter 5).

Chapter 4 gives an introduction to hardware description

languages, including both SystemVerilog and VHDL. However,

this chapter may be skipped without sacrificing understanding

of the concepts in the other chapters.

The second part of the book focuses on computer

architecture by first introducing the RISC-V instruction set

architecture (ISA) in Chapter 6, including describing the RISC-

V instruction set and registers, showing how to convert high-

level code to assembly, and describing machine encodings.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s).
Workshop on Computer Architecture Education’21, June, 2021, Online
© 2021 Copyright held by the owner/author(s). 978-1-4503-0000-
0/18/06...$15.00

https://doi.org/10.1145/1234567890

Table 1: Textbook Table of Contents

Chapter 1 From Zero to One
1.1 The Game Plan
1.2 The Art of Managing Complexity
1.3 The Digital Abstraction
1.4 Number Systems
1.5 Logic Gates
1.6 Beneath the Digital Abstraction
1.7 CMOS Transistors
1.8 Power Consumption
1.9 Summary and a Look Ahead

Chapter 2 Combinational Logic Design
2.1 Introduction
2.2 Boolean Equations
2.3 Boolean Algebra
2.4 From Logic to Gates
2.5 Multilevel Combinational Logic
2.6 X’s and Z’s, Oh My
2.7 Karnaugh Maps
2.8 Combinational Building Blocks
2.9 Timing
2.10 Summary

Chapter 3 Sequential Logic Design
3.1 Introduction
3.2 Latches and Flip-Flops
3.3 Synchronous Logic Design
3.4 Finite State Machines
3.5 Timing of Sequential Logic
3.6 Parallelism
3.7 Summary

Chapter 4 HDLs
4.1 Introduction
4.2 Combinational Logic
4.3 Structural Modeling
4.4 Sequential Logic
4.5 More Combinational Logic
4.6 Finite State Machines
4.7 Data Types
4.8 Parameterized Modules

4.9 Testbenches
4.10 Summary

Chapter 5 Digital Building Blocks
5.1 Introduction
5.2 Arithmetic Circuits
5.3 Number Systems
5.4 Sequential Building Blocks
5.5 Memory Arrays
5.6 Logic Arrays
5.7 Summary

Chapter 6 Architecture
6.1 Introduction
6.2 Assembly Language
6.3 Programming
6.4 Machine Language
6.5 Lights, Camera, Action: Compiling,
Assembling, and Loading
6.6 Odds and Ends
6.7 Evolution of the RISC-V Architecture
6.8 Another Perspective: x86
6.9 Summary

Chapter 7 Microarchitecture
7.1 Introduction
7.2 Performance Analysis
7.3 Single-Cycle Processor
7.4 Multicycle Processor
7.5 Pipelined Processor
7.6 HDL Representation
7.7 Advanced Microarchitecture
7.8 Evolution of RISC-V Microarch.
7.9 Summary

Chapter 8 Memory Systems
8.1 Introduction
8.2 Mem. System Performance Analysis
8.3 Caches
8.4 Virtual Memory
8.5 Summary

Chapter 9 I/O Systems
9.1 Introduction
9.2 Memory-Mapped I/O
9.3 Embedded I/O Systems
9.4 Other Microcontroller Peripherals
9.5 Summary

Appendix A Dig. Sys. Implementation
A.1 Introduction
A.2 74xx Logic
A.3 Programmable Logic
A.4 ASICs
A.5 Data Sheets
A.6 Logic Families
A.7 Packaging and Assembly
A.8 Transmission Lines
A.9 Economics

Appendix B RISC-V Instructions
B.1 RISC-V Integer Instructions
B.2 Extra Integer Instructions
B.3 Floating-Point Instructions
B.4 Registers
B.5 RVM: Multiply & Divide Instructions
B.6 RVC: Compressed Instructions
B.7 Pseudoinstructions
B.8 Privileged / CSR Instructions

Appendix C C Programming
C.1 Introduction
C.2 Welcome to C
C.3 Compilation
C.4 Variables
C.5 Operators
C.6 Function Calls
C.7 Control-Flow Statements
C.8 More Data Types
C.9 Standard Libraries
C.10 Compiler & Command Line Options
C.11 Common Mistakes

The book also discusses RISC-V extensions, including

compressed instructions (the RVC extension), and floating-

point instructions (RVF/D). The textbook then shows how to

build three versions of a limited-instruction RISC-V processor:

a single-cycle processor, multicycle processor, and pipelined

processor (Chapter 7). The book also describes advanced

microarchitecture techniques including branch prediction, out-

of-order execution, and multiprocessors. The textbook

concludes by discussing memory organization, including

caches and virtual memory, in Chapter 8.

