
SRT Division Architectures and Implementations

David L. Harris, Stuart F. Oberman, and Mark A. Horowitz

Computer Systems Laboratory
Stanford University
Stanford, CA 94305

fharrisd, oberman, horowitzg@leland.stanford.edu

Abstract

SRT dividers are common in modern floating point units.
Higher division performance is achieved by retiring more
quotient bits in each cycle. Previous research has shown
that realistic stages are limited to radix-2 and radix-4.
Higher radix dividers are therefore formed by a combina-
tion of low-radix stages. In this paper, we present an anal-
ysis of the effects of radix-2 and radix-4 SRT divider ar-
chitectures and circuit families on divider area and perfor-
mance. We show the performance and area results for a
wide variety of divider architectures and implementations.
We conclude that divider performance is only weakly sen-
sitive to reasonable choices of architecture but significantly
improved by aggressive circuit techniques.

1 Introduction

A simple and widely implemented class of division al-
gorithm is digit recurrence. The most common implemen-
tation of digit recurrence division in modern microproces-
sors isSRTdivision, taking its name from the initials of
Sweeney, Robertson [1] and Tocher [2], who developed the
algorithm independently at approximately the same time.
SRT division uses subtraction as the fundamental opera-
tor to retire a fixed number of quotient bits in every itera-
tion. Two fundamental works on SRT division are those of
Atkins [3], the first major analysis of SRT algorithms, and
Tan [4], a derivation of high-radix SRT division and an ana-
lytic method of implementing SRT look-up tables. Ercego-
vac and Lang [5] provide a comprehensive treatment of the
theory of SRT division and square root. Although division
is typically an infrequent operation, ignoring its implemen-
tation significantly degrades system performance for many
applications [6].

Various techniques have been proposed for increasing di-
vision performance, including staging of simple low-radix
stages, overlapping sections of one stage with another stage,

and prescaling the input operands [7]. All of these meth-
ods introduce area-performance tradeoffs. Ercegovac and
Lang [5] analyze the tradeoffs of using several of these op-
timizations in the context of static CMOS standard-cells.
Williams [8] presents a self-timed dynamic CMOS divider
comprising a ring of five radix-2 stages that incorporates
several of these techniques, and he also presents an analy-
sis of the performance and area effects of the architectural
components. Prabhu [9] presents the tradeoffs encountered
when designing the Sun UltraSparc radix-8 divider.

In contrast to previous works, this paper analyzes in de-
tail the effects of both circuit style and divider architecture
on the area and performance of divider implementations.
We present the performance results using the technology-
independent metric of fanout-of-4 inverter delay. We are
therefore able to extrapolate our results to future process
technologies. While the discussion here is devoted to divi-
sion, the theory of square root computation is an extension
of the theory of division. Accordingly, most of the analyses
presented here can also be applied to the design of square
root units.

We survey the fundamental design parameters of SRT di-
vision and present the most common techniques for achiev-
ing higher performance in Section 2. Realizing the perfor-
mance impact of advanced circuit techniques, we examine
circuit issues relating to dual-rail domino divider implemen-
tations in Section 3. We present performance and area re-
sults for a wide variety of divider architectures and circuit
styles in Section 4. We analyze the data and draw conclu-
sions about the importance of architecture and circuit style
in Section 5.

2 SRT Division

2.1 Definitions

In this analysis, the input operands are assumed to be
represented in a normalized floating point format withn bit

significands in sign-and-magnitude representation. The al-
gorithms presented here are applied only to the magnitudes
of the significands of the input operands. Techniques for
computing the resulting exponent and sign are straightfor-
ward. The most common format found in modern com-
puters is the IEEE 754 standard for binary floating point
arithmetic. This standard defines single and double preci-
sion formats, wheren=24 for single precision andn=53 for
double precision. The significand consists of a normalized
quantity, with an explicit or implicit leading bit to the left of
the implied binary point, and the magnitude of the signifi-
cand is in the range [1,2). However, to simplify the presen-
tation, this analysis assumes fractional quotients normalized
to the range [0.5,1).

