
Chapter 3:

Sequential Logic
Design

Digital Design &

Computer Architecture
Sarah Harris & David Harris

Digital Design & Computer Architecture Sequential Logic Design

Chapter 3 :: Topics
• State Elements

– Bistable Circuit
– SR Latch
– D Latch
– D Flip-Flop
– Variations

• Synchronous Sequential Logic
• Finite State Machines

– Moore
– Mealy
– Factored

• Timing of Sequential Logic
– Clock Skew
– Synchronization

• Parallelism

2

Chapter 3: Sequential Logic

State Elements

Digital Design & Computer Architecture Sequential Logic Design

• Outputs of sequential logic depend on
current and prior input values – it has
memory.

• Some definitions:

– State: all the information about a circuit
necessary to explain its future behavior

– Latches and flip-flops: state elements that store
one bit of state

– Synchronous sequential circuits: Sequential
circuits using flip-flops sharing a common clock

Introduction

4

Digital Design & Computer Architecture Sequential Logic Design

• Give sequence to events

• Have memory (short-term)

• Use feedback from output to input to store
information

Sequential Circuits

5

Digital Design & Computer Architecture Sequential Logic Design

• State: everything about the prior inputs to
the circuit necessary to predict its future
behavior

• Usually just 1 bit, the last value captured

• State elements store state

– Bistable circuit

– SR Latch

– D Latch

– D Flip-flop

State Elements

6

Chapter 3: Sequential Logic

Bistable Circuit

Digital Design & Computer Architecture Sequential Logic Design

QQ
Q

Q

I1

I2

I2 I1

• Fundamental building block of other state
elements

• Two outputs: Q, Q

• No inputs

Bistable Circuit

Back-to-back inverters Cross-coupled inverters

8

Same circuit!

Digital Design & Computer Architecture Sequential Logic Design

Q

Q

I1

I2

0

1

1

0

Q

Q

I1

I2

1

0

0

1

• Consider the two possible cases:

– Q = 0:

 then Q = 1, Q = 0 (consistent)

– Q = 1:

 then Q = 0, Q = 1 (consistent)

• Stores 1 bit of state in the state variable, Q (or Q)

• But there are no inputs to control the state

Bistable Circuit Analysis

9

Chapter 3: Sequential Logic

SR Latch

Digital Design & Computer Architecture Sequential Logic Design

R

S

Q

Q

N1

N2

• SR Latch

• Consider the four possible cases:
– S = 1, R = 0

– S = 0, R = 1

– S = 0, R = 0

– S = 1, R = 1

SR (Set/Reset) Latch

11

Digital Design & Computer Architecture Sequential Logic Design

– S = 1, R = 0:

 then Q = 1 and Q = 0

 Set the output

– S = 0, R = 1:

 then Q = 0 and Q = 1

 Reset the output

SR Latch Analysis

R

S

Q

Q

N1

N2

0

1

1

0
1

0

R

S

Q

Q

N1

N2

1

0

0

1
0

1

12

Digital Design & Computer Architecture Sequential Logic Design

R

S

Q

Q

N1

N2

0
R

S

Q

Q

N1

N2

0

0

0

Qprev = 0 Qprev = 1

1
0

1

1

0
1

0

0

– S = 0, R = 0:

 then Q = Qprev

 Memory!

– S = 1, R = 1:

 then Q = 0, Q = 0

 Invalid State

 Q ≠ NOT Q

SR Latch Analysis

R

S

Q

Q

N1

N2

1

1

0

0
0

0

13

Digital Design & Computer Architecture Sequential Logic Design

S

R Q

Q

SR Latch

Symbol

• SR stands for Set/Reset Latch

– Stores one bit of state (Q)

• Control what value is being stored with S, R inputs
– Set: Make the output 1

 S = 1, R = 0, Q = 1

– Reset: Make the output 0

 S = 0, R = 1, Q = 0

– Memory: Retain value

 S = 0, R = 0, Q = Qprev

• Must do something to avoid invalid state (when
S = R = 1)

SR Latch

14

Chapter 3: Sequential Logic

D Latch

Digital Design & Computer Architecture Sequential Logic Design

D Latch

Symbol

CLK

D Q

Q

• Two inputs: CLK, D
– CLK: controls when the output changes

– D (the data input): controls what the output changes to

• Function
– When CLK = 1,

 D passes through to Q (transparent)

– When CLK = 0,

 Q holds its previous value (opaque)