Optional online chapters and appendices cover embedded

I/O (Chapter 9), practical digital design techniques (Appendix

A), and an introduction to the C programming language

(Appendix C). Appendix B gives a summary of RISC-V

instructions, and it is available on the inside covers of the

textbook. The C appendix may be taught before discussing the

RISC-V instruction set architecture for students who have no

prior programming experience.

Topics discussed in the appendix on practical digital design

considerations include chip packages, logic families,

breadboard circuit assembly, datasheets, transmission lines,

and engineering economics. The optional embedded I/O

chapter describes common microcontroller interfaces and

techniques, including general-purpose I/O, timers, interrupts,

serial interfaces such as SPI and I2C, and other common

peripherals such as LCDs and VGAs. Chapter 9 uses SparkFun’s

Red-V RedBoard or Thing Plus board, which include SiFive’s

FE310-G002 RISC-V system-on-chip (SoC), to demonstrate how

to program and use peripherals using a RISC-V processor.

Table 2: Example 1-Semester Course Syllabus

Lecture Topics Readings Assignment Due

0 Intro: digital abstraction, numbers 1.1-1.5

1 Logic gates, static discipline, transistors 1.6-1.9, A1-A7

2 Combinational logic design 2.1-2.8 Problem Set 1

3 Timing, sequential circuits 2.9-2.10, 3.1-3.2 Lab 1: Comb Logic

4 Finite state machines 3.3-3.4 Problem Set 2

5 Dynamic discipline, metastability 3.5-3.7 Lab 2: Comb Logic

6 Hardware description languages: SystemVerilog, part I 4.1-4.3 Problem Set 3

7 SystemVerilog, part II 4.4-4.10 Lab 3: FSM from Gates

8 Arithmetic circuits 5.1-5.2 Problem Set 4

9 Fixed and floating-point number systems 5.3 Lab 4: FSM in SV

10 Sequential building blocks, arrays 5.4-5.7 Problem Set 5

11 Midterm Review Lab 5: Building Blocks

 Midterm

12 C Programming, part I C1-C.7

13 C Programming, part II C.8-C.11

14 Assembly language 6.1-6.3.5 PS 6

15 Function calls in assembly 6.3.6 Lab 6 C Programming

16 Machine language 6.4-6.9 PS 7

17 Single-cycle processor datapath 7.1-7.3.1 Lab 7 C with Peripherals

18 Single-cycle processor control, SystemVerilog 7.3, 7.6 PS 8

19 Multicycle processor 7.4 Lab 8 Single-Cycle Proc.

20 Pipelining 7.5.1-7.5.2 PS 9

21 Advanced architecture: a sampler 7.7 Lab 9 Multicycle Datapath

22 Introduction to memory systems, caches 7.7 PS 10

23 Virtual memory 7.7 Lab 10 Multicycle Control

2 Course Structure

The material can be taught as a 1-semester or 2-semester

course, with the first semester focusing on digital design and

the second semester on computer architecture. Table 2 shows

an example syllabus for the 1-semester course. The course is

set up so that the material is introduced with increasing levels

of depth. We first introduce the concepts during lecture and

work through example problems with the class. Then, the

students complete weekly problem sets to learn the materials

in a low-overhead, exploratory manner. Finally, students

complete weekly hands-on labs to learn the material in-depth

and to be able to use the material to solve real-world problems.

3 Companion Material

The textbook’s companion material includes exercise

solutions, laboratory exercises and solutions, lecture slides,

textbook figures, example syllabi and exams, and source code

from the textbook, including all HDL examples. All materials are

in their source format – i.e., Microsoft Word (.docx) format for

lab instructions and solutions, PowerPoint (.pptx) format for

lecture slides, Visio (.vsdx) format for figures, and text format

for code. This enables instructors to readily use and adapt the

material as desired.

The instructor version includes solutions to all exercises

and labs, whereas the student version includes only odd

numbered exercise solutions and lab instructions, but not

solutions. The instructor companion materials also include the

HDL (both SystemVerilog and VHDL) for all RISC-V processors

(single-cycle, multicycle, and pipelined) introduced in the

textbook. These processors implement a reduced set of RISC-V

instructions: add, sub, and, or, slt, addi, andi, ori, slti,

beq, and jal.