The quotient is defined to comprisek radix-r digits with

r = 2b (1)

k =
n

b
(2)

where a division algorithm that retiresb bits of quotient in
each iteration is said to be a radix-r algorithm. Such an
algorithm requiresk iterations to compute the finaln bit re-
sult and thus has alatencyof k cycles. Thecycle timeof
the divider is defined as the maximum time to compute one
iteration of the algorithm. Depending upon the implemen-
tation, this may or may not be the same as the cycle time of
the processor.

The following recurrence is used in every iteration of the
SRT algorithm:

rP0 = dividend (3)

Pj+1 = rPj � qj+1divisor (4)

wherePj is the partial remainder, or residual, at iterationj.
In each iteration, one digit of thequotient is determined by
the quotient-digit selection function:

qj+1 = SEL(rPj ; divisor) (5)

The final quotient afterk iterations is then

q =

kX

j=1

qjr
�j (6)

2.2 Divider Parameters

2.2.1 Choice of Radix

The fundamental method of decreasing the overall latency
(in machine cycles) of the algorithm is to increase the
radix r of the algorithm, typically chosen to be a power
of 2. However, this latency reduction does not come for
free. As the radix increases, the quotient-digit selection

becomes more complicated, which may increase the cy-
cle time. Moreover, the generation of all required divi-
sor multiples may become impractical for higher radices.
Oberman [10] shows that the delay of quotient selection
tables increases linearly with increasing radix, while the
area increases quadratically. While prescaling of the in-
put operands [11] reduces table complexity at the expense
of additional latency, nevertheless the difficulty in gener-
ating all of the required divisor multiples for radix 8 and
higher limits practical divider implementations to radix 2
and radix 4.

2.2.2 Choice of Quotient Digit Set

For a given choice of radixr, some range of digits is decided
upon for the allowed values of the quotient ineach iteration.
The simplest case is where, for radixr, there are exactlyr
allowed values of the quotient. However, to increase the
performance of the algorithm, aredundant digit setis used.
This allows a quotient digit to be selected based upon an
approximation of the partial remainder, permitting the use
of a redundantremainder representation as discussed in the
next section. Small errors in the quotient due to the remain-
der approximation are corrected in later iterations. Such a
digit set is composed of symmetric signed-digit consecu-
tive integers, where the maximum digit isa. The digit set
is made redundant by having more thanr digits in the set.
By using a larger number of allowed quotient digits, the
complexity and latency of the quotient selection function is
reduced. However, choosing a smaller number of allowed
digits for the quotient simplifies the generation of the mul-
tiple of the divisor. Specifically, for radix 2, the digit set is
f�1; 0; 1g. For radix 4, there are two typical choices for the
digit set: minimally redundantf�2;�1; 0; 1; 2g and maxi-
mally redundantf�3;�2;�1; 0; 1;2; 3g. The quotient se-
lection logic for a maximally-redundant radix 4 digit set is
about 20% faster and 50% smaller than for a minimally-
redundant digit set [10]. However, maximally-redundant
radix 4 requires the computation of the 3x divisor multiple,
which typically requires extra initial delay and area.

2.2.3 Choice of Remainder Representation

The partial remainder also can be represented in two differ-
ent forms, eitherredundantornonredundant. Each iteration
of the algorithm requires a subtraction to compute the next
partial remainder. If this partial remainder is in a nonredun-
dant form, then this operation requires a time-consuming
full-width carry-propagate-adder, increasing the cycle time.
Therefore, the partial remainder is typically stored in redun-
dant form so that a fast carry-free adder, such as a carry-save
adder (CSA), can be used in the partial remainder calcula-
tion.

Datapath

Control

Block 1
Datapath

Block m
Datapath

Block 1
Control

Block m
Control

...

...

