
Chapter 2:

Combinational Logic
Design

Digital Design &

Computer Architecture
Sarah Harris & David Harris

Digital Design & Computer Architecture Combinational Logic Design

Chapter 2 :: Topics

• Combinational Circuits

• Boolean Equations

• Boolean Algebra

• From Logic to Gates

• X’s and Z’s, Oh My

• Karnaugh Maps

• Combinational Building Blocks

• Timing

2

Chapter 2: Combinational Logic

Combinational Circuits

Digital Design & Computer Architecture Combinational Logic Design

inputs outputs
functional spec

timing spec

A logic circuit is composed of:
• Inputs
• Outputs
• Functional specification
• Timing specification

Introduction

4

Digital Design & Computer Architecture Combinational Logic Design

A E1

E2

E3B

C

n1

Y

Z

• Nodes

– Inputs: A, B, C

– Outputs: Y, Z

– Internal: n1

• Circuit elements

– E1, E2, E3

– Each a circuit

Circuits

5

Digital Design & Computer Architecture Combinational Logic Design

inputs outputs
functional spec

timing spec

• Combinational Logic
– Memoryless

– Outputs determined by current values of inputs

• Sequential Logic
– Has memory

– Outputs determined by previous and current values
of inputs

Types of Logic Circuits

6

Digital Design & Computer Architecture Combinational Logic Design

• Every element is combinational

• Every node is either an input or connects
to exactly one output

• The circuit contains no cyclic paths

• Example:

Rules of Combinational Composition

7

Chapter 2: Combinational Logic

Boolean Equations

Digital Design & Computer Architecture Combinational Logic Design

A
S

S = A  B  C
in

C
out

 = AB + AC
in
 + BC

in

B
C

in

CL
C

out

• Functional specification of outputs in terms
of inputs

• Example: S = F(A, B, Cin)

 Cout = F(A, B, Cin)

Boolean Equations

9

Digital Design & Computer Architecture Combinational Logic Design

• Complement: variable with a bar over it

 A, B, C

• Literal: variable or its complement

 A, A, B, B, C, C

• Implicant: product of literals

 ABC, AC, BC

• Minterm: product that includes all input variables

 ABC, ABC, ABC

• Maxterm: sum that includes all input variables

 (A+B+C), (A+B+C), (A+B+C)

Some Definitions

10

Digital Design & Computer Architecture Combinational Logic Design

Y = F(A, B) =

A B Y

0 0

0 1

1 0

1 1

minterm

A B

A B

A B

A B

minterm

name

m0

m1

m2

m3

• All Boolean equations can be written in SOP form
• Each row has a minterm
• A minterm is a product (AND) of literals
• Each minterm is TRUE for that row (and only that row)
• Form function by ORing minterms where output is 1
• Thus, a sum (OR) of products (AND terms)

Sum-of-Products (SOP) Form

0

1

0

1

11

Digital Design & Computer Architecture Combinational Logic Design

Y = F(A, B) = AB + AB = Σ(1, 3)

A B Y

0 0

0 1

1 0

1 1

0

1

0

1

minterm

A B

A B

A B

A B

minterm

name

m0

m1

m2

m3

• All Boolean equations can be written in SOP form
• Each row has a minterm
• A minterm is a product (AND) of literals
• Each minterm is TRUE for that row (and only that row)
• Form function by ORing minterms where output is 1
• Thus, a sum (OR) of products (AND terms)

Sum-of-Products (SOP) Form

Short-handLong-hand

12

Digital Design & Computer Architecture Combinational Logic Design

Y = F(A, B) = (A + B)●(A + B) = Π(0, 2)

• All Boolean equations can be written in POS form
• Each row has a maxterm
• A maxterm is a sum (OR) of literals
• Each maxterm is FALSE for that row (and only that row)
• Form function by ANDing maxterms where output is 0
• Thus, a product (AND) of sums (OR terms)

Product-of-Sums (POS) Form

A + B

A B Y

0 0

0 1

1 0

1 1

0

1

0

1

maxterm

A + B

A + B

A + B

maxterm

name

M0

M1

M2

M3

Short-handLong-hand

13

Digital Design & Computer Architecture Combinational Logic Design

Boolean Equations Example

• You are going to the cafeteria for lunch

– You won’t eat lunch (E = 0)

• If it’s not clean (C = 0) or

• If they only serve meatloaf (M = 1)

• Write a truth table for determining if you
will eat lunch (E).