• Avoids invalid case when

 Q ≠ NOT Q

D Latch

16

Digital Design & Computer Architecture Sequential Logic Design

S

R Q

Q

Q

Q
D

CLK
D

R

S

CLK

D Q

Q

S R Q

0 0 Q
prev

0 1 0

1 0 1

Q

1

0

CLK D

0 X

1 0

1 1

D

X

1

0

Q
prev

D Latch Internal Circuit

17

Chapter 3: Sequential Logic

D Flip-Flop

Digital Design & Computer Architecture Sequential Logic Design

D Flip-Flop

Symbols

D Q

Q

• Inputs: CLK, D

• Function:
– Samples D on rising edge of CLK

• When CLK rises from 0 to 1, D
passes through to Q

• Otherwise, Q holds its previous
value

– Q changes only on rising edge of CLK

• Called edge-triggered
– Activated on the clock edge

D Flip-Flop

Clock edges

CLK

19

Digital Design & Computer Architecture Sequential Logic Design

CLK

D Q

Q

CLK

D Q

Q

Q

Q

D
N1

CLK

L1 L2

• Two back-to-back D latches (L1 and L2) controlled by
complementary clocks

• When CLK = 0
– L1 is transparent

– L2 is opaque

– D passes through to N1

• When CLK = 1
– L2 is transparent

– L1 is opaque

– N1 passes through to Q

• Thus, on the edge of the clock (when CLK rises from 0 1)
– D passes through to Q

D Flip-Flop Internal Circuit

20

Digital Design & Computer Architecture Sequential Logic Design

CLK

D

Q (latch)

Q (flop)

CLK

D Q

Q

D Q

Q

D Latch vs. D Flip-Flop

D Latch D Flip-flop

CLK

D

Q (latch)

Q (flop)

21

Chapter 3: Sequential Logic

Variations on a Flop

Digital Design & Computer Architecture Sequential Logic Design

CLK

D Q

D Q

D Q

D Q

D3

D2

D1

D0

Q3

Q2

Q1

Q0

D
3:0

4 4

CLK

Q
3:0

Registers: One or More Flip-flops

4-bit Register

4-bit Register

Easier to draw!

23

Two ways to draw a register

Digital Design & Computer Architecture Sequential Logic Design

Internal

Circuit

D Q

CLKEN

D
Q

0

1
D Q

EN

Symbol

• Inputs: CLK, D, EN
– The enable input (EN) controls when new data (D) is stored

• Function
– EN = 1: D passes through to Q on the clock edge

– EN = 0: the flip-flop retains its previous state

Enabled Flip-Flops

24

Digital Design & Computer Architecture Sequential Logic Design

Symbols

D Q

Reset
r

• Inputs: CLK, D, Reset

• Function:
– Reset = 1: Q is forced to 0

– Reset = 0: flip-flop behaves as ordinary D flip-flop

Resettable Flip-Flops

25

Digital Design & Computer Architecture Sequential Logic Design

• Two types:
– Synchronous: resets at the clock edge only

– Asynchronous: resets immediately when Reset = 1

• Asynchronously resettable flip-flop requires
changing the internal circuitry of the flip-flop

• Synchronously resettable flip-flop?

Resettable Flip-Flops

Internal

Circuit

D Q

CLK

D
Q

Reset

26

Digital Design & Computer Architecture Sequential Logic Design

Symbols

D Q

Set
s

• Inputs: CLK, D, Set

• Function:
– Set = 1: Q is set to 1

– Set = 0: the flip-flop behaves as ordinary D flip-flop

Settable Flip-Flops

27

Chapter 3: Sequential Logic

Synchronous
Sequential Logic

Digital Design & Computer Architecture Sequential Logic Design

X Y Z

• Sequential circuits: all circuits that aren’t
combinational

• A problematic circuit:

• No inputs and 1-3 outputs

• Astable circuit, oscillates

• Period depends on inverter delay

• It has a cyclic path: output fed back to input

Sequential Logic

X

Y

Z

time (ns)0 1 2 3 4 5 6 7 8

X

Y

Z

time (ns)0 1 2 3 4 5 6 7 8

29

Digital Design & Computer Architecture Sequential Logic Design

• Breaks cyclic paths by inserting registers

• Registers contain state of the system

• State changes at clock edge: system synchronized to the
clock

• Rules of synchronous sequential circuit composition:
– Every circuit element is either a register or a combinational circuit

– At least one circuit element is a register

– All registers receive the same clock

– Every cyclic path contains at least one register

• Two common synchronous sequential circuits
– Finite State Machines (FSMs)