Input M
ux &

 Latch

Figure 1. SRT divider block diagram

2.3 Higher Performance

Several techniques have been proposed for improving the
performance of SRT division, but most involve cascading
low-radix stages to form a higher radix divider. The pri-
mary problem with a cascade of stages is the corresponding
increase in cycle time. To avoid this increase, some addi-
tional computation can proceed in parallel at the expense
of area. Taylor [12] proposes overlapping the quotient-
digit selection of consecutive stages. Oberman [10] and
Quach [13] discuss overlapping remainder computation.
Fandrianto [14] discusses a cascade of lower radix segments
in which there is no shifting of the partial remainder be-
tween the segments through the use of range reduction. In
this study, we analyze the effects of five possible overlap
schemes: no overlap, overlapped quotient selection, over-
lapped remainder computation, overlapped quotient and re-
mainder computation, and a hybrid overlap scheme.

A general divider organization using overlapping is
shown in Fig. 1. This floorplan is divided into a control sec-
tion for quotient digit computation that typically operates
on a small number of the most significant bits (about 4 for
radix 2 and 8 for radix 4), and a datapath section for partial
remainder formation of the remaining significand bits.

The divider is defined to comprise a cascade ofm blocks,
where each block has a delay oftblock. Each block is com-
posed ofs overlapped radix-r stages. The divider therefore
retiresb0 = m � s � b bits in each cycle, with a total cy-
cle time ofm� tblock+ toverhead, wheretoverhead includes
latch delay, clock skew, and the input multiplexor for inject-
ing new operands. Such an overlapped scheme producesk0

radix-r0 digits with

r
0 = 2b

0

(7)

k
0 =

n

b0
(8)

The overlap schemes we consider are illustrated in Figs.
2 through 6. The critical path(s) are indicated by the heavy
black lines. While all partial remainders are stored in carry-
save form, they are drawn with a single wire for simplicity.
The architectures are shown overlapping two stages, but can
be generalized to higher overlap [9].

CSA

QSLC

{aD, ..., -aD}

PR[i]

PR[i+1]

q[i+1]

Control

Datapath

Figure 2. Non-overlapped design

QSLC

CSA

QSLC QSLC

CSA QSLC

CSA

... ...
{aD, ..., -aD}

{aD, ..., -aD}

PR[i]

PR[i+2]

q[i+1]

q[i+2]

aD -aD

Control Datapath

CSA

Figure 3. Overlapped quotient selection

2.3.1 Non-overlapped

A simple non-overlapped design is common in low-cost
applications, such as the Intel Pentium Processor [15]. A
block diagram is shown in Fig. 2.

The critical path involves generating the next quotient
digit using high order bits from the current partial remain-
der and the divisor as input to the quotient selection logic
(QSLC), driving the quotient across the datapath to select
the proper divisor multiple, and subtracting the divisor mul-
tiple from the partial remainder with a carry-save adder to
compute the next partial remainder. The critical path delay
is equal to:

tblock = tqslc + tbuf + tmux + tCSA (9)

2.3.2 Overlapping Quotient Selection

Overlapping quotient selection (Fig. 3) requires additional
control logic but no additional datapath elements. This tech-
nique was demonstrated by Taylor [12]. The critical path in-
volves speculatively generating all possible second quotient
digits, then choosing among them given the first quotient
digit. The results are used to select the appropriate divisor

QSLC

CSA CSA

CSA CSA

... ...

... ...

PR[i]

PR[i+2]

q[i+1]

q[i+2]

aD -aD

aD -aD

Control Datapath

QSLC

Figure 4. Overlapped remainder formation

QSLC

CSA

QSLC QSLC

QSLC

CSA CSA

CSA CSA

...

... ...

PR[i]

PR[i+2]

q[i+1]

q[i+2]

aD -aD

aD -aD

aD -aD

Control Datapath

CSA

Figure 5. Overlapped remainder and quotient
selection

multiple to subtract from the partial remainder. The data-
path CSAs may be optimized for a single late input. The
critical path fors = 2 is equal to:

tblock = tqslc + tbuf + 2tmux + 2tCSA (10)

2.3.3 Overlapping Remainder Formation

Overlapping partial remainder computation (Fig. 4) specu-
latively computes all of the next partial remainders, then se-
lects the appropriate one based on the actual quotient digit.
The critical path delay fors = 2 is:

tblock = 2(tqslc + tbuf + tmux) (11)

2.3.4 Overlapping Quotient Selection and Remainder
Formation

The previous two schemes can be combined (Fig. 5) such
that both the quotient selection and partial remainder for-
mation are overlapped. The Sun UltraSparc [9] implements
such a combination. This design has two equally critical
paths, one through the quotient digit selection logic, and the
other through the speculative partial remainder formation.

