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Chapter 2 :: Topics

• Combinational Circuits

• Boolean Equations

• Boolean Algebra

• From Logic to Gates

• X’s and Z’s, Oh My

• Karnaugh Maps

• Combinational Building Blocks

• Timing
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inputs outputs
functional spec

timing spec

A logic circuit is composed of:
• Inputs
• Outputs
• Functional specification
• Timing specification

Introduction
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A E1

E2

E3B

C

n1

Y

Z

• Nodes

– Inputs: A, B, C

– Outputs: Y, Z

– Internal: n1

• Circuit elements

– E1, E2, E3

– Each a circuit

Circuits
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inputs outputs
functional spec

timing spec

• Combinational Logic
– Memoryless

– Outputs determined by current values of inputs

• Sequential Logic
– Has memory

– Outputs determined by previous and current values 
of inputs

Types of Logic Circuits
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• Every element is combinational

• Every node is either an input or connects 
to exactly one output

• The circuit contains no cyclic paths

• Example:

Rules of Combinational Composition
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A
S

S      = A  B  C
in

C
out

  = AB + AC
in
 + BC

in

B
C

in

CL
C

out

• Functional specification of outputs in terms 
of inputs

• Example:    S     = F(A, B, Cin)

                       Cout = F(A, B, Cin) 

Boolean Equations
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• Complement: variable with a bar over it

    A, B, C

• Literal: variable or its complement

    A, A, B, B, C, C

• Implicant: product of literals

    ABC, AC, BC

• Minterm: product that includes all input variables

    ABC, ABC, ABC

• Maxterm: sum that includes all input variables

 (A+B+C), (A+B+C), (A+B+C)

Some Definitions
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Y = F(A, B) =

A B Y

0 0

0 1

1 0

1 1

minterm

A B

A B

A B

A B

minterm 

name

m0

m1

m2

m3

• All Boolean equations can be written in SOP form
• Each row has a minterm
• A minterm is a product (AND) of literals
• Each minterm is TRUE for that row (and only that row)
• Form function by ORing minterms where output is 1
• Thus, a sum (OR) of products (AND terms)

Sum-of-Products (SOP) Form

0

1

0

1
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Y = F(A, B) = AB + AB = Σ(1, 3)

A B Y

0 0

0 1

1 0

1 1

0

1

0

1

minterm

A B

A B

A B

A B

minterm 

name

m0

m1

m2

m3

• All Boolean equations can be written in SOP form
• Each row has a minterm
• A minterm is a product (AND) of literals
• Each minterm is TRUE for that row (and only that row)
• Form function by ORing minterms where output is 1
• Thus, a sum (OR) of products (AND terms)

Sum-of-Products (SOP) Form

Short-handLong-hand
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Y = F(A, B) = (A + B)●(A + B) = Π(0, 2) 

• All Boolean equations can be written in POS form
• Each row has a maxterm
• A maxterm is a sum (OR) of literals
• Each maxterm is FALSE for that row (and only that row)
• Form function by ANDing maxterms where output is 0
• Thus, a product (AND) of sums (OR terms)

Product-of-Sums (POS) Form

A + B

A B Y

0 0

0 1

1 0

1 1

0

1

0

1

maxterm

A + B

A + B

A + B

maxterm 

name

M0

M1

M2

M3

Short-handLong-hand
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Boolean Equations Example

• You are going to the cafeteria for lunch

– You won’t eat lunch (E = 0) 

• If it’s not clean (C = 0) or

• If they only serve meatloaf (M = 1)

• Write a truth table for determining if you 
will eat lunch (E).

C M E

0 0

0 1

1 0

1 1

0

0

1

0
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C + M

C M E

0 0

0 1

1 0

1 1

0

0

1

0

maxterm

C + M

C + M

C + M

C M E

0 0

0 1

1 0

1 1

0

0

1

0

minterm

C M

C M

C M

C M

SOP & POS Form

SOP – sum-of-products

POS – product-of-sums
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C + M

C M E

0 0

0 1

1 0

1 1

0

0

1

0

maxterm

C + M

C + M

C + M

C M E

0 0

0 1

1 0

1 1

0

0

1

0

minterm

C M

C M

C M

C M

E = (C + M)(C + M)(C + M)

   = Π(0, 1, 3)

E = CM

   = Σ(2)

SOP & POS Form

SOP – sum-of-products

POS – product-of-sums

16



Digital Design & Computer Architecture Combinational Logic Design

Forming Boolean Expressions

Example 1:

We will go to the Park (P is the output) if it’s not 
Raining (R) and we have Sandwiches (S).