– Pipelines

Synchronous Sequential Logic Design

30

Digital Design & Computer Architecture Sequential Logic Design

• Breaks cyclic paths by inserting registers

• Registers contain state of the system

• State changes at clock edge: system synchronized to the
clock

• Rules of synchronous sequential circuit composition:
– Every circuit element is either a register or a combinational circuit

– At least one circuit element is a register

– All registers receive the same clock

– Every cyclic path contains at least one register

• Two common synchronous sequential circuits
– Finite State Machines (FSMs)

– Pipelines

Synchronous Sequential Logic Design

31

Chapter 3: Sequential Logic

FSMs:

Finite State Machines

Digital Design & Computer Architecture Sequential Logic Design

Next

State

Current

State

S’ S

CLK

CL

Next State

Logic

Next

State
CL

Output

Logic

Outputs

• Consists of:

– State register
• Stores current state

• Loads next state at clock edge

– Combinational logic
• Computes the next state

• Computes the outputs

Finite State Machine (FSM)

33

Digital Design & Computer Architecture Sequential Logic Design

CLK
M Nk knext

state

logic

output

logic

Moore FSM

CLK
M Nk knext

state

logic

output

logic

inputs

inputs

outputs

outputs
state

state
next

state

next

state

Mealy FSM

• Next state determined by current state and inputs

• Two types of finite state machines differ in output
logic:

– Moore FSM: outputs depend only on current state

– Mealy FSM: outputs depend on current state and inputs

Finite State Machines (FSMs)

34

Digital Design & Computer Architecture Sequential Logic Design

CLK
M Nk knext

state

logic

output

logic

Moore FSM

CLK
M Nk knext

state

logic

output

logic

inputs

inputs

outputs

outputs
state

state
next

state

next

state

Mealy FSM

• Next state determined by current state and inputs

• Two types of finite state machines differ in output
logic:

– Moore FSM: outputs depend only on current state

– Mealy FSM: outputs depend on current state and inputs

Finite State Machines (FSMs)

35

Digital Design & Computer Architecture Sequential Logic Design

FSM Design Procedure
1. Identify inputs and outputs

2. Sketch state transition diagram

3. Write state transition table and output table
- Moore FSM: write separate tables

- Mealy FSM: write combined state transition and
output table

4. Select state encodings

5. Rewrite state transition table and output table
with state encodings

6. Write Boolean equations for next state and
output logic

7. Sketch the circuit schematic

36

Digital Design & Computer Architecture Sequential Logic Design

FSM Design Procedure
1. Identify inputs and outputs

2. Sketch state transition diagram

3. Write state transition table and output table
- Moore FSM: write separate tables

- Mealy FSM: write combined state transition and
output table

4. Select state encodings

5. Rewrite state transition table and output table
with state encodings

6. Write Boolean equations for next state and
output logic

7. Sketch the circuit schematic

37

Chapter 3: Sequential Logic

Moore FSM Example

Digital Design & Computer Architecture Sequential Logic Design

T
A

L
A

T
A

L
B

T
B

T
B

L
A

L
B

Academic Ave.
B

ra
v
a

d
o

B
lv

d
.

Dorms

Fields

Dining

Hall

Labs

• Traffic light controller
– Traffic sensors: TA, TB (TRUE when there’s traffic)

– Lights: LA, LB

FSM Example

39

Digital Design & Computer Architecture Sequential Logic Design

T
A

T
B

L
A

L
B

CLK

Reset

Traffic

Light

Controller

• Inputs: CLK, Reset, TA, TB

• Outputs: LA, LB

FSM Black Box

40

Digital Design & Computer Architecture Sequential Logic Design

• Moore FSM: outputs labeled in each state

• States: Circles

• Transitions: Arcs

FSM State Transition Diagram

S0

L
A
: green

L
B
: red

S1

L
A
: yellow

L
B
: red

S3

L
A
: red

L
B
: yellow

S2

L
A
: red

L
B
: green

T
A

T
A

T
B

T
B

Reset

S0

L
A
: green

L
B
: red

Reset

41

Digital Design & Computer Architecture Sequential Logic Design

Current State Inputs Next State

S TA TB S'