QSLC

CSA

QSLC QSLC

QSLC CSA CSA

CSA CSA

... ...

... ...

... ...

PR[i]

PR[i+2]

q[i+1]

q[i+2]

aD -aD aD -aD

aD -aD

Control

CSA

CSA

{aD, ..., -aD}

{aD, ..., -aD}

PR[i+2]Datapath

CSA

Figure 6. Hybrid overlapping

The critical path delay fors = 2 is:

tblock = tqslc + tbuf + 2tmux + tCSA (12)

2.3.5 Hybrid Overlap

Closer examination shows that only the most significant bits
of the next partial remainder are critical. We can exploit
this fact in two ways. One is to buffer the quotient digits
before driving the low-order mux selects. This optimization
is applicable to all architectures. Another way is to only
overlap partial remainder of the critical high-order bits to
save area. These techniques are combined in Fig. 6.

This architecture is a hybrid of the overlapped partial re-
mainder design for the critical bits and just overlapped quo-
tient selection for the non-critical bits. The quotient dig-
its are buffered before driving the datapath with the non-
critical least significant bits. This eliminates the buffer de-
lay from the critical path to the high order bits. The critical
path delay fors = 2 is:

tblock = tqslc + 2tmux + tCSA (13)

Hardware is saved relative to the overlapped partial
remainder formation because no speculative adders are
needed in the datapath for partial remainder formation. The
non-critical partial remainder bits lag behind the critical bits
by the delay of a buffer plus CSA. This may slightly in-
crease the time required for rounding and normalization at
the end of a divide. More importantly, the non-critical bits
must catch up in time before they are required by quotient
selection. Therefore, the speculative partial remainder for-
mation must operate ons � b extra bits to catch these bits
up before they become critical. The lag of the non-critical
bits plus the delay through the partial remainder formation
must be less than the delay of the critical quotient selection
path in order for the non-critical bits to catch up as they
are shifted into the critical portion. Specifically, the criti-
cal path delay from q[i+2] to PR[i+4] through the quotient

digit logic to generate the next set of most-significant partial
remainder bits is:

tcrit = tmux + (tCSA + tqslc + tmux + tmux)(14)

while the sum of the lagging path delay and partial remain-
der formation delay is:

tnoncrit = (tbuf + tmux + tCSA) + (15)

(tCSA + tmux + tCSA + tmux)

Simplifying, to keeptnoncrit < tcrit,

tbuf + 2tCSA < tqslc (16)

As we show later, quotient selection is the most time con-
suming component, especially for radix-4 designs. There-
fore, it is reasonable to expect this constraint to be satisfied,
especially since the datapath adder may be optimized for a
single late input. If quotient selection is too fast, the final
partial remainder formation can be overlapped in the data-
path, adding more CSAs, but relaxing the timing constraint
to tbuf + tCSA < tqslc.

2.4 Comparison

Table 1 compares the latency, hardware cost, and wiring
cost of each architecture. The number of QSLCs (which
dominate control area) and number of CSAs and MUXes in
the datapath are listed. Also, the number of metal tracks re-
quired is computed (see Fig. 7). Overlapping quotient digit
selection savess � 1 quotient selection and buffer delays
at the expense of additional quotient selection logic blocks.
Overlapping partial remainder formation saves the delay of
one CSA at the expense of many more CSAs performing
speculative computation. Finally, the hybrid scheme elim-
inates the buffer delay and also avoids a large number of
speculative CSAs. From Table 1, the hybrid overlapping
scheme has the lowest latency and also saves hardware rel-
ative to the next fastest scheme. However, the performances
of other architectures that overlap quotient selection are
within a CSA and buffer delay of the hybrid scheme, and
as discussed previously, the buffer may be optimized out of
the critical path.