Boolean Equation:

P = RS

17
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Forming Boolean Expressions

Example 2:

You will be considered a Winner (W is the output) 
if we send you a Million dollars (M) or a small 
Notepad (N).

Boolean Equation:

W = M + N

18
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Forming Boolean Expressions

Example 3:

You can Eat delicious food (E is the output) if you 
Make it yourself (M) or you have a personal Chef (C) 
and she/he is talented (T) but not eXpensive (X).

Boolean Equation:

E = M + CTX
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Forming Boolean Expressions

Example 4:

You can Enter the building if you have a Hat and 
Shoes on or if you have a Hat on.

Boolean Equation:

E = HS + H
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Forming Boolean Expressions

Example 5:

You can Enter the building if you have a Hat and 
Shoes on or if you have a Hat and no Shoes on.

Boolean Equation:

E = HS + HS

21
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• Axioms and theorems to simplify Boolean 
equations

• Like regular algebra, but simpler: variables 
have only two values (1 or 0)

• Duality in axioms and theorems:

–ANDs and ORs, 0’s and 1’s interchanged

Boolean Algebra

23
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Boolean Axioms

Number Axiom Name

A1 B = 0 if B ≠ 1 Binary Field

A2 0 = 1 NOT

A3 0 • 0 = 0 AND/OR

A4 1 • 1 = 1 AND/OR

A5 0 • 1 = 1 • 0 = 0 AND/OR

24
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Boolean Axioms

Number Axiom Dual Name

A1 B = 0 if B ≠ 1 B = 1 if B ≠ 0 Binary Field

A2 0 = 1 1 = 0 NOT

A3 0 • 0 = 0 1 + 1 = 1 AND/OR

A4 1 • 1 = 1 0 + 0 = 0 AND/OR

A5 0 • 1 = 1 • 0 = 0 1 + 0 = 0 + 1 = 1 AND/OR

Dual:  Replace: • with + 
    0 with 1

25
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Boolean Theorems of One Variable

Number Theorem Name

T1 B • 1 = B Identity

T2 B • 0 = 0 Null Element

T3 B • B = B Idempotency

T4 B = B Involution

T5 B • B = 0 Complements

Dual:  Replace: • with + 
    0 with 1

27
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Boolean Theorems of One Variable

Number Theorem Dual Name

T1 B • 1 = B B + 0 = B Identity

T2 B • 0 = 0 B + 1 = 1 Null Element

T3 B • B = B B + B = B Idempotency

T4 B = B Involution

T5 B • B = 0 B + B = 1 Complements

Dual:  Replace: • with + 
    0 with 1

28
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1 =

=

B

0
B

B

B

• B    1 = B

• B + 0 = B

T1: Identity Theorem
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0 =

=

B

1
B

1

0

• B    0 = 0

• B + 1 = 1

T2: Null Element Theorem
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B =

=

B

B
B

B

B

• B    B = B

• B + B = B

T3: Idempotency Theorem
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= BB

• B = B

T4: Involution Theorem

32
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B =

=

B

B
B

1

0

• B    B = 0

• B + B = 1

T5: Complement Theorem

33
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Recap: Basic Boolean Theorems

Number Theorem Dual Name

T1 B • 1 = B B + 0 = B Identity

T2 B • 0 = 0 B + 1 = 1 Null Element

T3 B • B = B B + B = B Idempotency

T4 B = B Involution

T5 B • B = 0 B + B = 1 Complements

34
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# Theorem Dual Name

T6 B•C = C•B B+C = C+B Commutativity

T7 (B•C) • D = B • (C•D) (B + C) + D = B + (C + D) Associativity

T8 B • (C + D) = (B•C) + (B•D) B + (C•D) = (B+C) (B+D) Distributivity

T9 B • (B+C) = B B + (B•C) = B Covering

T10 (B•C) + (B•C) = B (B+C) • (B+C) = B Combining

T11 (B•C) + (B•D) + (C•D) =
(B•C) + (B•D)

(B+C) • (B+D) • (C+D) =
(B+C) • (B+D)

Consensus

Boolean Theorems of Several Vars

Warning: T8’ differs from traditional algebra: 
 OR (+) distributes over AND (•)

36
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How to Prove 

• Method 1: Perfect induction

• Method 2: Use other theorems and axioms 
to simplify the equation

– Make one side of the equation look like 
the other

37



Digital Design & Computer Architecture Combinational Logic Design

Proof by Perfect Induction

• Also called: proof by exhaustion

• Check every possible input value

• If the two expressions produce the same 
value for every possible input combination, 
the expressions are equal

38
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T9: Covering

Prove true by:

• Method 1: Perfect induction

• Method 2: Using other theorems and axioms

Number Theorem Name

T9 B• (B+C) = B Covering

39
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T9: Covering

Method 1: Perfect Induction

0           0
1         0
1         1
1         1

Number Theorem Name

T9 B• (B+C) = B Covering

0         0
0         1
1         0
1         1

B         C      (B+C)      B(B+C)
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T9: Covering

Method 2: Prove true using other axioms and 
theorems.
B•(B+C) = B•B + B•C  T8: Distributivity
  = B + B•C  T3: Idempotency
  = B•1 + B•C  T2: Null Element
  = B•(1 + C)  T8: Distributivity
  = B•(1)  T2: Null element
  = B   T1: Identity

Number Theorem Name

T9 B• (B+C) = B Covering

41
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T10: Combining

Prove true using other axioms and theorems:

   B•C + B•C = B•(C+C)     T8: Distributivity

   = B•(1)    T5’: Complements

   = B     T1: Identity

Number Theorem Name

T10 (B•C) + (B•C) = B Combining
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De Morgan’s Theorem: Dual

The complement of the product is the 
sum of the complements.

Dual: 
The complement of the sum is the 

product of the complements.

# Theorem Dual Name

T12 B•C•D… = B+C+D… B+C+D…= B•C•D… De Morgan’s 
Theorem

43
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# Theorem Dual Name

T6 B•C = C•B B+C = C+B Commutativity

T7 (B•C) • D = B • (C•D) (B + C) + D = B + (C + D) Associativity

T8 B • (C + D) = (B•C) + (B•D) B + (C•D) = (B+C) (B+D) Distributivity

T9 B • (B+C) = B B + (B•C) = B Covering

T10 (B•C) + (B•C) = B (B+C) • (B+C) = B Combining

T11 (B•C) + (B•D) + (C•D) =
(B•C) + (B•D)

(B+C) • (B+D) • (C+D) =
(B+C) • (B+D)

Consensus

T12 B•C•D… = B+C+D… B+C+D…= B•C•D… De Morgan’s

Recap: Theorems of Several Vars
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Simplifying an Equation 

Simplifying may mean minimal sum of products form:

• SOP form that has the fewest number of implicants, where 
each implicant has the fewest literals

– Implicant: product of literals

 ABC, AC, BC

– Literal: variable or its complement
    A, A, B, B, C, C

Simplifying could also mean fewest number of gates, lowest cost, 
lowest power, etc.  For example, Y = A xor B is likely simpler than 
minimal Sum of Products Y = AB + AB. These depend on details of 
the technology.

46
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Y = AB + AB

    Y = B  T10: Combining

or

    Y = B(A + A) T8: Distributivity

       = B(1)  T5’: Complements

       = B  T1: Identity

Simplifying Boolean Equations

Example 1:
Recommended Method

47
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Y = ABC + ABC + ABC 

   = ABC + ABC + ABC + ABC       T3’:  Idempotency

   = (ABC+ABC) + (ABC+ABC)   T7’:  Associativity

   = AC                 + BC        T10: Combining

Simplifying Boolean Equations

Example 2:

48
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Simplification methods
• Distributivity (T8, T8’)      B (C+D) = BC + BD

         B + CD = (B+ C)(B+D)

• Covering (T9’)  A + AP = A

• Combining (T10)       PA + PA = P

• Expansion   P = PA + PA

          A = A + AP

• Idempotency (duplication) A = A + A

• “Simplification” theorem A + AP = A + P

   A + AP = A + P

50
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Proving the “Simplification” Theorem

“Simplification” theorem
     A + AP = A + P
     Method 1: A + AP = A + AP + AP       T9’ Covering

   = A + (AP + AP)       T7   Associativity

   = A + P         T10 Combining

     Method 2: A + AP = (A + A) (A + P)    T8’ Distributivity

   = 1•          (A + P) T5’ Complements

   =                A + P     T1 Identity

   

51
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T11: Consensus

Number Theorem Name

T11 (B•C) + (B•D) + (C•D) =
(B•C) + (B•D)

Consensus

Prove using other theorems and axioms:

          B•C + B•D + C•D 

       = BC + BD + (CDB+CDB)  T10: Combining

       = BC + BD + BCD+BCD  T6: Commutativity

       = BC + BCD + BD + BCD  T6: Commutativity

       = (BC + BCD) + (BD + BCD) T7: Associativity

       =  BC                +  BD  T9’: Covering
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Simplification methods
• Distributivity (T8, T8’)      B (C+D) = BC + BD

         B + CD = (B+ C)(B+D)

• Covering (T9’)  A + AP = A

• Combining (T10)       PA + PA = P

• Expansion   P = PA + PA

          A = A + AP

• Idempotency (duplication) A = A + A

• “Simplification” theorem A + AP = A + P

   A + AP = A + P
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Simplification methods
• Distributivity (T8, T8’)      B (C+D) = BC + BD