S0 0 X S1

S0 1 X S0

S1 X X S2

S2 X 0 S3

S2 X 1 S2

S3 X X S0

FSM State Transition Table

S : Current State
S’: Next State

42

S0

L
A
: green

L
B
: red

S1

L
A
: yellow

L
B
: red

S3

L
A
: red

L
B
: yellow

S2

L
A
: red

L
B
: green

T
A

T
A

T
B

T
B

Reset

Digital Design & Computer Architecture Sequential Logic Design

Current State Inputs Next State

S1 S0 TA TB S'1 S'0

0 0 0 X 0 1

0 0 1 X 0 0

0 1 X X 1 0

1 0 X 0 1 1

1 0 X 1 1 0

1 1 X X 0 0

State Encoding

S0 00

S1 01

S2 10

S3 11

FSM Encoded State Transition Table

S0

S1

S2

S2

S3

S0

S'1 = S1S0 + S1S0TB + S1S0TB = S1S0 + S1S0 = S1 S0

S'0 = S1S0TA + S1S0TB

S1

S2

S3

S2

S0

S0

43

Digital Design & Computer Architecture Sequential Logic Design

Current State Outputs

S1 S0 LA1 LA0 LB1 LB0

0 0 0 0 1 0

0 1 0 1 1 0

1 0 1 0 0 0

1 1 1 0 0 1

Output Encoding

green 00

yellow 01

red 10

FSM Output Table

LA1 = S1S0 + S1S0 = S1

LA0 = S1S0

LB1 = S1S0 + S1S0 = S1

LB0 = S1S0

S0

S1

S2

S3

green

yellow

red

red

red

red

green

yellow

44

S0

L
A
: green

L
B
: red

S1

L
A
: yellow

L
B
: red

S3

L
A
: red

L
B
: yellow

S2

L
A
: red

L
B
: green

T
A

T
A

T
B

T
B

Reset

Digital Design & Computer Architecture Sequential Logic Design

S1

S0

S'1

S'0

CLK

Reset

LA1

LB1

LB0

LA0

TA

TB

S1 S0

r

S1

S0

S'1

S'0

CLK

Reset

TA

TB

S1 S0

r

FSM Schematic

State Register

Next State Current State

Next State Logic Output Logic
LA1 = S1

LA0 = S1S0

LB1 = S1

LB0 = S1S0

S'1 = S1 S0

S'0 = S1S0TA + S1S0TB

45

Digital Design & Computer Architecture Sequential Logic Design

CLK

Reset

T
A

T
B

S'
1:0

S
1:0

L
A1:0

L
B1:0

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

S1 (01) S2 (10) S3 (11) S0 (00)

t (sec)

??

??

S0 (00)

S0 (00) S1 (01) S2 (10) S3 (11) S1 (01)

??

??

0 5 10 15 20 25 30 35 40 45

Green (00)

Red (10)

S0 (00)

Yellow (01) Red (10) Green (00)

Green (00) Red (10)Yellow (01)

S0

L
A
: green

L
B
: red

S1

L
A
: yellow

L
B
: red

S3

L
A
: red

L
B
: yellow

S2

L
A
: red

L
B
: green

T
A

T
A

T
B

T
B

Reset

FSM Timing Diagram

46

Digital Design & Computer Architecture Sequential Logic Design

CLK

Reset

T
A

T
B

S'
1:0

S
1:0

L
A1:0

L
B1:0

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

S1 (01) S2 (10) S3 (11) S0 (00)

t (sec)

??

??

S0 (00)

S0 (00) S1 (01) S2 (10) S3 (11) S1 (01)

??

??

0 5 10 15 20 25 30 35 40 45

Green (00)

Red (10)

S0 (00)

Yellow (01) Red (10) Green (00)

Green (00) Red (10)Yellow (01)

S0

L
A
: green

L
B
: red

S1

L
A
: yellow

L
B
: red

S3

L
A
: red

L
B
: yellow

S2

L
A
: red

L
B
: green

T
A

T
A

T
B

T
B

Reset

FSM Timing Diagram

47

Digital Design & Computer Architecture Sequential Logic Design

State Encodings

• Binary encoding:
– i.e., for four states, 00, 01, 10, 11

• One-hot encoding
– One state bit per state

– Only one state bit HIGH at once

– i.e., for 4 states, 0001, 0010, 0100, 1000

– Requires more flip-flops

– Often next state and output logic is simpler

48

Digital Design & Computer Architecture Sequential Logic Design

S’3 = S3S2S1S0TB NO!

