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• Outputs of sequential logic depend on 
current and prior input values – it has 
memory.

• Some definitions:

– State: all the information about a circuit 
necessary to explain its future behavior

– Latches and flip-flops: state elements that store 
one bit of state

– Synchronous sequential circuits: Sequential 
circuits using flip-flops sharing a common clock

Introduction
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• Give sequence to events

• Have memory (short-term)

• Use feedback from output to input to store 
information

Sequential Circuits
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• State: everything about the prior inputs to 
the circuit necessary to predict its future 
behavior

• Usually just 1 bit, the last value captured

• State elements store state

– Bistable circuit

– SR Latch

– D Latch

– D Flip-flop

State Elements
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QQ
Q

Q

I1

I2

I2 I1

• Fundamental building block of other state 
elements

• Two outputs: Q, Q

• No inputs

Bistable Circuit

Back-to-back inverters Cross-coupled inverters
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Q

Q

I1

I2

0

1

1

0

Q

Q

I1

I2

1

0

0

1

• Consider the two possible cases:

– Q = 0: 

   then Q = 1, Q = 0 (consistent)

– Q = 1: 

   then Q = 0, Q = 1 (consistent)

• Stores 1 bit of state in the state variable, Q (or Q)

• But there are no inputs to control the state

Bistable Circuit Analysis
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R

S

Q

Q

N1

N2

• SR Latch

• Consider the four possible cases:
– S = 1, R = 0

– S = 0, R = 1

– S = 0, R = 0

– S = 1, R = 1

SR (Set/Reset) Latch

11



Digital Design & Computer Architecture Sequential Logic Design

– S = 1, R = 0: 

   then Q = 1 and Q = 0

   Set the output

– S = 0, R = 1: 

   then Q = 0 and Q = 1

   Reset the output

SR Latch Analysis

R

S

Q

Q

N1

N2

0

1

1

0
1

0

R

S

Q

Q

N1

N2

1

0

0

1
0

1
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R

S

Q

Q

N1

N2

0
R

S

Q

Q

N1

N2

0

0

0

Qprev = 0 Qprev = 1

1
0

1

1

0
1

0

0

– S = 0, R = 0: 

   then Q = Qprev

   Memory!

– S = 1, R = 1: 

   then Q = 0, Q = 0

   Invalid State

   Q ≠ NOT Q

SR Latch Analysis

R

S

Q

Q

N1

N2

1

1

0

0
0

0
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S

R Q

Q

SR Latch

Symbol

• SR stands for Set/Reset Latch

– Stores one bit of state (Q)

• Control what value is being stored with S, R inputs
– Set: Make the output 1 

    S = 1, R = 0, Q = 1

– Reset: Make the output 0 

    S = 0, R = 1, Q = 0

– Memory: Retain value

    S = 0, R = 0, Q = Qprev

• Must do something to avoid invalid state (when 
S = R = 1)

SR Latch
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D Latch

Symbol

CLK

D Q

Q

• Two inputs: CLK, D
– CLK: controls when the output changes

– D (the data input): controls what the output changes to

• Function
– When CLK = 1, 

    D passes through to Q (transparent)

– When CLK = 0, 

    Q holds its previous value (opaque)

• Avoids invalid case when 

            Q ≠ NOT Q

D Latch
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S

R Q

Q

Q

Q
D

CLK
D

R

S

CLK

D Q

Q

S R Q

0 0 Q
prev

0 1 0

1 0 1

Q

1

0

CLK D

0 X

1 0

1 1

D

X

1

0

Q
prev

D Latch Internal Circuit
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D Flip-Flop

Symbols

D Q

Q

• Inputs: CLK, D

• Function:
– Samples D on rising edge of CLK

• When CLK rises from 0 to 1, D 
passes through to Q

• Otherwise, Q holds its previous 
value

– Q changes only on rising edge of CLK

• Called edge-triggered
– Activated on the clock edge

D Flip-Flop

Clock edges

CLK
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CLK

D Q

Q

CLK

D Q

Q

Q

Q

D
N1

CLK

L1 L2

• Two back-to-back D latches (L1 and L2) controlled by 
complementary clocks

• When CLK = 0
– L1 is transparent

– L2 is opaque

– D passes through to N1

• When CLK = 1
– L2 is transparent

– L1 is opaque

– N1 passes through to Q

• Thus, on the edge of the clock (when CLK rises from 0      1)
– D passes through to Q