         B + CD = (B+ C)(B+D)

• Covering (T9’)  A + AP = A

• Combining (T10)       PA + PA = P

• Expansion   P = PA + PA

          A = A + AP

• Idempotency (duplication) A = A + A

• “Simplification” theorem A + AP = A + P

   A + AP = A + P
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Y = A(AB + ABC)

       = A(AB(1 + C))  T8: Distributivity

       = A(AB(1))   T2’: Null Element

       = A(AB)   T1: Identity

    = (AA)B   T7: Associativity

       = AB    T3: Idempotency

Simplifying Boolean Equations

Example 3:
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Simplification methods
• Distributivity (T8, T8’)      B (C+D) = BC + BD

         B + CD = (B+ C)(B+D)

• Covering (T9’)  A + AP = A

• Combining (T10)       PA + PA = P

• Expansion   P = PA + PA

          A = A + AP

• Idempotency (duplication) A = A + A

• “Simplification” theorem A + AP = A + P

   A + AP = A + P
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Y = A’BC + A’  Recall: A’ = A

Note:

• A‘ is shorthand for A.

• But use the tick symbol (‘) only when typing. 

• It’s easy to lose ticks (‘) when writing by hand!

• It is strongly recommended that you simplify 
equations by writing by hand. 

Simplifying Boolean Equations

Example 4:
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Y = A’BC + A’  Recall: A’ = A

   = A’    T9’ Covering: X + XY = X

or  

   = A’(BC + 1)  T8: Distributivity

   = A’(1)   T2’: Null Element

   = A’    T1: Identity

Simplifying Boolean Equations

Example 4:
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An expression is in sum-of-products (SOP) 
form when all products contain literals 
only.
• SOP form:  Y = AB + BC’ + DE
• NOT SOP form: Y = DF + E(A’+B)
• SOP form:  Z = A + BC + DE’F

Multiplying Out: SOP Form

59
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Multiplying Out: SOP Form

Example 5:

This method is called multiplying out.

Y = (A + C + D + E)(A + B)
     Apply T8’ first when possible: W+XZ = (W+X)(W+Z)

     Make: X = (C+D+E), Z = B and rewrite equation

          Y = (A+X)(A+Z)   substitution (X=(C+D+E), Z=B)

   = A + XZ    T8’: Distributivity

 = A + (C+D+E)B   substitution

 = A + BC + BD + BE  T8: Distributivity

or  

          Y = AA+AB+AC+BC+AD+BD+AE+BE T8: Distributivity

          = A+AB+AC+AD+AE+BC+BD+BE T3: Idempotency

          = A +                            BC+BD+BE T9’: Covering  

Recommended Method
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Y = AB + BC +B’D’ + AC’D’
Method 1:

     Y = AB + BC + B’D’ + (ABC’D’ + AB’C’D’) T10: Combining

       = (AB + ABC’D’) + BC + (B’D’ + AB’C’D’) T6:   Commutat.

      T7:   Associativity

       = AB + BC + B’D’    T9:   Covering

Method 2:

     Y = AB + BC + B’D’ + AC’D’ + AD’  T11: Consensus

        = AB + BC + B’D’ + AD’   T9:   Covering

        = AB + BC + B’D’    T11: Consensus

Simplifying Boolean Equations

Example 6:
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Literal and implicant ordering

• Variables within an implicant should be in 
alphabetical order.

• The order of implicants doesn’t matter.

Examples: 

–  Correct: Y = AB + BC + BD 

–  Correct: Y = BC + BD + AB 

–  Incorrect: Y = CB + BD + BA 

–  Incorrect: Y = AB + BC + DB 
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Simplifying Boolean Equations

Example 7:
Y = (A + BC)(A + DE)
     Apply T8’ first when possible: W+XZ = (W+X)(W+Z)

     Make: X = BC, Z = DE and rewrite equation

          Y = (A+X)(A+Z)  substitution (X=BC, Z=DE)

   = A + XZ   T8’: Distributivity

 = A + BCDE  substitution

or  

          Y = AA + ADE + ABC + BCDE T8: Distributivity

          = A + ADE + ABC + BCDE T3: Idempotency

          = A + ADE + ABC + BCDE  

  = A             + BCDE T9’: Covering

  = A + BCDE  T9’: Covering

Recommended Method
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C + M

C M E

0 0

0 1

1 0

1 1

0

0

1

0

maxterm

C + M

C + M

C + M

C M E

0 0

0 1

1 0

1 1

0

0

1

0

minterm

C M

C M

C M

C M

E = (C + M)(C + M)(C + M)