Current State Inputs Next State

S3 S2 S1 S0 TA TB S’3 S’2 S’1 S’0

0 0 0 1 0 X 0 0 1 0

0 0 0 1 1 X 0 0 0 1

0 0 1 0 X X 0 1 0 0

0 1 0 0 X 0 1 0 0 0

0 1 0 0 X 1 0 1 0 0

1 0 0 0 X X 0 0 0 1

State 1-Hot Encoding

S0 0001

S1 0010

S2 0100

S3 1000

1-Hot State Encoding Example

S’3 = S2TB

S’2 = S1 + S2TB

S’1 = S0TA

S’0 = S0TA + S3

S0

L
A
: green

L
B
: red

S1

L
A
: yellow

L
B
: red

S3

L
A
: red

L
B
: yellow

S2

L
A
: red

L
B
: green

T
A

T
A

T
B

T
B

Reset

S0

S1

S2

S2

S3

S0

S1

S2

S3

S2

S0

S0

49

Chapter 3: Sequential Logic

Mealy FSM Example

Digital Design & Computer Architecture Sequential Logic Design

Moore vs. Mealy FSMs
Alyssa P. Hacker has a snail that crawls down a paper tape with
1’s and 0’s on it. The snail smiles whenever the last two digits it
has crawled over are 01. Design Moore and Mealy FSMs of the
snail’s brain.

51

Digital Design & Computer Architecture Sequential Logic Design

State Transition Diagrams

Moore FSM

Reset

S0

0

S1

0

S2

1
0

0 1

1 0

1

Reset

S0 S1

1/1

0/0

1/0 0/0

Mealy FSM

52

Digital Design & Computer Architecture Sequential Logic Design

S1
’ = S0A

S0
’ = A

Moore FSM State Transition Table

State Encoding

S0 00

S1 01

S2 10

S1
’ = S1S0A

S0
’ = A

Moore FSM

Reset

S0

0

S1

0

S2

1
0

0 1

1 0

1

Current
State Inputs Next State

S1 S0 A S'1 S'0

0 0 0 0 1

0 0 1 0 0

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 0 0

53

Digital Design & Computer Architecture Sequential Logic Design

Moore FSM Output Table

State Encoding

S0 00

S1 01

S2 10

Moore FSM

Reset

S0

0

S1

0

S2

1
0

0 1

1 0

1

Y = S1 S0

Current State Output

S1 S0 Y

0 0 0

0 1 0

1 0 1

Y = S1

54

Digital Design & Computer Architecture Sequential Logic Design

Mealy State Transition & Output Table

55

State Encoding

S0 0

S1 1

S0
’ = A

Y = S0 AReset

S0 S1

1/1

0/0

1/0 0/0

Mealy FSM

Current
State Input

Next
State Output

S0 A S'0 Y

0 0 1 0

0 1 0 0

1 0 1 0

1 1 0 1

Digital Design & Computer Architecture Sequential Logic Design

Moore FSM Schematic

56

Next State Equations

S1
’ = S0A

S0
’ = A

Output Equation

Y = S1

Y

CLK

Reset

A

r

S'
0

S
0

S'
1

S
1

Digital Design & Computer Architecture Sequential Logic Design

S'
0 Y

CLK

Reset

A

r

S
0

Mealy FSM Schematic

57

Next State Equation

S0
’ = A

Output Equation

Y = S0A

Digital Design & Computer Architecture Sequential Logic Design 58

Mealy Machine

Moore Machine

CLK

Reset

A

S

Y

S

Y

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

S0 S2?? S2 S2S0 S1

1 0 1 1 0 1 1 10

S1

S0 S0?? S0 S1 S0S1

S1 S0

S1

Cycle 11

Mealy FSM: asserts Y immediately
when input pattern 01 is detected

Moore FSM: asserts Y one cycle after
input pattern 01 is detected

Moore and Mealy Timing Diagram

Moore FSM

Reset

S0

0

S1

0

S2

1
0

0 1

1 0

1

Reset

S0 S1

1/1

0/0

1/0 0/0

Mealy FSM

Chapter 3: Sequential Logic

Factored FSMs

Digital Design & Computer Architecture Sequential Logic Design

Factoring FSMs

60

• Break complex FSMs into smaller interacting
FSMs

• Example: Modify traffic light controller to
have Parade Mode.

– Two more inputs: P, R

– When P = 1, enter Parade Mode & Bravado Blvd
light stays green

– When R = 1, leave Parade Mode

Digital Design & Computer Architecture Sequential Logic Design 61

Unfactored FSM

Factored FSM

Controller

FSMT
A

T
B

L
A

L
B

P
R

Mode

FSM

Lights

FSM

P

M

Controller

FSM

T
A

T
B

L
A

L
B

R

Parade FSMs

Digital Design & Computer Architecture Sequential Logic Design 62

Unfactored FSM

Digital Design & Computer Architecture Sequential Logic Design

Factored FSM

63

S0

L
A
: green

L
B
: red

S1

L
A
: yellow

L
B
: red

S3

L
A
: red

L
B
: yellow

S2

L
A
: red

L
B
: green

T
A

T
A

M + T
B

MT
B

Reset

Lights FSM

S0

M: 0

S1

M: 1

P
Reset

P

Mode FSM

R

R

Chapter 3: Sequential Logic

Timing

Digital Design & Computer Architecture Sequential Logic Design

• Flip-flop samples D at clock edge

• D must be stable when sampled

• Similar to a photograph, D must be stable
around clock edge

Timing

65

Digital Design & Computer Architecture Sequential Logic Design

CLK

t
setup

D

t
hold

t
a

• Setup time: tsetup = time before clock edge data must be
stable (i.e. not changing)