D Flip-Flop Internal Circuit

20



Digital Design & Computer Architecture Sequential Logic Design

CLK

D

Q (latch)

Q (flop)

CLK

D Q

Q

D Q

Q

D Latch vs. D Flip-Flop

D Latch D Flip-flop

CLK

D

Q (latch)

Q (flop)
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CLK

D Q

D Q

D Q

D Q

D3

D2

D1

D0

Q3

Q2

Q1

Q0

D
3:0

4 4

CLK

Q
3:0

Registers: One or More Flip-flops

4-bit Register

4-bit Register

Easier to draw!

23

Two ways to draw a register
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Internal

Circuit

D Q

CLKEN

D
Q

0

1
D Q

EN

Symbol

• Inputs: CLK, D, EN
– The enable input (EN) controls when new data (D) is stored

• Function
– EN = 1: D passes through to Q on the clock edge 

– EN = 0: the flip-flop retains its previous state

Enabled Flip-Flops

24



Digital Design & Computer Architecture Sequential Logic Design

Symbols

D Q

Reset
r

• Inputs: CLK, D, Reset

• Function:
– Reset = 1:  Q is forced to 0 

– Reset = 0:  flip-flop behaves as ordinary D flip-flop

Resettable Flip-Flops
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• Two types:
– Synchronous:   resets at the clock edge only

– Asynchronous: resets immediately when Reset = 1

• Asynchronously resettable flip-flop requires 
changing the internal circuitry of the flip-flop

• Synchronously resettable flip-flop?

Resettable Flip-Flops

Internal

Circuit

D Q

CLK

D
Q

Reset
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Symbols

D Q

Set
s

• Inputs: CLK, D, Set

• Function:
– Set = 1:  Q is set to 1 

– Set = 0:  the flip-flop behaves as ordinary D flip-flop

Settable Flip-Flops
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X Y Z

• Sequential circuits: all circuits that aren’t 
combinational

• A problematic circuit:

• No inputs and 1-3 outputs

• Astable circuit, oscillates

• Period depends on inverter delay

• It has a cyclic path: output fed back to input

Sequential Logic

X

Y

Z

time (ns)0 1 2 3 4 5 6 7 8

X

Y

Z

time (ns)0 1 2 3 4 5 6 7 8
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• Breaks cyclic paths by inserting registers

• Registers contain state of the system

• State changes at clock edge: system synchronized  to the 
clock

• Rules of synchronous sequential circuit composition:
– Every circuit element is either a register or a combinational circuit

– At least one circuit element is a register

– All registers receive the same clock

– Every cyclic path contains at least one register

• Two common synchronous sequential circuits
– Finite State Machines (FSMs)

– Pipelines

Synchronous Sequential Logic Design
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• Breaks cyclic paths by inserting registers

• Registers contain state of the system

• State changes at clock edge: system synchronized  to the 
clock

• Rules of synchronous sequential circuit composition:
– Every circuit element is either a register or a combinational circuit

– At least one circuit element is a register

– All registers receive the same clock

– Every cyclic path contains at least one register

• Two common synchronous sequential circuits
– Finite State Machines (FSMs)

– Pipelines

Synchronous Sequential Logic Design
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Next

State

Current

State

S’ S

CLK

CL

Next State

Logic

Next

State
CL

Output

Logic

Outputs

• Consists of:

– State register
• Stores current state 

• Loads next state at clock edge

– Combinational logic
• Computes the next state

• Computes the outputs

Finite State Machine (FSM)
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CLK
M Nk knext

state

logic

output

logic

Moore FSM

CLK
M Nk knext

state

logic

output

logic

inputs

inputs

outputs

outputs
state

state
next

state

next

state

Mealy FSM

• Next state determined by current state and inputs

• Two types of finite state machines differ in output 
logic:

– Moore FSM: outputs depend only on current state

– Mealy FSM: outputs depend on current state and inputs

Finite State Machines (FSMs)
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CLK
M Nk knext

state

logic

output

logic

Moore FSM

CLK
M Nk knext

state

logic

output

logic

inputs

inputs

outputs

outputs
state

state
next

state

next

state

Mealy FSM

• Next state determined by current state and inputs

• Two types of finite state machines differ in output 
logic:

– Moore FSM: outputs depend only on current state

– Mealy FSM: outputs depend on current state and inputs

Finite State Machines (FSMs)
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FSM Design Procedure
1. Identify inputs and outputs

2. Sketch state transition diagram

3. Write state transition table and output table
- Moore FSM: write separate tables

- Mealy FSM: write combined state transition and 
output table

4. Select state encodings

5. Rewrite state transition table and output table 
with state encodings

6. Write Boolean equations for next state and 
output logic

7. Sketch the circuit schematic

36
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FSM Design Procedure
1. Identify inputs and outputs

2. Sketch state transition diagram

3. Write state transition table and output table
- Moore FSM: write separate tables

- Mealy FSM: write combined state transition and 
output table

4. Select state encodings

5. Rewrite state transition table and output table 
with state encodings

6. Write Boolean equations for next state and 
output logic

7. Sketch the circuit schematic
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T
A

L
A

T
A

L
B

T
B

T
B

L
A

L
B

Academic Ave.
B

ra
v
a

d
o

B
lv

d
.

Dorms

Fields

Dining

Hall

Labs

• Traffic light controller
– Traffic sensors: TA, TB (TRUE when there’s traffic)

– Lights: LA, LB

FSM Example
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T
A

T
B

L
A

L
B

CLK

Reset

Traffic

Light

Controller

• Inputs: CLK, Reset, TA, TB

• Outputs: LA, LB

FSM Black Box
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• Moore FSM: outputs labeled in each state

• States: Circles

• Transitions: Arcs

FSM State Transition Diagram

S0

L
A
: green

L
B
: red

S1

L
A
: yellow

L
B
: red

S3

L
A
: red

L
B
: yellow

S2

L
A
: red

L
B
: green

T
A

T
A

T
B

T
B

Reset

S0

L
A
: green

L
B
: red

Reset
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Current State Inputs Next State

S TA TB S'

S0 0 X S1

S0 1 X S0

S1 X X S2

S2 X 0 S3

S2 X 1 S2

S3 X X S0

FSM State Transition Table

S : Current State
S’: Next State

42

S0

L
A
: green

L
B
: red

S1

L
A
: yellow

L
B
: red

S3

L
A
: red

L
B
: yellow

S2

L
A
: red

L
B
: green

T
A

T
A

T
B

T
B

Reset
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Current State Inputs Next State

S1 S0 TA TB S'1 S'0

0 0 0 X 0 1

0 0 1 X 0 0

0 1 X X 1 0

1 0 X 0 1 1

1 0 X 1 1 0

1 1 X X 0 0

State Encoding

S0 00

S1 01

S2 10

S3 11

FSM Encoded State Transition Table

S0

S1

S2

S2

S3

S0

S'1 = S1S0 + S1S0TB + S1S0TB = S1S0 + S1S0 = S1  S0 

S'0 = S1S0TA + S1S0TB

S1

S2

S3

S2

S0

S0
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Current State Outputs

S1 S0 LA1 LA0 LB1 LB0

0 0 0 0 1 0

0 1 0 1 1 0

1 0 1 0 0 0

1 1 1 0 0 1

Output Encoding

green 00

yellow 01

red 10

FSM Output Table

LA1 = S1S0 + S1S0 = S1

LA0 = S1S0

LB1 = S1S0 + S1S0 = S1

LB0 = S1S0

S0

S1

S2

S3

green

yellow

red

red

red

red

green

yellow

44

S0

L
A
: green

L
B
: red

S1

L
A
: yellow

L
B
: red

S3

L
A
: red

L
B
: yellow

S2

L
A
: red

L
B
: green

T
A

T
A

T
B

T
B

Reset
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S1

S0

S'1

S'0

CLK

Reset

LA1

LB1

LB0

LA0

TA

TB

S1 S0

r

S1

S0

S'1

S'0

CLK

Reset

TA

TB

S1 S0

r

FSM Schematic

State Register

Next State Current State

Next State Logic Output Logic
LA1 = S1

LA0 = S1S0

LB1 = S1

LB0 = S1S0

S'1 = S1  S0 

S'0 = S1S0TA + S1S0TB
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CLK

Reset

T
A

T
B

S'
1:0

S
1:0

L
A1:0

L
B1:0

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

S1 (01) S2 (10) S3 (11) S0 (00)

t (sec)

??

??

S0 (00)

S0 (00) S1 (01) S2 (10) S3 (11) S1 (01)

??