C M E

0 0

0 1

1 0

1 1

0

0

1

0

14

Digital Design & Computer Architecture Combinational Logic Design

C + M

C M E

0 0

0 1

1 0

1 1

0

0

1

0

maxterm

C + M

C + M

C + M

C M E

0 0

0 1

1 0

1 1

0

0

1

0

minterm

C M

C M

C M

C M

SOP & POS Form

SOP – sum-of-products

POS – product-of-sums

15

Digital Design & Computer Architecture Combinational Logic Design

C + M

C M E

0 0

0 1

1 0

1 1

0

0

1

0

maxterm

C + M

C + M

C + M

C M E

0 0

0 1

1 0

1 1

0

0

1

0

minterm

C M

C M

C M

C M

E = (C + M)(C + M)(C + M)

 = Π(0, 1, 3)

E = CM

 = Σ(2)

SOP & POS Form

SOP – sum-of-products

POS – product-of-sums

16

Digital Design & Computer Architecture Combinational Logic Design

Forming Boolean Expressions

Example 1:

We will go to the Park (P is the output) if it’s not
Raining (R) and we have Sandwiches (S).

Boolean Equation:

P = RS

17

Digital Design & Computer Architecture Combinational Logic Design

Forming Boolean Expressions

Example 2:

You will be considered a Winner (W is the output)
if we send you a Million dollars (M) or a small
Notepad (N).

Boolean Equation:

W = M + N

18

Digital Design & Computer Architecture Combinational Logic Design

Forming Boolean Expressions

Example 3:

You can Eat delicious food (E is the output) if you
Make it yourself (M) or you have a personal Chef (C)
and she/he is talented (T) but not eXpensive (X).

Boolean Equation:

E = M + CTX

19

Digital Design & Computer Architecture Combinational Logic Design

Forming Boolean Expressions

Example 4:

You can Enter the building if you have a Hat and
Shoes on or if you have a Hat on.

Boolean Equation:

E = HS + H

20

Digital Design & Computer Architecture Combinational Logic Design

Forming Boolean Expressions

Example 5:

You can Enter the building if you have a Hat and
Shoes on or if you have a Hat and no Shoes on.

Boolean Equation:

E = HS + HS

21

Chapter 2: Combinational Logic

Boolean Algebra:
Axioms

Digital Design & Computer Architecture Combinational Logic Design

• Axioms and theorems to simplify Boolean
equations

• Like regular algebra, but simpler: variables
have only two values (1 or 0)

• Duality in axioms and theorems:

–ANDs and ORs, 0’s and 1’s interchanged

Boolean Algebra

23

Digital Design & Computer Architecture Combinational Logic Design

Boolean Axioms

Number Axiom Name

A1 B = 0 if B ≠ 1 Binary Field

A2 0 = 1 NOT

A3 0 • 0 = 0 AND/OR

A4 1 • 1 = 1 AND/OR

A5 0 • 1 = 1 • 0 = 0 AND/OR

24

Digital Design & Computer Architecture Combinational Logic Design

Boolean Axioms

Number Axiom Dual Name

A1 B = 0 if B ≠ 1 B = 1 if B ≠ 0 Binary Field

A2 0 = 1 1 = 0 NOT

A3 0 • 0 = 0 1 + 1 = 1 AND/OR

A4 1 • 1 = 1 0 + 0 = 0 AND/OR

A5 0 • 1 = 1 • 0 = 0 1 + 0 = 0 + 1 = 1 AND/OR

Dual: Replace: • with +
 0 with 1

25

Chapter 2: Combinational Logic

Boolean Algebra:
Theorems of

One Variable

Digital Design & Computer Architecture Combinational Logic Design

Boolean Theorems of One Variable

Number Theorem Name

T1 B • 1 = B Identity

T2 B • 0 = 0 Null Element

T3 B • B = B Idempotency

T4 B = B Involution

T5 B • B = 0 Complements

Dual: Replace: • with +
 0 with 1

27

Digital Design & Computer Architecture Combinational Logic Design

Boolean Theorems of One Variable

Number Theorem Dual Name

T1 B • 1 = B B + 0 = B Identity

T2 B • 0 = 0 B + 1 = 1 Null Element

T3 B • B = B B + B = B Idempotency

T4 B = B Involution

T5 B • B = 0 B + B = 1 Complements

Dual: Replace: • with +
 0 with 1

28

Digital Design & Computer Architecture Combinational Logic Design

1 =

=

B

0
B

B

B

• B 1 = B

• B + 0 = B

T1: Identity Theorem

29

Digital Design & Computer Architecture Combinational Logic Design

0 =

=

B

1
B

1

0

• B 0 = 0

• B + 1 = 1

T2: Null Element Theorem

30

Digital Design & Computer Architecture Combinational Logic Design

B =

=

B

B
B

B

B

• B B = B

• B + B = B

T3: Idempotency Theorem

31

Digital Design & Computer Architecture Combinational Logic Design

= BB

• B = B

T4: Involution Theorem

32

Digital Design & Computer Architecture Combinational Logic Design

B =

=

B

B
B

1

0

• B B = 0

• B + B = 1

T5: Complement Theorem

33

Digital Design & Computer Architecture Combinational Logic Design

Recap: Basic Boolean Theorems

Number Theorem Dual Name

T1 B • 1 = B B + 0 = B Identity

T2 B • 0 = 0 B + 1 = 1 Null Element

T3 B • B = B B + B = B Idempotency

T4 B = B Involution

T5 B • B = 0 B + B = 1 Complements

34

Chapter 2: Combinational Logic

Boolean Algebra:
Theorems of

Several Variables

Digital Design & Computer Architecture Combinational Logic Design

Theorem Dual Name

T6 B•C = C•B B+C = C+B Commutativity

T7 (B•C) • D = B • (C•D) (B + C) + D = B + (C + D) Associativity

T8 B • (C + D) = (B•C) + (B•D) B + (C•D) = (B+C) (B+D) Distributivity

T9 B • (B+C) = B B + (B•C) = B Covering

T10 (B•C) + (B•C) = B (B+C) • (B+C) = B Combining

T11 (B•C) + (B•D) + (C•D) =
(B•C) + (B•D)

(B+C) • (B+D) • (C+D) =
(B+C) • (B+D)

Consensus

Boolean Theorems of Several Vars

Warning: T8’ differs from traditional algebra:
 OR (+) distributes over AND (•)

36

Digital Design & Computer Architecture Combinational Logic Design

How to Prove

• Method 1: Perfect induction

• Method 2: Use other theorems and axioms
to simplify the equation

– Make one side of the equation look like
the other

37

Digital Design & Computer Architecture Combinational Logic Design

Proof by Perfect Induction

• Also called: proof by exhaustion

• Check every possible input value

• If the two expressions produce the same
value for every possible input combination,
the expressions are equal

38

Digital Design & Computer Architecture Combinational Logic Design

T9: Covering

Prove true by:

• Method 1: Perfect induction

• Method 2: Using other theorems and axioms

Number Theorem Name

T9 B• (B+C) = B Covering

39

Digital Design & Computer Architecture Combinational Logic Design

T9: Covering

Method 1: Perfect Induction

0 0
1 0
1 1
1 1

Number Theorem Name

T9 B• (B+C) = B Covering

0 0
0 1
1 0
1 1

B C (B+C) B(B+C)

40

Digital Design & Computer Architecture Combinational Logic Design

T9: Covering

Method 2: Prove true using other axioms and
theorems.
B•(B+C) = B•B + B•C T8: Distributivity
 = B + B•C T3: Idempotency
 = B•1 + B•C T2: Null Element
 = B•(1 + C) T8: Distributivity
 = B•(1) T2: Null element
 = B T1: Identity

Number Theorem Name

T9 B• (B+C) = B Covering

41

Digital Design & Computer Architecture Combinational Logic Design

T10: Combining

Prove true using other axioms and theorems:

 B•C + B•C = B•(C+C) T8: Distributivity

 = B•(1) T5’: Complements

 = B T1: Identity

Number Theorem Name

T10 (B•C) + (B•C) = B Combining

42

Digital Design & Computer Architecture Combinational Logic Design

De Morgan’s Theorem: Dual

The complement of the product is the
sum of the complements.

Dual:
The complement of the sum is the

product of the complements.