The number of quotient selection blocks increases
sharply when moving from radix-2 to radix-4 and for in-
creasings, as shown in Table 2. Due to the exponential
increase in area for increasings, reasonable designs are lim-
ited to an overlap ofs = 2 or possiblys = 3.

3 Circuits

Overlapping stages is important, but Table 1 shows that
the incremental improvement of better overlap techniques
is small. Execution unit designers are therefore turning to

22

2

a

PR[i+1]PR[i]

PR feedback

{D, 2D, ..., aD}

qD

MUX CSA

2
2

2

a
q[i+1]D

2 PR[i+2]

PR feedback

{D, 2D, ..., aD}

PR[i]

MUX CSA MUX CSA

PR[i+1]

2

2

a

q[i+1]D 2

MUXCSA MUXMORE
CSAs

PR[i+1]

CSA CSA MORE
CSAs

CSA

q[i+2]D 2

q[i+2]D

2 2 PR[i+2]

PR feedback

{D, 2D, ..., aD}

PR[i]

Non-Overlap (s=1) Overlap QS / Hybrid (s=2)

Overlap PRF / Overlap QS & PRF (s=2)

Figure 7. SRT datapath floorplan for one block

more aggressive circuit techniques, especially domino cir-
cuits, to greatly reduce latency [16].

Three key circuit issues which impact architectural
choices are domino monotonicity requirements, wiring cost,
and clocking overhead. Designers accustomed to static
logic must remember that domino circuits require mono-
tonically rising inputs during evaluation. Since single-
rail domino circuits are not a functionally complete logic
family, non-monotonic gates such as CSAs require dual-
rail inputs and outputs to code both true and complemen-
tary signals. This increases the area of logic gates and
the amount of interconnect. Radix-4 quotient selection
logic is especially impacted because it is relatively large.
Fortunately, the quotient digits produced are consumed
only by multiplexors, so they can be computed in single-
rail 1-hot form. Two options for high-speed QSLCs are
domino gates and dynamic self-timed PLAs. We found that
radix-4 minimally/maximally redundant 1-hot PLAs have
50/25 minterms respectively, while according to [10] mini-
mally/maximally redundant Gray-encoded PLAs have only
25/14 minterms. Static designs can implement either a 1-
hot PLA or an encoded PLA to save area, but domino im-
plementations require the larger 1-hot design.

The datapath dominates the area of most dividers, so we
must examine the number of bitlines running between ele-
ments within a bitslice. Dynamic designs double the wire
count because dual-rail signals are needed. All floating
point blocks have fixed overhead of power and ground, and
three data busses (two inputs and one output). Dividers have
many additional bitlines because partial remainders are kept
in redundant form.

Fig. 7 illustrates wiring requirements on a floorplan of a
block for various architectures. A dot on a wire over an ele-
ment indicates that the signal is used in the element. On all
architectures, two lines are required for driving the redun-
dant partial remainder along the path and another two lines
are required for feeding the result back for the next itera-

Wide # Wide
Architecture Block Latency # QSLC CSAs MUXes Bitlines
Nonoverlap s(tqsel + tbuf + tmux + tCSA) s s s 5+a
Overlap QS tqsel + tbuf + stmux + stCSA see Table 2 s s 5+a
Overlap PRF s(tqsel + tbuf + tmux) s 2as s 6+a
Overlap QS and PRF tqsel + tbuf + stmux + (s � 1)tCSA see Table 2 2as s 6+a
Hybrid tqsel + stmux + (s � 1)tCSA see Table 2 s s 5+a

Table 1. Comparison of architectures

tion. Furthermore, divisor multiples must be driven to all of
the blocks. Although there are2a+ 1 divisor multiples, we
must only transmit thea positive multiples and can gener-
ate the negative multiples with a local inversion. Finally, the
appropriate divisor must be selected. In architectures which
do not speculatively generate partial remainders, only one
wire is required to drive the divisor mux output to the CSA
which generates the next partial remainder. In speculative
architectures,2a CSAs generate two bits of output each. It
would seem4a wires are required as input to the divisor
mux. However, by distributing the multiplexor across the
adders, only two wires are needed for the redundant result.