    = (C + MM)*       (C + M)

    = (C + 0)*            (C + M)

    = C        *            (C + M)

    =  CC + CM

    =  0 + CM

    =           CM

E = CM

Review: Canonical SOP & POS Forms
SOP – sum-of-products

POS – product-of-sums

same
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An expression is in product-of-sums (POS) 
form when all sums contain literals only.
• POS form:  Y = (A+B)(C+D)(E’+F)
• NOT POS form: Y = (D+E)(F’+GH)
• POS form:  Z = A(B+C)(D+E’)

Factoring: POS Form

65
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Factoring: POS Form

Example 8:
Y = (A + B’CDE)
     Apply T8’ first when possible: W+XZ = (W+X)(W+Z)

     Make: X = B’C, Z = DE and rewrite equation

          Y = (A+XZ)    substitution (X=B’C, Z=DE)

 = (A+B’C)(A+DE)   T8’: Distributivity

   = (A+B’)(A+C)(A+D)(A+E)  T8’: Distributivity
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Factoring: POS Form

Example 9:
Y = AB + C’DE + F
     Apply T8’ first when possible: W+XZ = (W+X)(W+Z)

     Make: W = AB, X = C’, Z = DE and rewrite equation

          Y = (W+XZ) + F     substitution W = AB, X = C’, Z = DE

 = (W+X)(W+Z) + F    T8’: Distributivity

   = (AB+C’)(AB+DE)+F     substitution

 = (A+C’)(B+C’)(AB+D)(AB+E)+F  T8’: Distributivity

 = (A+C’)(B+C’)(A+D)(B+D)(A+E)(B+E)+F T8’: Distributivity

 = (A+C’+F)(B+C’+F)(A+D+F)(B+D+F)(A+E+F)(B+E+F)   T8’: Distr.

67



Digital Design & Computer Architecture Combinational Logic Design

Y = (A+BD)C

   = (A+BD) + C

   = (A•(BD)) + C

   = (A•(BD)) + C

   = ABD + C

De Morgan’s Theorem

• Work from the outside in
      (i.e., top bar, then down)
• Use involution when 

possible

Example 10:
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Y = (ACE+D) + B

   = (ACE+D) • B

   = (ACE•D) • B

   = ((AC+E)•D) • B

   = ((AC+E)•D) • B

   = (ACD + DE) • B

   = ABCD + BDE

De Morgan’s Theorem

Example 11:

69



Chapter 2: Combinational Logic

Boolean Algebra: 
Simplifying Equations

Common Errors



Digital Design & Computer Architecture Combinational Logic Design

Common Errors

• Using ticks ‘ instead of bars over variables when writing 
equations by hand – ticks are easy to lose

• Not keeping terms aligned from step to step

• Alignment helps you see what changed from step-to-step.

• It helps in both solving and double-checking the problem.

• Applying multiple theorems to the same term in one step

• Applying your own personal theorems – don’t do it ☺

• And, on a related note: almost applying the correct theorem

• Not looking for opportunities to use combining, covering, 
and distributivity (especially the dual form). 
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Common Errors

• Losing bars (alignment will help you avoid this)

• Losing terms (alignment will help you avoid this)

• Trying to do multiple steps at once – this is prone to errors!

• Applying theorems incorrectly, for example:

• Wrong: ABC + ABC = B  Correct: ABC + ABC = AC. Products may 
only differ in a single term when using the combining theorem.

• Wrong: (A + A) = 0  Correct: A + A = 1

• Wrong: (A • A) = 1  Correct: A • A = 0

• Wrong: ABC = B  Correct: B + ABC = B. In order to use the 
covering theorem, you must have a term that covers the other 
terms. 

• Wrong: 𝐴𝐶 = ҧ𝐴 ҧ𝐶    Correct: 𝐴𝐶 = ҧ𝐴 + ҧ𝐶 (De Morgan’s)

• Wrong: 𝐴 + 𝐶 = ҧ𝐴 + ҧ𝐶   Correct: 𝐴 + 𝐶 = ҧ𝐴 ҧ𝐶 (De Morgan’s)
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Common Errors with De Morgan’s

• Not starting from the outside parentheses and working in: this often 
causes additional steps.