• Hold time: thold = time after clock edge data must be stable

• Aperture time: ta = time around clock edge data must be
stable (ta = tsetup + thold)

Input Timing Constraints

D Q

66

Digital Design & Computer Architecture Sequential Logic Design

CLK

t
ccq

t
pcq

Q

• Propagation delay: tpcq = time after clock edge that Q is
guaranteed to be stable (i.e., to stop changing): maximum
delay

• Contamination delay: tccq = time after clock edge that Q
might be unstable (i.e., start changing): minimum delay

Output Timing Constraints

D Q

67

Digital Design & Computer Architecture Sequential Logic Design

• Synchronous sequential circuit inputs must
be stable during aperture (setup and hold)
time around clock edge

• Specifically, inputs must be stable
– at least tsetup before the clock edge

– at least until thold after the clock edge

Dynamic Discipline

68

Digital Design & Computer Architecture Sequential Logic Design

• The delay between registers has a minimum
and maximum delay, dependent on the
delays of the circuit elements

CL

CLKCLK

R1 R2

Q1 D2

CLK

Q1

D2

Tc

Dynamic Discipline

69

Digital Design & Computer Architecture Sequential Logic Design

• Depends on the maximum delay from register R1
through combinational logic to R2

• The input to register R2 must be stable at least tsetup
before clock edge

CLK

Q1

D2

T
c

t
pcq

t
pd

t
setup

CL

CLKCLK

Q1 D2

R1 R2

Setup Time Constraint

Tc ≥ tpcq + tpd + tsetup

tpd ≤ Tc – (tpcq + tsetup)

(tpcq + tsetup):
sequencing overhead

Also called:
Cycle Time Constraint

70

Digital Design & Computer Architecture Sequential Logic Design

• Depends on the minimum delay from register R1
through the combinational logic to R2

• The input to register R2 must be stable for at least thold
after the clock edge

Hold Time Constraint

thold < tccq + tcd

tcd > thold - tccq CLK

Q1

D2

t
ccq

t
cd

t
hold

CL

CLKCLK

Q1 D2

R1 R2

71

Digital Design & Computer Architecture Sequential Logic Design

Timing Analysis

• Calculate both constraints:

– Setup time constraint (aka cycle time
constraint)

– Hold time constraint

• If the hold time constraint isn’t met, the
circuit won’t work reliably at any frequency

72

Digital Design & Computer Architecture Sequential Logic Design

CLK CLK

A

B

C

D

X'

Y'

X

Y

Timing Characteristics

 tccq = 30 ps

 tpcq = 50 ps

 tsetup = 60 ps

 thold = 70 ps

 tpd = 35 ps

 tcd = 25 ps
tpd = 3 x 35 ps = 105 ps

tcd = 25 ps

Setup time constraint:

 Tc ≥ (50 + 105 + 60) ps = 215 ps

 fc = 1/Tc = 4.65 GHz

Hold time constraint:

 tccq + tcd > thold ?

 (30 + 25) ps > 70 ps ? No!

Timing Analysis Example

Fl
ip

-F
lo

p
s

Lo
gi

c
d

e
la

ys
:

p
e

r
ga

te

Tc ≥ tpcq + tpd + tsetup

Won’t run reliably at any frequency

73

Digital Design & Computer Architecture Sequential Logic Design

CLK CLK

A

B

C

D

X'

Y'

X

Y

CLK CLK

A

B

C

D

X'

Y'

X

Y

Timing Characteristics

 tccq = 30 ps

 tpcq = 50 ps

 tsetup = 60 ps

 thold = 70 ps

 tpd = 35 ps

 tcd = 25 ps
tpd = 3 x 35 ps = 105 ps

tcd = 2 x 25 ps = 50 ps

Setup time constraint:

 Tc ≥ (50 + 105 + 60) ps = 215 ps

 fc = 1/Tc = 4.65 GHz

Hold time constraint:

 tccq + tcd > thold ?