A static divider requires either5 + a or 6 + a bitlines,
which poses little difficulty. A dual-rail domino divider
requires twice as many bitlines. These bitlines can be ac-
commodated in a bit pitch of about 120� (� is half of the
minimum drawn transistor length), especially if some M4
tracks are allocated for routing the input and output buses
over the floating point unit. Cells can be efficiently laid out
at this pitch, so wire limitations are not expected to increase
divider area significantly in a process with 3 or 4 metal lay-
ers. This is consistent with [8] which reports only a 15%
area penalty for dual-rail domino in a 2 layer process.

Clocking overhead is an important concern in both static
and dynamic designs. Static designs conventionally use a
flip-flop with a multiplexor at the beginning of the cycle
to capture either a new divider input or the result of the
previous iteration. The flip-flop adds a delay oftclk!q +

tsetup + tskew to the path, which can be large. Traditional
domino designs require latches between phases of domino
logic and are also sensitive to clock skew, but skew-tolerant
domino techniques [17] make domino much more attractive
by eliminating latch delays and clock skew from the critical
path. Good domino designs must only pay the cost of one
2:1 multiplexor at the beginning ofeach cycle. This cost
may be amortized over many bits produced in the cycle.

Since the area is proportional to the number of blocks,
area can be reduced without impacting latency by clocking
the divider at a higher frequency than the rest of the pro-
cessor. For example, the HP-PA7100 [18] achieves higher
radix by clocking a lower radix core at double frequency.
This technique improves area at the expense of the com-

s r=2 a=1 r=4 a=2 r=4 a=3
1 1 1 1
2 4 6 8
3 11 27 39
4 26 112 166

Table 2. QSLCs for overlapped architectures

plexity of generating a higher frequency clock.
In summary, domino is an attractive approach for high-

performance dividers. It greatly reduces gate delays and
eliminates much of the clocking overhead found in flip-flop-
based static designs. The domino wiring requirements do
not significantly increase area in processes with 3 or more
metal layers. Thus, the primary costs of domino designs
are the extra area consumed by quotient selection logic, the
increased power consumption while the divider is active,
and the necessary circuit design expertise.

4 Results
We assigned a divider design project in an advanced

VLSI circuit class at Stanford University. Twelve teams ex-
plored a wide variety of radix 2 and radix 4 double preci-
sion SRT divider designs using skew-tolerant domino cir-
cuits. The designs reflect a variety of skill levels and
area/performance tradeoffs, but the best designs are reason-
able. The delay results are from HSPICE simulation, and
the area estimates are based upon total transistor count and
device size. We compare these results with data on static
dividers extrapolated from Ercegovac [5].

The designs are shown on a scatter plot of delay/bit vs.
area/bit/divider cycle, shown in Fig. 8. The labeled points
are described further in Table 3 and represent those designs
with the best performance for a given area. The delay/bit is
measured in fanout-of-4 inverter delays in the 1�m (drawn)
HP-CMOS26B process. Area must be normalized by the
number of bits produced per cycle because a divider can
simply unroll more blocks until the cycle is full. Area is es-
timated inmm2 and can be converted to�2 by multiplying
by 4�106. Area reflects only the divider control and datap-
ath components, not auxiliary circuits required for normal-

Design Architecture r a s Delay/bit Area/bit/cycle QSLC Notes
(FO4) (mm2) Style

A Non-overlapped 4 2 1 9.5 0.23 synthesized smallest static
B Hybrid overlap 4 2 2 5.7 0.33 synthesized fastest static
C Hybrid overlap 2 1 2 4.6 0.63 custom domino most flexible
D Overlap QS 2 1 3 4.7 0.68 custom domino like UltraSparc
E Hybrid overlap 4 3 2 3.7 0.86 1-hot PLA fastest domino

Table 3. Designs with best performance for given area

0

2

4

6

8

10

12

14

0 0.5 1

Area/Bit/Cycle (mm^2)

StaticA

B

C D

E

D
el

ay
/B

it
 (

E
O

4)

Figure 8. Scatter plot of results

izing, rounding, and exponent handling. Design E includes
the area but not the additional setup latency of a fast CPA,
as maximally-redundant radix 4 designs require precompu-
tation of the 3x divisor multiple.