??

0 5 10 15 20 25 30 35 40 45

Green (00)

Red (10)

S0 (00)

Yellow (01) Red (10) Green (00)

Green (00) Red (10)Yellow (01)

S0

L
A
: green

L
B
: red

S1

L
A
: yellow

L
B
: red

S3

L
A
: red

L
B
: yellow

S2

L
A
: red

L
B
: green

T
A

T
A

T
B

T
B

Reset

FSM Timing Diagram
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CLK

Reset

T
A

T
B

S'
1:0

S
1:0

L
A1:0

L
B1:0

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

S1 (01) S2 (10) S3 (11) S0 (00)

t (sec)

??

??

S0 (00)

S0 (00) S1 (01) S2 (10) S3 (11) S1 (01)

??

??

0 5 10 15 20 25 30 35 40 45

Green (00)

Red (10)

S0 (00)

Yellow (01) Red (10) Green (00)

Green (00) Red (10)Yellow (01)

S0

L
A
: green

L
B
: red

S1

L
A
: yellow

L
B
: red

S3

L
A
: red

L
B
: yellow

S2

L
A
: red

L
B
: green

T
A

T
A

T
B

T
B

Reset

FSM Timing Diagram
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State Encodings

• Binary encoding: 
– i.e., for four states, 00, 01, 10, 11

• One-hot encoding
– One state bit per state

– Only one state bit HIGH at once

– i.e., for 4 states, 0001, 0010, 0100, 1000

– Requires more flip-flops

– Often next state and output logic is simpler
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S’3 = S3S2S1S0TB NO!

Current State Inputs Next State

S3 S2 S1 S0 TA TB S’3 S’2 S’1 S’0

0 0 0 1 0 X 0 0 1 0

0 0 0 1 1 X 0 0 0 1

0 0 1 0 X X 0 1 0 0

0 1 0 0 X 0 1 0 0 0

0 1 0 0 X 1 0 1 0 0

1 0 0 0 X X 0 0 0 1

State 1-Hot Encoding

S0 0001

S1 0010

S2 0100

S3 1000

1-Hot State Encoding Example

S’3 = S2TB

S’2 = S1 + S2TB

S’1 = S0TA

S’0 = S0TA + S3

S0

L
A
: green

L
B
: red

S1

L
A
: yellow

L
B
: red

S3

L
A
: red

L
B
: yellow

S2

L
A
: red

L
B
: green

T
A

T
A

T
B

T
B

Reset

S0

S1

S2

S2

S3

S0

S1

S2

S3

S2

S0

S0
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Moore vs. Mealy FSMs
Alyssa P. Hacker has a snail that crawls down a paper tape with 
1’s and 0’s on it. The snail smiles whenever the last two digits it 
has crawled over are 01.  Design Moore and Mealy FSMs of the 
snail’s brain.
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State Transition Diagrams

Moore FSM

Reset

S0

0

S1

0

S2

1
0

0 1

1 0

1

Reset

S0 S1

1/1

0/0

1/0 0/0

Mealy FSM
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S1
’ = S0A

S0
’ = A

Moore FSM State Transition Table

State Encoding

S0 00

S1 01

S2 10

S1
’ = S1S0A

S0
’ = A

Moore FSM

Reset

S0

0

S1

0

S2

1
0

0 1

1 0

1

Current 
State Inputs Next State

S1 S0 A S'1 S'0

0 0 0 0 1

0 0 1 0 0

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 0 0
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Moore FSM Output Table

State Encoding

S0 00

S1 01

S2 10

Moore FSM

Reset

S0

0

S1

0

S2

1
0

0 1

1 0

1

Y = S1 S0

Current State Output

S1 S0 Y

0 0 0

0 1 0

1 0 1

Y = S1
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Mealy State Transition & Output Table

55

State Encoding

S0 0

S1 1

S0
’ =  A

Y = S0 AReset

S0 S1

1/1

0/0

1/0 0/0

Mealy FSM

Current 
State Input

Next 
State Output

S0 A S'0 Y

0 0 1 0

0 1 0 0

1 0 1 0

1 1 0 1
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Moore FSM Schematic

56

Next State Equations

S1
’ = S0A

S0
’ = A

Output Equation

Y = S1

Y

CLK

Reset

A

r

S'
0

S
0

S'
1

S
1
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S'
0 Y

CLK

Reset

A

r

S
0

Mealy FSM Schematic
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Next State Equation