4 Laboratory Assignments

Laboratory assignments consist of ten hands-on exercises

ranging from designing digital circuits using schematics or

SystemVerilog to programming in C and building and testing

Workshop on Computer Architecture Education’21 S. Harris, D. Harris

RISC-V processors in SystemVerilog on an FPGA board. Table 3

lists the labs included as part of the companion materials for

the textbook.

The labs use the hardware and software listed in Table 4.

All of the software is free and the labs may be completed in

simulation only, although we have found that it is a richer

experience when the students are able to view their designs

working in hardware. However, because the software used is

free and the hardware is optional, the labs may be completed

without cost, as needed.

The digital design labs (Labs 1-5) and the processor design

labs (Labs 8-10) use Intel’s Quartus Lite or Web Edition

software (formerly from Altera) for design entry and

ModelSim, either Starter or Intel FPGA Edition, for simulation.

After simulation, the designs can be optionally programmed

onto the DE2-115 board that contains Intel’s Cyclone IVE field

programmable gate array (FPGA). In 2021, the DE2-115 board

costs $600, with a reduced academic price of $309. The labs

could be readily adapted to other FPGA boards and

programming tools, such as Digilent’s Nexys A7 or Basys FPGA

board and Xilinx’s Vivado design suite.

The C programming labs (Labs 6 and 7), use PlatformIO, a

free embedded systems IDE (integrated development

environment) that is an extension of Visual Studio Code

(VSCode), to load and run programs on SparkFun’s RED-V

RedBoard ($40) or Thing Plus board ($30), which both include

SiFive’s FE310-G002 RISC-V SoC.

Table 3: Labs

No. Description

1 Schematic Design: 1-bit Full Adder

2 Schematic Design: 7-Segment Display

3 Schematic Design: FSM

4 SystemVerilog: FSM

5 SystemVerilog: 32-bit ALU & Testbench

6 C Programming: Matrix Multiplication

7 C Programming: Simon Says Game - LEDs &

Switches

8 SystemVerilog: Single-Cycle Processor

9 SystemVerilog: Multicycle Datapath

10 SystemVerilog: Multicycle Processor

Lab 1 guides students to design, build, simulate, and test a

1-bit full adder using schematic entry in Intel’s Quartus

software. Then, students use ModelSim to simulate their design

and Quartus to program the FPGA DE2-115 board with their

design. They then test their design in hardware using the

switches and LEDs on the DE2-115 board. Lab 2 is similar to

Lab 1 – but this time the students design a more complex

circuit, a 7-segment display decoder.

Lab 3 shows how to design a finite state machine (FSM)

using schematic entry. Starting with Lab 4, where students

design another FSM, students use SystemVerilog to implement

their digital circuits. Lab 5 guides students in building an ALU

and writing a testbench to debug and test their design.

Labs 5 and 6 transition to writing C programs for the RED-

V RedBoard or Thing Plus board. Lab 5 uses software only to

guide students in writing linear algebra and array manipula-

Table 4: Required Software & Hardware

Software Link

Quartus Lite/Web

Edition

https://fpgasoftware.intel.com

ModelSim Intel

FPGA Edition

https://fpgasoftware.intel.com/?pr

oduct=modelsim_ae#tabs-2

Visual Studio Code

(VS Code)

https://code.visualstudio.com/

download

PlatformIO Extension within VS Code

Hardware Link

DE2-115 Board http://de2-115.terasic.com

RED-V RedBoard or

Thing Plus Board

https://www.sparkfun.com/produc

ts/15594

tion functions. Lab 6 shows how to use the general-purpose I/O

pins on the RED-V boards to play a Simon Says game with LEDs

and switches that must be wired up to the board. Labs 6 and 7

are optional and may be skipped if boards are not available.

In Lab 8, students are given the SystemVerilog code for the

single-cycle processor discussed in the book and extend it to

support additional RISC-V instructions. Students also use the

ALU they built in Lab 5 and must also modify the test program,

written in RISC-V assembly and translated to machine code,

and the testbench to simulate and test their extended

processor. In Labs 9 and 10, students use the building blocks

(register files, memories, multiplexers, ALUs, registers, etc.)

provided in Lab 8 to implement the multicycle processor

introduced in the book.

The book’s companion website also provides optional labs

including RISC-V assembly labs and additional C programming

labs that interface with an accelerometer and a buzzer to create

a digital level and pulse-width modulated sound and light.