• Trying to apply De Morgan’s theorem to an entire complex 
operation (instead of just to terms ANDed under a bar or terms 
ORed under a bar)

• Losing bars. Remember that applying the De Morgan’s Theorem is a 
3 step process. For a product term under a bar:
1. Change ANDs to ORs (or vice versa for a sum term under a bar)
2. Bring down the terms
3. Put bars over the individual terms

• Not keeping terms associated (i.e., losing parentheses)
• For example, ABC = (A+B+C)
• Example error:

• Wrong:  (ABC)’C+D’   =  A’+B’+C’C + D’   = A’ + B’ + D’
• Correct: (ABC)’C + D’ = (A’+B’+C’)C + D’ = A’C+B’C + D’
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Build the following equation using logic gates:

 Y = AB + CDE

From Logic to Gates

A
B

C
D
E

Y
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• Inputs on the left (or top)

• Outputs on right (or bottom)

• Gates flow from left to right

• Straight wires are best

Circuit Schematics Rules

A
B

C
D
E

Y
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wires connect

at a T junction

wires connect

at a dot

wires crossing

without a dot do

not connect

• Wires always connect at a T junction

• A dot where wires cross indicates a 
connection between the wires

• Wires crossing without a dot make no 
connection

Circuit Schematic Rules (cont.)
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BA C

Y

minterm: ABC

minterm: ABC

minterm: ABC

A B C

• Two-level logic: ANDs followed by ORs

• Example: Y = ABC + ABC + ABC

Two-Level Logic

Implements functions in SOP form

78



Digital Design & Computer Architecture Combinational Logic Design

• Complex logic is often built from many stages of 
simpler gates. 

Multilevel Logic

A
B

C

D

Y
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A
0

A
1

PRIORITY

CiIRCUIT

A
2

A
3

Y
0

Y
1

Y
2

Y
3

• Example: Priority Circuit
     Output asserted 

     corresponding to most 

     significant TRUE input
0

A
1

A
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0

0
0
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Y
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Y
1

Y
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0
0
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0
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1
1

0
1
0
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A
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A
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1 0

0 11 0
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0
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Multiple-Output Circuits

80



Digital Design & Computer Architecture Combinational Logic Design

A
3
A

2
A

1
A

0

Y
3

Y
2

Y
1

Y
0

Priority Circuit Hardware

0

A
1

A
0
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0 1
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1 1

0
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0

Y
3
Y
2

Y
1

Y
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0
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0
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A
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A
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0
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0
0
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Y3 = A3

Y2 = A3 A2

Y1 = A3 A2 A1

Y0 = A3 A2 A1 A0
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A
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Y3 = A3

Y2 = A3 A2

Y1 = A3 A2 A1

Y0 = A3 A2 A1 A0
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•  ANDs followed by ORs: SOP form

•  ORs followed by ANDs: POS form

•  Only NAND gates:  SOP form

•  Only NOR gates:  POS form

Two-Level Logic Variations

Most common form of two-level logic
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• Two-level logic variation: ORs followed by ANDs

• Example: Y = (A+B)(A+B+C)

Two-Level Logic Variation

BA C

Y

(A+B)

(A+B+C)

A B C

Implements functions in POS form
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BA C

Y

minterm: ABC

minterm: ABC

minterm: ABC

A B C

• Two-level logic: ANDs followed by ORs → NANDs

• Example: Y = ABC + ABC + ABC

Two-Level Logic

Put bubbles on internal nodes.

BA C

Y

minterm: ABC

minterm: ABC

minterm: ABC

A B C

BA C

Y

minterm: ABC

minterm: ABC

minterm: ABC

A B C

Both: SOP form
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• Two-level logic: ORs followed by ANDs → NORs

• Example: Y = (A+B)(A+B+C)

Two-Level Logic Variation

BA C

Y

(A+B)

(A+B+C)

A B C

Put bubbles on internal nodes.

BA C

Y

(A+B)

(A+B+C)

A B C

Both: POS form
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De Morgan’s Theorem

# Theorem Dual Name

T12 B•C•D… = B+C+D… B+C+D…= B•C•D… De Morgan’s 
Theorem
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Y = A+BC

   = A•BC 

   = A•BC 

   = ABC

De Morgan’s Theorem

• Work from the outside in
      (i.e., top bar, then down)
• Use involution when possible

Example D1:
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Y = A+BC+AB

   = A•BC •AB

   = A•BC •(A + B)

   = ABC   •(A + B)

   = ABCA + ABCB

   =               ABC

DeMorgan’s Theorem

• De Morgan applies to:
▪ Products under a bar
▪ Sums under a bar

• Do not try to apply 
DeMorgan’s to a mix of 
operations

Example D2:
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Y = A+BC+AB

   = A•BC •AB

   = A•BC •(A + B)

   = ABC   •(A + B)

   = ABCA + ABCB

   =               ABC

De Morgan’s Theorem

Example D2:
Don’t forget these 
parentheses!
    Remember: 

    AB = (A + B)
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A
B

Y

A
B

Y

• Y = AB = A + B

• Y = A + B = A   B

A
B

Y

A
B

Y

De Morgan’s Theorem: Gates

NAND gate 
two forms

NOR gate 
two forms
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A
B

Y
A
B

Y

• Backward:
– Body changes

– Adds bubbles to inputs

• Forward:
– Body changes

– Adds bubble to output

A
B

Y
A
B

Y

Bubble Pushing
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A
B

Y
C
D

Bubble Pushing

• What is the Boolean expression for this 
circuit?