S0
’ = A

Output Equation

Y   = S0A
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Mealy Machine

Moore Machine

CLK

Reset

A

S

Y

S

Y

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

S0 S2?? S2 S2S0 S1

1 0 1 1 0 1 1 10

S1

S0 S0?? S0 S1 S0S1

S1 S0

S1

Cycle 11

Mealy FSM: asserts Y immediately 
when input pattern 01 is detected

Moore FSM: asserts Y one cycle after 
input pattern 01 is detected

Moore and Mealy Timing Diagram

Moore FSM

Reset

S0

0

S1

0

S2

1
0

0 1

1 0

1

Reset

S0 S1

1/1

0/0

1/0 0/0

Mealy FSM
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Factored FSMs
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Factoring FSMs

60

• Break complex FSMs into smaller interacting 
FSMs

• Example: Modify traffic light controller to 
have Parade Mode.

– Two more inputs: P, R

– When P = 1, enter Parade Mode & Bravado Blvd 
light stays green

– When R = 1, leave Parade Mode
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Unfactored FSM

Factored FSM

Controller

FSMT
A

T
B

L
A

L
B

P
R

Mode

FSM

Lights

FSM

P

M

Controller

FSM

T
A

T
B

L
A

L
B

R

Parade FSMs
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Unfactored FSM
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Factored FSM

63

S0

L
A
: green

L
B
: red

S1

L
A
: yellow

L
B
: red

S3

L
A
: red

L
B
: yellow

S2

L
A
: red

L
B
: green

T
A

T
A

M + T
B

MT
B

Reset

Lights FSM

S0

M: 0

S1

M: 1

P
Reset

P

Mode FSM

R

R
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Timing
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• Flip-flop samples D at clock edge

• D must be stable when sampled

• Similar to a photograph, D must be stable 
around clock edge

Timing
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CLK

t
setup

D

t
hold

t
a

• Setup time: tsetup = time before clock edge data must be 
stable (i.e. not changing)

• Hold time: thold = time after clock edge data must be stable

• Aperture time: ta = time around clock edge data must be 
stable (ta = tsetup +  thold)

Input Timing Constraints

D Q
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CLK

t
ccq

t
pcq

Q

• Propagation delay: tpcq = time after clock edge that Q is 
guaranteed to be stable (i.e., to stop changing): maximum 
delay

• Contamination delay: tccq = time after clock edge that Q 
might be unstable (i.e., start changing): minimum delay

Output Timing Constraints

D Q
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• Synchronous sequential circuit inputs must 
be stable during aperture (setup and hold) 
time around clock edge

• Specifically, inputs must be stable
– at least tsetup before the clock edge

– at least until thold after the clock edge

Dynamic Discipline

68



Digital Design & Computer Architecture Sequential Logic Design

• The delay between registers has a minimum 
and maximum delay, dependent on the 
delays of the circuit elements

CL

CLKCLK

R1 R2

Q1 D2

CLK

Q1

D2

Tc

Dynamic Discipline
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• Depends on the maximum delay from register R1 
through combinational logic to R2

• The input to register R2 must be stable at least tsetup 
before clock edge

CLK

Q1

D2

T
c

t
pcq

t
pd

t
setup

CL

CLKCLK

Q1 D2

R1 R2

Setup Time Constraint

Tc ≥ tpcq + tpd + tsetup

tpd ≤ Tc – (tpcq + tsetup)

(tpcq + tsetup): 
sequencing overhead

Also called: 
Cycle Time Constraint
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• Depends on the minimum delay from register R1 
through the combinational logic to R2

• The input to register R2 must be stable for at least thold 
after the clock edge

Hold Time Constraint

thold < tccq + tcd

tcd > thold - tccq CLK

Q1

D2

t
ccq

t
cd

t
hold

CL

CLKCLK

Q1 D2

R1 R2
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Timing Analysis

• Calculate both constraints:

– Setup time constraint (aka cycle time 
constraint)

– Hold time constraint

• If the hold time constraint isn’t met, the 
circuit won’t work reliably at any frequency
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CLK CLK

A

B

C

D

X'

Y'

X

Y

Timing Characteristics

 tccq    = 30 ps

 tpcq    = 50 ps

 tsetup  = 60 ps

 thold    = 70 ps

 tpd      = 35 ps

 tcd      = 25 ps
tpd = 3 x 35 ps = 105 ps

tcd = 25 ps

Setup time constraint:

 Tc ≥ (50 + 105 + 60) ps = 215 ps

 fc = 1/Tc = 4.65 GHz

Hold time constraint:

 tccq + tcd > thold ?