Theorem Dual Name

T12 B•C•D… = B+C+D… B+C+D…= B•C•D… De Morgan’s
Theorem

43

Digital Design & Computer Architecture Combinational Logic Design

Theorem Dual Name

T6 B•C = C•B B+C = C+B Commutativity

T7 (B•C) • D = B • (C•D) (B + C) + D = B + (C + D) Associativity

T8 B • (C + D) = (B•C) + (B•D) B + (C•D) = (B+C) (B+D) Distributivity

T9 B • (B+C) = B B + (B•C) = B Covering

T10 (B•C) + (B•C) = B (B+C) • (B+C) = B Combining

T11 (B•C) + (B•D) + (C•D) =
(B•C) + (B•D)

(B+C) • (B+D) • (C+D) =
(B+C) • (B+D)

Consensus

T12 B•C•D… = B+C+D… B+C+D…= B•C•D… De Morgan’s

Recap: Theorems of Several Vars

44

Chapter 2: Combinational Logic

Boolean Algebra:
Simplifying Equations

Digital Design & Computer Architecture Combinational Logic Design

Simplifying an Equation

Simplifying may mean minimal sum of products form:

• SOP form that has the fewest number of implicants, where
each implicant has the fewest literals

– Implicant: product of literals

 ABC, AC, BC

– Literal: variable or its complement
 A, A, B, B, C, C

Simplifying could also mean fewest number of gates, lowest cost,
lowest power, etc. For example, Y = A xor B is likely simpler than
minimal Sum of Products Y = AB + AB. These depend on details of
the technology.

46

Digital Design & Computer Architecture Combinational Logic Design

Y = AB + AB

 Y = B T10: Combining

or

 Y = B(A + A) T8: Distributivity

 = B(1) T5’: Complements

 = B T1: Identity

Simplifying Boolean Equations

Example 1:
Recommended Method

47

Digital Design & Computer Architecture Combinational Logic Design

Y = ABC + ABC + ABC

 = ABC + ABC + ABC + ABC T3’: Idempotency

 = (ABC+ABC) + (ABC+ABC) T7’: Associativity

 = AC + BC T10: Combining

Simplifying Boolean Equations

Example 2:

48

Chapter 2: Combinational Logic

Boolean Algebra:
Simplifying Equations

Extra Examples

Digital Design & Computer Architecture Combinational Logic Design

Simplification methods
• Distributivity (T8, T8’) B (C+D) = BC + BD

 B + CD = (B+ C)(B+D)

• Covering (T9’) A + AP = A

• Combining (T10) PA + PA = P

• Expansion P = PA + PA

 A = A + AP

• Idempotency (duplication) A = A + A

• “Simplification” theorem A + AP = A + P

 A + AP = A + P

50

Digital Design & Computer Architecture Combinational Logic Design

Proving the “Simplification” Theorem

“Simplification” theorem
 A + AP = A + P
 Method 1: A + AP = A + AP + AP T9’ Covering

 = A + (AP + AP) T7 Associativity

 = A + P T10 Combining

 Method 2: A + AP = (A + A) (A + P) T8’ Distributivity

 = 1• (A + P) T5’ Complements

 = A + P T1 Identity

51

Digital Design & Computer Architecture Combinational Logic Design

T11: Consensus

Number Theorem Name

T11 (B•C) + (B•D) + (C•D) =
(B•C) + (B•D)

Consensus

Prove using other theorems and axioms:

 B•C + B•D + C•D

 = BC + BD + (CDB+CDB) T10: Combining

 = BC + BD + BCD+BCD T6: Commutativity

 = BC + BCD + BD + BCD T6: Commutativity

 = (BC + BCD) + (BD + BCD) T7: Associativity

 = BC + BD T9’: Covering

52

Digital Design & Computer Architecture Combinational Logic Design

Simplification methods
• Distributivity (T8, T8’) B (C+D) = BC + BD

 B + CD = (B+ C)(B+D)

• Covering (T9’) A + AP = A

• Combining (T10) PA + PA = P

• Expansion P = PA + PA

 A = A + AP

• Idempotency (duplication) A = A + A

• “Simplification” theorem A + AP = A + P

 A + AP = A + P

53

Digital Design & Computer Architecture Combinational Logic Design

Simplification methods
• Distributivity (T8, T8’) B (C+D) = BC + BD

 B + CD = (B+ C)(B+D)

• Covering (T9’) A + AP = A

• Combining (T10) PA + PA = P

• Expansion P = PA + PA

 A = A + AP

• Idempotency (duplication) A = A + A

• “Simplification” theorem A + AP = A + P

 A + AP = A + P

54

Digital Design & Computer Architecture Combinational Logic Design

Y = A(AB + ABC)