Y = AB + CD

A
B

Y
C
D
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A
B

C

D

Y

• Begin at output, then work toward inputs

• Push bubbles on final output back 

• Draw gates in a form so bubbles cancel

Bubble Pushing Rules
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A
B

C

D

Y

bubble on

input and outputA
B

C

D

Y

A
B

C Y

D

Y = ABC + D

no output

bubble

no bubble on

input and output

Bubble Pushing Example
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A = 1

Y = X

B = 0

• Contention: circuit tries to drive output to 1 and 0
– Actual value somewhere in between
– Could be 0, 1, or in forbidden zone
– Might change with voltage, temperature, time, noise
– Often causes excessive power dissipation

• X is also used for:
– Uninitialized values
– Don’t Care

• Warnings: 
– Contention or uninitialized outputs usually indicate a bug.

– Look at the context to tell meaning

Contention: X
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E A Y
0 0 Z

0 1 Z

1 0 0

1 1 1

A

E

Y

• Floating, high impedance, open, 
high Z

• Floating output might be 0, 1, or 
somewhere in between
– A voltmeter won’t indicate whether a 

node is floating

– But if you touch the node or your 
instructor walks over for a checkoff, it may 
change randomly

Floating: Z

Tristate Buffer
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en1

to bus

from bus

en2

to bus

from bus

en3

to bus

from bus

en4

to bus

from bus

s
h

a
re

d
 b

u
s

processor

video

Ethernet

memory

Floating nodes are used in tristate 
busses

– Many different drivers

– Exactly one is active at once

Tristate Busses
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C
00 01

0

1

Y

11 10
AB

1

1

0

0

0

0

0

0

C 00 01

0

1

Y

11 10
AB

ABC

ABC

ABC

ABC

ABC

ABC

ABC

ABC

B C
0 0

0 1

1 0

1 1

A
0

0

0

0

0 0

0 1

1 0

1 1

1

1

1

1

1

1

0

0

0

0

0

0

Y

• Boolean expressions can be minimized by 
combining terms

• K-maps minimize equations graphically

– PA + PA = P

Karnaugh Maps (K-Maps)
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C
00 01

0

1

Y

11 10
AB

1 0

0

0

0

0

0

C 00 01

0

1

Y

11 10
AB

ABC

ABC
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ABC

ABC

ABC

ABC

ABC

B C
0 0

0 1

1 0

1 1

A
0
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0

0

0 0

0 1

1 0

1 1

1

1

1

1

1

1

0

0

0

0

0

0

Y

1

K-Map

• Circle 1’s in adjacent squares

• In Boolean expression: include only literals 
whose true and complement form are not in 
the circle

                                    Y = AB                               Y = ABC+ABC = AB 
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3-Input K-Map

1

B C Y
0 0 0

0 1 0

1 0

1 1 1

Truth Table

C 00 01

0

1

Y

11 10
ABA

0

0

0

0

0 0 0

0 1 0

1 0 0

1 1 1

1

1

1

1

K-Map

110 0

0 00 1
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Y = AB + BC

1

B C Y
0 0 0

0 1 0

1 0

1 1 1

Truth Table

C 00 01

0

1

Y

11 10
ABA

0

0

0

0

0 0 0

0 1 0

1 0 0

1 1 1

1

1

1

1

K-Map

110 0

0 00 1

• Circle 1’s in adjacent squares

• In Boolean expression: include only literals 
whose true and complement form are not in 
the circle
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• Complement: variable with a bar over it

    A, B, C

• Literal: variable or its complement

    A, A, B, B, C, C

• Implicant: product of literals

    ABC, AC, BC

• Prime implicant: implicant corresponding to the 
largest circle in a K-map

Some Definitions
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• Every 1 must be circled at least once

• Each circle must span a power of 2 (i.e. 1, 2, 
4) squares in each direction

• Each circle must be as large as possible

• A circle may wrap around the edges

K-Map Rules
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4-Input K-Map

108



Digital Design & Computer Architecture Combinational Logic Design
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Y = AC + ABD + ABC + BD

4-Input K-Map
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• Every 1 must be circled at least once