 (30 + 25) ps > 70 ps ?  No!

Timing Analysis Example

Fl
ip

-F
lo

p
s

Lo
gi

c 
d

e
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ys
: 

p
e

r 
ga

te

Tc ≥ tpcq + tpd + tsetup

Won’t run reliably at any frequency
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CLK CLK

A

B

C

D

X'

Y'

X

Y

CLK CLK

A

B

C

D

X'

Y'

X

Y

Timing Characteristics

 tccq    = 30 ps

 tpcq    = 50 ps

 tsetup  = 60 ps

 thold    = 70 ps

 tpd      = 35 ps

 tcd      = 25 ps
tpd = 3 x 35 ps = 105 ps

tcd = 2 x 25 ps = 50 ps

Setup time constraint:

 Tc ≥ (50 + 105 + 60) ps = 215 ps

 fc = 1/Tc = 4.65 GHz

Hold time constraint:

 tccq + tcd > thold ?

 (30 + 50) ps > 70 ps ?  Yes!

Timing Analysis Example

Fl
ip

-F
lo

p
s

Lo
gi

c 
d

e
la

ys
: 

p
e

r 
ga

te

Add buffers on short pathsHow to fix?
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• The clock doesn’t arrive at all registers at same time

• Skew: difference between two clock edges

• Perform worst case analysis to guarantee dynamic 
discipline is not violated for any register – many 
registers in a system!

Clock Skew

t
skew

CLK1

CLK2

CL

CLK2CLK1

R1 R2

Q1 D2

CLKdelay

CLK
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• In the worst case, CLK2 is earlier than CLK1

Setup Time Constraint with Skew

CLK1

Q1

D2

Tc

tpcq tpd tsetup tskew

CL

CLK2CLK1

R1 R2

Q1 D2

CLK2

Tc - tskew
Tc ≥ tpcq + tpd + tsetup + tskew

tpd ≤ Tc – (tpcq + tsetup + tskew)

Tc - tskew ≥ tpcq + tpd + tsetup
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t
ccq

t
cd

t
hold

Q1

D2

t
skew

CL

CLK2CLK1

R1 R2

Q1 D2

CLK2

CLK1

• In the worst case, CLK2 is later than CLK1

Hold Time Constraint with Skew

tccq + tcd > thold + tskew

tcd > thold + tskew – tccq 
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Violating the Dynamic Discipline

CLK

t
setup

t
hold

t
aperture

D

Q

D

Q

D

Q
???

C
a
s
e
 I

C
a
s
e
 I

I
C

a
s
e
 I

II

D
Q

CLK
b
u
tt

o
n

Asynchronous (for example, user) 
inputs might violate the dynamic 
discipline
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Metastability

metastable

stablestable

• Bistable devices: two stable states, and a 
metastable state between them

• Flip-flop: two stable states (1 and 0) and one 
metastable state

• If flip-flop lands in metastable state, could stay there 
for an undetermined amount of time
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Flip-Flop Internals

R

S

Q

Q

N1

N2

• Flip-flop has feedback: if Q is somewhere between 
1 and 0, cross-coupled gates drive output to either 
rail (1 or 0)

• Metastable signal: if it hasn’t resolved to 1 or 0

• If flip-flop input changes at random time, probability 
that output Q is metastable after waiting some time, t:

                                    P(tres > t) = (T0/Tc ) e
-t/τ

   tres    :  time to resolve to 1 or 0

       T0, τ :  properties of the circuit
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Metastability

• Intuitively:

T0/Tc: probability input changes at a bad time (during 
aperture time)

                                    P(tres > t) = (T0/Tc ) e
-t/τ

τ: time constant for how fast flip-flop moves away from 
metastability

                                    P(tres > t) = (T0/Tc ) e
-t/τ

• If flip-flop samples metastable input, if you wait long 
enough (t), the output will have resolved to 1 or 0 with 
high probability.
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Synchronizers

D Q

CLK

S
Y

N
C

• Asynchronous inputs are inevitable (user interfaces, 
systems with different clocks interacting, etc.)