 (30 + 50) ps > 70 ps ? Yes!

Timing Analysis Example

Fl
ip

-F
lo

p
s

Lo
gi

c
d

e
la

ys
:

p
e

r
ga

te

Add buffers on short pathsHow to fix?

74

Chapter 3: Sequential Logic

Clock Skew

Digital Design & Computer Architecture Sequential Logic Design

• The clock doesn’t arrive at all registers at same time

• Skew: difference between two clock edges

• Perform worst case analysis to guarantee dynamic
discipline is not violated for any register – many
registers in a system!

Clock Skew

t
skew

CLK1

CLK2

CL

CLK2CLK1

R1 R2

Q1 D2

CLKdelay

CLK

76

Digital Design & Computer Architecture Sequential Logic Design

• In the worst case, CLK2 is earlier than CLK1

Setup Time Constraint with Skew

CLK1

Q1

D2

Tc

tpcq tpd tsetup tskew

CL

CLK2CLK1

R1 R2

Q1 D2

CLK2

Tc - tskew
Tc ≥ tpcq + tpd + tsetup + tskew

tpd ≤ Tc – (tpcq + tsetup + tskew)

Tc - tskew ≥ tpcq + tpd + tsetup

77

Digital Design & Computer Architecture Sequential Logic Design

t
ccq

t
cd

t
hold

Q1

D2

t
skew

CL

CLK2CLK1

R1 R2

Q1 D2

CLK2

CLK1

• In the worst case, CLK2 is later than CLK1

Hold Time Constraint with Skew

tccq + tcd > thold + tskew

tcd > thold + tskew – tccq

78

Chapter 3: Sequential Logic

Synchronization

Digital Design & Computer Architecture Sequential Logic Design

Violating the Dynamic Discipline

CLK

t
setup

t
hold

t
aperture

D

Q

D

Q

D

Q
???

C
a
s
e
 I

C
a
s
e
 I

I
C

a
s
e
 I

II

D
Q

CLK
b
u
tt

o
n

Asynchronous (for example, user)
inputs might violate the dynamic
discipline

80

Digital Design & Computer Architecture Sequential Logic Design

Metastability

metastable

stablestable

• Bistable devices: two stable states, and a
metastable state between them

• Flip-flop: two stable states (1 and 0) and one
metastable state

• If flip-flop lands in metastable state, could stay there
for an undetermined amount of time

81

Digital Design & Computer Architecture Sequential Logic Design

Flip-Flop Internals

R

S

Q

Q

N1

N2

• Flip-flop has feedback: if Q is somewhere between
1 and 0, cross-coupled gates drive output to either
rail (1 or 0)

• Metastable signal: if it hasn’t resolved to 1 or 0

• If flip-flop input changes at random time, probability
that output Q is metastable after waiting some time, t:

 P(tres > t) = (T0/Tc) e
-t/τ

 tres : time to resolve to 1 or 0

 T0, τ : properties of the circuit

82

Digital Design & Computer Architecture Sequential Logic Design

Metastability

• Intuitively:

T0/Tc: probability input changes at a bad time (during
aperture time)

 P(tres > t) = (T0/Tc) e
-t/τ

τ: time constant for how fast flip-flop moves away from
metastability

 P(tres > t) = (T0/Tc) e
-t/τ

• If flip-flop samples metastable input, if you wait long
enough (t), the output will have resolved to 1 or 0 with
high probability.

83

Digital Design & Computer Architecture Sequential Logic Design

Synchronizers

D Q

CLK

S
Y

N
C

• Asynchronous inputs are inevitable (user interfaces,
systems with different clocks interacting, etc.)

• Synchronizer goal: make the probability of failure (the
output Q still being metastable) low

• Synchronizer cannot make the probability of failure 0

84

Digital Design & Computer Architecture Sequential Logic Design

Synchronizer Internals

D

Q

D2
Q

D2

T
c

t
setup

t
pcq

CLK CLK

CLK

t
res

metastable

F1 F2

• Synchronizer: built with two back-to-back flip-flops

• Suppose D is transitioning when sampled by F1

• Internal signal D2 has (Tc - tsetup) time to resolve to 1
or 0

85

Digital Design & Computer Architecture Sequential Logic Design

Synchronizer Internals

D

Q

D2
Q

D2

T
c

t
setup

t
pcq

CLK CLK

CLK

t
res

metastable

F1 F2

• Synchronizer: built with two back-to-back flip-flops

• Suppose D is transitioning when sampled by F1

• Internal signal D2 has (Tc - tsetup) time to resolve to 1
or 0

86

Digital Design & Computer Architecture Sequential Logic Design

Synchronizer Probability of Failure

D

Q

D2
Q

D2

T
c

t
setup

t
pcq

CLK CLK

CLK

t
res

metastable

F1 F2

For each sample, probability of failure is:

 P(failure) = (T0/Tc) e
-(Tc

- tsetup)/τ

87

Digital Design & Computer Architecture Sequential Logic Design

Synchronizer Mean Time Between Failure

88

• If asynchronous input changes once per second,
probability of failure per second is P(failure).