• Each circle must span a power of 2 (i.e. 1, 2, 
4) squares in each direction

• Each circle must be as large as possible

• A circle may wrap around the edges

• Circle a “don't care” (X) only if it helps 
minimize the equation

K-Map Rules
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0

C D
0 0

0 1

1 0

1 1

B
0

0

0

0

0 0

0 1

1 0

1 1

1

1

1

1

1

1

1

0

X

1

1

YA
0

0

0

0

0

0

0

0

0 0

0 1

1 0

1 1

0

0

0

0

0 0

0 1

1 0

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

X

X

X

X

X

X

K-Maps with Don’t Cares

113



Chapter 2: Combinational Logic

Combinational Building 
Blocks: Multiplexers



Digital Design & Computer Architecture Combinational Logic Design

• Selects between one of N inputs to connect 
to output

• Select input is log2N bits – control input
• Example:                     2:1 Mux

Multiplexer (Mux)

Y

0 0

0 1

1 0

1 1

0

1

0
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0

0

0

0 0

0 1

1 0

1 1

1

1

1

1

0
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1

1

0

1

S

D
0

Y
D

1

D
1

D
0

S Y

0

1 D
1

D
0

S
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D1

Y

D0

S

S
00 01

0

1

Y

11 10
D0 D1

0

0

0

1

1

1

1

0

Y = D0S + D1S

• Logic gates
– Sum-of-products form

• Tristates
– Two tristates

– Turn on exactly one to 
select the appropriate 
input

2:1 Multiplexer Implementations

Y

D0

S

D1
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4:1 Multiplexer Implementations

117
117

2-Level Logic Tristates

Hierarchical

4:1 Mux Symbol
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Using mux as a lookup table

Logic using Multiplexers

A B Y
0 0 0

0 1 1

1 0 0

1 1 0

Y = AB

00

Y
01

10

11

A B

S1S0
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Digital Design & Computer Architecture Combinational Logic Design

2:4

Decoder

A1

A0

Y3

Y2

Y1

Y000
01
10
11

0 0

0 1

1 0

1 1

0

0

0

1

Y3 Y2 Y1 Y0A0A1

0

0

1

0

0

1

0

0

1

0

0

0

• N inputs, 2N outputs

• One-hot outputs: only one output HIGH at 
once

Decoders
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Y3

Y2

Y1

Y0

A0A1

Decoder Implementation
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2:4

Decoder

A

B
00
01
10
11

Y = AB + AB

Y

AB
AB
AB
AB

Minterm

= A  B

OR the minterms:

Logic Using Decoders
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A

Y

Time

delay

A Y

• Delay: time between input change and output 
changing

• How to build fast circuits?

Timing
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A

Y

Time

A Y

t
pd

t
cd

• Propagation delay: tpd = max delay from 
input to output

• Contamination delay: tcd = min delay from 
input to output

Propagation & Contamination Delay
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• Delay is caused by
– Capacitance and resistance in a circuit

– Speed of light limitation

• Reasons why tpd and tcd may be different:
– Different rising and falling delays

– Multiple inputs and outputs, some of which are 
faster than others

– Circuits slow down when hot and speed up when 
cold 

Propagation & Contamination Delay
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A
B

C

D Y

Critical Path

Short Path

n1

n2

 Critical (Long) Path: tpd = 2tpd_AND + tpd_OR      (max delay)

                  Short Path:  tcd = tcd_AND                       (min delay)

Critical (Long) & Short Paths

127



Digital Design & Computer Architecture Combinational Logic Design

When a single input change causes an output 
to change multiple times

Glitches
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A
B

C

Y

00 01

1

Y

11 10
AB

1

1

0

1

0

1

0

0

C

0

Y = AB + BC

What happens when A = 0, C = 1, B falls?

Glitch Example
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A = 0
B = 1    0

C = 1

Y = 1    0    1

Short Path

Critical Path

B

Y

Time

1    0

0    1

glitch

n1

n2

n2

n1

Glitch Example (cont.)
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B = 1    0
Y = 1

A = 0

C = 1

00 01

1

Y

11 10
AB

1

1

0

1

0

1

0

0

C

0

Y = AB + BC + ACAC

Fixing the Glitch

131



Digital Design & Computer Architecture Combinational Logic Design

• Because of synchronous design 
conventions (see Chapter 3), glitches don’t 
cause problems.

• It’s important to recognize a glitch: in 
simulations or on oscilloscope.

• We can’t get rid of all glitches – 
simultaneous transitions on multiple inputs 
can also cause glitches.

Why Understand Glitches?
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Digital Design and Computer Architecture Lecture Notes 

© 2021 Sarah Harris and David Harris

These notes may be used and modified for educational and/or 
non-commercial purposes so long as the source is attributed.
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