• Synchronizer goal: make the probability of failure (the 
output Q still being metastable) low

• Synchronizer cannot make the probability of failure 0
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Synchronizer Internals

D

Q

D2
Q

D2

T
c

t
setup

t
pcq

CLK CLK

CLK

t
res

metastable

F1 F2

• Synchronizer: built with two back-to-back flip-flops

• Suppose D is transitioning when sampled by F1

• Internal signal D2 has (Tc - tsetup) time to resolve to 1 
or 0
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Synchronizer Internals

D

Q

D2
Q

D2

T
c

t
setup

t
pcq

CLK CLK

CLK

t
res

metastable

F1 F2

• Synchronizer: built with two back-to-back flip-flops

• Suppose D is transitioning when sampled by F1

• Internal signal D2 has (Tc - tsetup) time to resolve to 1 
or 0
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Synchronizer Probability of Failure

D

Q

D2
Q

D2

T
c

t
setup

t
pcq

CLK CLK

CLK

t
res

metastable

F1 F2

For each sample, probability of failure is:

                   P(failure) = (T0/Tc ) e
-(Tc

 
-  tsetup)/τ
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Synchronizer Mean Time Between Failure

88

• If asynchronous input changes once per second, 
probability of failure per second is P(failure).

• If input changes N times per second, probability of failure 
per second is:

         P(failure)/second = (NT0/Tc) e
-(Tc

 
-  tsetup)/τ

• Synchronizer fails, on average, 1/[P(failure)/second]

• Called mean time between failures, MTBF:

 MTBF = 1/[P(failure)/second] = (Tc/NT0) e(Tc
 
-  tsetup)/τ
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Example Synchronizer

D
D2

Q

CLK CLK

F1 F2

• Suppose:  Tc     = 1/500 MHz = 2 ns     τ       = 200 ps

   T0    = 150 ps      tsetup = 100 ps

                             N    = 10 events per second

• What is the probability of failure? MTBF?

        P(failure) = (150 ps/2 ns) e-(1.9 ns)/200 ps

                                                                                  = 5.6 × 10-6

                                  P(failure)/second = 10 × (5.6 × 10-6 )
                                                                                  = 5.6 × 10-5 / second
                    MTBF    = 1/[P(failure)/second] ≈ 5 hours
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P(failure)/second = (NT0/Tc) e
-(Tc

 
-  tsetup)/τ

MTBF = 1/[P(failure)/second]
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Parallelism

• Two types of parallelism:
– Spatial parallelism

• duplicate hardware performs multiple tasks at once

– Temporal parallelism

• task is broken into multiple stages

• also called pipelining

• for example, an assembly line
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Parallelism

• Token: Group of inputs processed to 
produce group of outputs

• Latency: Time for one token to pass from 
start to end

• Throughput: Number of tokens produced 
per unit time

         Parallelism increases throughput
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Parallelism Example

• Ben Bitdiddle bakes cookies to celebrate traffic light 
controller installation 

– 5 minutes to roll cookies

– 15 minutes to bake

• What is the latency and throughput without parallelism?

  Latency = 5 + 15 = 20 minutes = 1/3 hour

            Throughput = 1 tray/ 1/3 hour = 3 trays/hour
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Parallelism Example

• What is the latency and throughput if Ben 
uses parallelism?
– Spatial parallelism: Ben asks Allysa P. Hacker to 

help, using her own oven

– Temporal parallelism: 

• two stages: rolling and baking 

• He uses two trays  

• While first batch is baking, he rolls the 
second batch, etc.
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Spatial Parallelism
S

p
a
ti
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l

P
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m Roll

Bake

Ben 1 Ben 1

Alyssa 1 Alyssa 1

Ben 2 Ben 2

Alyssa 2 Alyssa 2

Time

0 5 10 15 20 25 30 35 40 45 50

Tray 1

Tray 2

Tray 3

Tray 4

Latency:

time to

first tray

Legend

 Latency = 5 + 15 = 20 minutes = 1/3 hour

           Throughput = 2 trays/ 1/3 hour = 6 trays/hour
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Latency = 5 + 15 = 20 minutes = 1/3 hour

 Throughput = 1 trays/ 1/4 hour = 4 trays/hour

 Using both techniques, the throughput would be 8 trays/hour

Temporal Parallelism
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