• If input changes N times per second, probability of failure
per second is:

 P(failure)/second = (NT0/Tc) e
-(Tc

- tsetup)/τ

• Synchronizer fails, on average, 1/[P(failure)/second]

• Called mean time between failures, MTBF:

 MTBF = 1/[P(failure)/second] = (Tc/NT0) e(Tc

- tsetup)/τ

Digital Design & Computer Architecture Sequential Logic Design

Example Synchronizer

D
D2

Q

CLK CLK

F1 F2

• Suppose: Tc = 1/500 MHz = 2 ns τ = 200 ps

 T0 = 150 ps tsetup = 100 ps

 N = 10 events per second

• What is the probability of failure? MTBF?

 P(failure) = (150 ps/2 ns) e-(1.9 ns)/200 ps

 = 5.6 × 10-6

 P(failure)/second = 10 × (5.6 × 10-6)
 = 5.6 × 10-5 / second
 MTBF = 1/[P(failure)/second] ≈ 5 hours

89

P(failure)/second = (NT0/Tc) e
-(Tc

- tsetup)/τ

MTBF = 1/[P(failure)/second]

Chapter 3: Sequential Logic

Parallelism

Digital Design & Computer Architecture Sequential Logic Design

Parallelism

• Two types of parallelism:
– Spatial parallelism

• duplicate hardware performs multiple tasks at once

– Temporal parallelism

• task is broken into multiple stages

• also called pipelining

• for example, an assembly line

91

Digital Design & Computer Architecture Sequential Logic Design

Parallelism

• Token: Group of inputs processed to
produce group of outputs

• Latency: Time for one token to pass from
start to end

• Throughput: Number of tokens produced
per unit time

 Parallelism increases throughput

92

Digital Design & Computer Architecture Sequential Logic Design

Parallelism Example

• Ben Bitdiddle bakes cookies to celebrate traffic light
controller installation

– 5 minutes to roll cookies

– 15 minutes to bake

• What is the latency and throughput without parallelism?

 Latency = 5 + 15 = 20 minutes = 1/3 hour

 Throughput = 1 tray/ 1/3 hour = 3 trays/hour

93

Digital Design & Computer Architecture Sequential Logic Design

Parallelism Example

• What is the latency and throughput if Ben
uses parallelism?
– Spatial parallelism: Ben asks Allysa P. Hacker to

help, using her own oven

– Temporal parallelism:

• two stages: rolling and baking

• He uses two trays

• While first batch is baking, he rolls the
second batch, etc.

94

Digital Design & Computer Architecture Sequential Logic Design

Spatial Parallelism
S

p
a
ti

a
l

P
a
ra

ll
e
li

s
m Roll

Bake

Ben 1 Ben 1

Alyssa 1 Alyssa 1

Ben 2 Ben 2

Alyssa 2 Alyssa 2

Time

0 5 10 15 20 25 30 35 40 45 50

Tray 1

Tray 2

Tray 3

Tray 4

Latency:

time to

first tray

Legend

 Latency = 5 + 15 = 20 minutes = 1/3 hour

 Throughput = 2 trays/ 1/3 hour = 6 trays/hour

95

Digital Design & Computer Architecture Sequential Logic Design

Latency = 5 + 15 = 20 minutes = 1/3 hour

 Throughput = 1 trays/ 1/4 hour = 4 trays/hour

 Using both techniques, the throughput would be 8 trays/hour

Temporal Parallelism

96

T
e
m

p
o

ra
l

P
a
ra

ll
e
li

s
m Ben 1 Ben 1

Ben 2 Ben 2

Ben 3 Ben 3

Time

0 5 10 15 20 25 30 35 40 45 50

Latency:

time to

first tray

Tray 1

Tray 2

Tray 3

Digital Design & Computer Architecture Sequential Logic Design

Digital Design and Computer Architecture Lecture Notes

© 2021 Sarah Harris and David Harris

These notes may be used and modified for educational and/or
non-commercial purposes so long as the source is attributed.

About these Notes

97

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97