The arrowheads point out two hybrid overlapped radix
2 designs. The domino design is 1.7 times as fast but has
1.6 times as much area. The extra area is attributable to
generating dual-rail outputs. The fastest domino design is
1.5 times as fast as the fastest static design; radix 4 domino
designs have a larger area penalty because of the larger PLA
required for monotonic quotient digit selection. The skew-
tolerant domino designs assume an overhead of 1 FO4 delay
/ 4 bits for the input mux, while static designs use 4.4 FO4
delays / 4 bits for the mux and flip-flop overhead. This is a
major advantage of skew-tolerant domino circuits.

The static results from [5] were normalized with the con-
version that one fanout-of-3 NAND2 delay equals 1.05 FO4

Design tqslc tmux tCSA tbuf

A,B 11.3 1.9 2.3 1.8
C 4.0 1.5 1.5 NA
D 3.6 0.9 1.5 1.1
E 7.8 1.7 - 2.6 1.7 NA

Table 4. Selected component delays (FO4)

delays and has an average area of 400�m2. Thus, the data
for the static designs has more uncertainty than for the dy-
namic designs. Further, some of the static results were ex-
trapolated from element delays tabulated in [5], rather than
from complete designs. The designs in [5] assume iteration
overhead of 8.4 FO4 delays in a conservative standard-cell
methodology, but we use a more aggressive 4.4 FO4 delays
as noted previously. The reported static quotient-selection
logic delay is unexpectedly low compared with the domino.

Table 4 lists key component delays for several designs.
As expected, quotient selection delay dominates the radix-4
critical path. The mux delay in design D is suprisingly low.

For comparison, Williams [8] reports delays of over-
lapped quotient selection for radix-2 and radix-4 stages in
terms of FO1 inverter delay. Converting these delays us-
ing 1 FO4 inverter� 2.5 FO1 inverters, we find a delay per
bit of 4.7 FO4 for radix-2 and 4.5 FO4 for radix-4. These
are consistent with the delays reported in this study. Com-
paring area is more difficult, as Williams’ self-timed ring
is constrained to overlapping ofs = 5 stages to mask the
overhead of self-timing.

5 Conclusions
The data points investigated in this study cover a wide

range of the design space. However, the domino data points
in Fig. 8 are tightly clustered with comparable area and per-
formance. Therefore, we conclude that the choice of ar-
chitecture, and especially the choice of either radix-2 or
radix-4, makes little difference in the overall performance.
Three examples of reasonable architectures which provide
high performance with modest areas are hybrid overlapped
radix-2 (s=2), quotient selection overlapped radix-2 (s=3),
and hybrid overlapped maximally-redundant radix-4 (s=2).

Although the maximally-redundant radix-4 design achieves
the lowest core delay, it requires extra time and hardware
outside the iterations for 3x divisor multiple generation.
Also, the designs producing more bits per block (b� s) are
less flexible, as typically an integral number of blocks must
fit within a cycle. The reasonable architectures offer a de-
lay/bit of 4-5 FO4 and a cost of approximately 3M�2 or
6000 transistors per bit/cycle in the core.

The choice of circuit style has a larger effect on perfor-
mance. Specifically, moving from static CMOS to dual-rail
domino reduces the delay of the individual gates. Skew-
tolerant domino increases performance further by eliminat-
ing clocking overhead. Comparing similar architectures,
dual-rail domino provides a 1.5 - 1.7x speedup over static
designs. However, static designs are generally smaller than
dual-rail designs of the same architecture because only one
polarity of output need be generated and becausequotient
selection logic can be more compactly designed with non-
monotonic gates. Skew-tolerant domino circuits provide the
performance advantages of self-timed circuits without the
complexity of asynchronous design or the need to duplicate
hardware to hide control overhead. For performance-critical
designs, we recommend the use of dual-rail domino.