Instructors may readily extend the existing labs to other

applications or designs. For example, the logic design labs (1-

https://fpgasoftware.intel.com/?product=modelsim_ae#tabs-2
https://fpgasoftware.intel.com/?product=modelsim_ae#tabs-2
http://de2-115.terasic.com/
https://www.sparkfun.com/products/15594
https://www.sparkfun.com/products/15594

Workshop on Computer Architecture Education’21 S. Harris, D. Harris

5) can be extended to other digital systems by swapping out the

target circuit. For example, instead of building a 7-segment

display decoder, students could build a priority circuit or prefix

adder. Further, students could create and implement their own

FSM designs after completing Lab 3 or 4. The C programming

labs (Labs 6 and 7) could also be extended to other software

algorithms or peripherals.

5 MOOC

In addition to the textbook, we have also developed two

massive open online courses (MOOCs) to accompany the

textbook, which are available through EdX. The book content is

divided into two courses, one on digital design and one on

computer architecture. These courses may be found by

searching for “Digital Design HarveyMuddX” [6] and “Computer

Architecture HarveyMuddX” [7] on EdX. These courses are

currently instructor-led, but we plan on creating self-paced

versions. The videos are freely available upon registration at

EdX, but the graded exercises and certificate cost a fee.

6 Architecture Comparisons

Like most architectures, the RISC-V architecture includes both

similarities and differences when compared to other

contemporary RISC-V architectures, such as the MIPS and

ARM® architectures.

RISC-V shares many commonalities with the MIPS

architecture, including similar machine instruction formats

(i.e., I-type, R-type, and J-type), instruction mnemonics (i.e., lw,

sw, addi, slt, etc.), and register naming (i.e., s0, t0, a0, sp,

etc.). However, RISC-V gets rid of MIPS idiosyncrasies, such as

the branch delay slot, branching relative to PC+4 (instead of

PC), and inconsistent register locations in machine instruction

encodings. RISC-V also opts for more complex immediate

encodings to optimize hardware. Finally, RISC-V and is growing

in its commercial use while MIPS is declining.

When compared with ARM®, RISC-V also has a small set of

instruction formats and includes 16-bit (compressed)

instructions, which can be compared to ARM’s 16-bit Thumb

instruction set. These smaller instructions minimize program

size and, thus, memory usage, which is often critical in

embedded and low-power systems. But unlike ARM®, RISC-V

does not include conditional execution or complex indexing

modes. By not including these, RISC-V minimizes hardware size

and complexity. Lastly, ARM® requires licensing, which can be

prohibitive in terms of cost and design time, whereas RISC-V is

open source.

7 Conclusions

We have found that teaching digital design and computer

architecture together enhances the clarity and understanding

of both topics. We have written a textbook that starts from the

basics of binary numbers and logic gates and then guides

students in designing increasingly complex digital circuits,

which culminates in their learning about the RISC-V

architecture and then designing, building, and testing a RISC-V

processor.

The RISC-V architecture is a particularly relevant and well-

suited architecture to study, especially for students learning

computer architecture for the first time, because it is open-

source, offers an extensible instruction set to support a broad

range of processors, and has a growing commercial market –

while, at the same time, the architecture is straightforward and

thus enables student understanding. By building up from basic

principles and building blocks, students understand the RISC-V

architecture and processor design from top to bottom.

ACKNOWLEDGMENTS

We would like to acknowledge Josh Brake, Assistant Professor

at Harvey Mudd college, for his contributions to the MOOC and

Chapter 9 of the textbook. We also thank our many reviewers

and the team at Morgan Kaufmann for their support in

publishing this textbook.

REFERENCES
[1] S. Harris and D. Harris, Digital Design and Computer Architecture, RISC-V

Edition, Morgan Kaufmann, 2021
[2] D. Harris and S. Harris, Digital Design and Computer Architecture, 2md

Edition, Morgan Kaufmann, 2011
[3] S. Harris and D. Harris, Digital Design and Computer Architecture: ARM®

Edition, Morgan Kaufmann, 2015
[4] D. Harris and S. Harris, From Zero to One: An Introduction to Digital Design

and Computer Architecture, the First International Workshop on
Reconfigurable Computing Education, March 1, 2006, Karlsruhe, Germany

[5] S. Harris and D. Harris, ARM-Based Digital Design and Computer Architecture
Curriculum, 17th International Conference on Information Technology–New
Generations (ITNG 2020), April 5-8, 2020 (virtual)

[6] Digital Design, HarveyMuddX, edx.org
[7] Computer Architecture, HarveyMuddX, edx.org