Acknowledgments
Thanks to all of the students in EE371 for their excellent

work on the projects. We would like to note the designers
of the “reasonable” architectures:C by Jeff Solomon and
Derek Debusschere;D by Min Xu and Mengchen Yu;E by
Peter Richards and Peter Verplaetse. Peter Verplaetse also
contributed optimized 1-hot PLA data.

This work was supported by the NSF through a fellow-
ship and grant MIP93-13701 and by Stanford’s Center for
Integrated Systems.

References

[1] J. E. Robertson, “A new class of digital division meth-
ods,” IRE Trans. Electronic Computers, vol. EC-7, pp.
218–222, Sept. 1958.

[2] K. D. Tocher, “Techniques of multiplication and divi-
sion for automatic binary computers,”Quart. J. Mech.
Appl. Math., vol. 11, pt. 3, pp. 364–384, 1958.

[3] D. E. Atkins, “Higher-radix division using estimates
of the divisor and partial remainders,”IEEE Trans.
Computers, vol. C-17, no. 10, Oct. 1968.

[4] K. G. Tan, “The theory and implementation of high-
radix division,” in Proc. 4th IEEE Symp. Computer
Arithmetic, pp. 154–163, June 1978.

[5] M. D. Ercegovac and T. Lang,Division and Square
Root: Digit-Recurrence Algorithms and Implementa-
tions, Kluwer Academic Publishers, 1994.

[6] S. F. Oberman and M. J. Flynn, “Design issues in
division and other floating-point operations,”IEEE
Trans. Computers, vol. 46, no. 2, pp. 154–161, Feb.
1997.

[7] S. F. Oberman and M. J. Flynn, “Division algorithms
and implementations,”to appear in IEEE Trans. Com-
puters, 1997.

[8] T. E. Williams and M. A. Horowitz, “A zero-overhead
self-timed 160-ns 54-b CMOS divider,”IEEE J. Solid-
State Circuits, vol. 26, no. 11, pp. 1651–1661, Nov.
1991.

[9] J. A. Prabhu and G. B. Zyner, “167 MHz radix-8
floating point divide and square root using overlapped
radix-2 stages,” inProc. 12th IEEE Symp. Computer
Arithmetic, pp. 155–162, July 1995.

[10] S. F. Oberman,Design Issues in High Performance
Floating Point Arithmetic Units, Ph.D. thesis, Stan-
ford University, Nov. 1996.

[11] M. D. Ercegovac and T. Lang, “Simple radix-4 divi-
sion with operands scaling,”IEEE Trans. Computers,
vol. 39, no. 9, pp. 1204–1208, Sept. 1990.

[12] G. S. Taylor, “Radix 16 SRT dividers with overlapped
quotient selection stages,” inProc. 7th IEEE Symp.
Computer Arithmetic, pp. 64–71, June 1985.

[13] N. Quach and M. Flynn, “A radix-64 floating-pointdi-
vider,” Technical Report No. CSL-TR-92-529, Com-
puter Systems Laboratory, Stanford University, June
1992.

[14] J. Fandrianto, “Algorithm for high-speed shared radix
8 division and radix 8 square root,” inProc. 9th IEEE
Symp. Computer Arithmetic, pp. 68–75, July 1989.

[15] H. P. Sharangpani and M. L. Barton, “Statistical anal-
ysis of floating point flaw in the pentium processor,”
Intel Corporation White Paper, November 1994.

[16] P. Gronowski et al., “A 433-MHz 64-b quad-issue
RISC microprocessor,”IEEE J. Solid-State Circuits,
vol. 31, no. 11, pp. 1687–1696, Nov. 1996.

[17] D. Harris and M. Horowitz, “Skew-tolerant domino
circuits,” in Digest of Technical Papers, IEEE Int.
Solid-State Circuits Conf., 1997, pp. 422–423.

[18] T. Asprey, G. S. Averill, E. DeLano, R. Mason,
B. Weiner, and J. Yetter, “Performance features of the
PA7100 microprocessor,”IEEE Micro, vol. 13, no. 3,
pp. 22–35, June 1993.