 = A(AB(1 + C)) T8: Distributivity

 = A(AB(1)) T2’: Null Element

 = A(AB) T1: Identity

 = (AA)B T7: Associativity

 = AB T3: Idempotency

Simplifying Boolean Equations

Example 3:

55

Digital Design & Computer Architecture Combinational Logic Design

Simplification methods
• Distributivity (T8, T8’) B (C+D) = BC + BD

 B + CD = (B+ C)(B+D)

• Covering (T9’) A + AP = A

• Combining (T10) PA + PA = P

• Expansion P = PA + PA

 A = A + AP

• Idempotency (duplication) A = A + A

• “Simplification” theorem A + AP = A + P

 A + AP = A + P

56

Digital Design & Computer Architecture Combinational Logic Design

Y = A’BC + A’ Recall: A’ = A

Note:

• A‘ is shorthand for A.

• But use the tick symbol (‘) only when typing.

• It’s easy to lose ticks (‘) when writing by hand!

• It is strongly recommended that you simplify
equations by writing by hand.

Simplifying Boolean Equations

Example 4:

57

Digital Design & Computer Architecture Combinational Logic Design

Y = A’BC + A’ Recall: A’ = A

 = A’ T9’ Covering: X + XY = X

or

 = A’(BC + 1) T8: Distributivity

 = A’(1) T2’: Null Element

 = A’ T1: Identity

Simplifying Boolean Equations

Example 4:

58

Digital Design & Computer Architecture Combinational Logic Design

An expression is in sum-of-products (SOP)
form when all products contain literals
only.
• SOP form: Y = AB + BC’ + DE
• NOT SOP form: Y = DF + E(A’+B)
• SOP form: Z = A + BC + DE’F

Multiplying Out: SOP Form

59

Digital Design & Computer Architecture Combinational Logic Design

Multiplying Out: SOP Form

Example 5:

This method is called multiplying out.

Y = (A + C + D + E)(A + B)
 Apply T8’ first when possible: W+XZ = (W+X)(W+Z)

 Make: X = (C+D+E), Z = B and rewrite equation

 Y = (A+X)(A+Z) substitution (X=(C+D+E), Z=B)

 = A + XZ T8’: Distributivity

 = A + (C+D+E)B substitution

 = A + BC + BD + BE T8: Distributivity

or

 Y = AA+AB+AC+BC+AD+BD+AE+BE T8: Distributivity

 = A+AB+AC+AD+AE+BC+BD+BE T3: Idempotency

 = A + BC+BD+BE T9’: Covering

Recommended Method

60

Digital Design & Computer Architecture Combinational Logic Design

Y = AB + BC +B’D’ + AC’D’
Method 1:

 Y = AB + BC + B’D’ + (ABC’D’ + AB’C’D’) T10: Combining

 = (AB + ABC’D’) + BC + (B’D’ + AB’C’D’) T6: Commutat.

 T7: Associativity

 = AB + BC + B’D’ T9: Covering

Method 2:

 Y = AB + BC + B’D’ + AC’D’ + AD’ T11: Consensus

 = AB + BC + B’D’ + AD’ T9: Covering

 = AB + BC + B’D’ T11: Consensus

Simplifying Boolean Equations

Example 6:

61

Digital Design & Computer Architecture Combinational Logic Design

Literal and implicant ordering

• Variables within an implicant should be in
alphabetical order.

• The order of implicants doesn’t matter.

Examples:

– Correct: Y = AB + BC + BD

– Correct: Y = BC + BD + AB

– Incorrect: Y = CB + BD + BA

– Incorrect: Y = AB + BC + DB

62

Digital Design & Computer Architecture Combinational Logic Design

Simplifying Boolean Equations

Example 7:
Y = (A + BC)(A + DE)
 Apply T8’ first when possible: W+XZ = (W+X)(W+Z)

 Make: X = BC, Z = DE and rewrite equation

 Y = (A+X)(A+Z) substitution (X=BC, Z=DE)

 = A + XZ T8’: Distributivity

 = A + BCDE substitution

or

 Y = AA + ADE + ABC + BCDE T8: Distributivity

 = A + ADE + ABC + BCDE T3: Idempotency

 = A + ADE + ABC + BCDE

 = A + BCDE T9’: Covering

 = A + BCDE T9’: Covering

Recommended Method

63

Digital Design & Computer Architecture Combinational Logic Design

C + M

C M E

0 0

0 1

1 0

1 1

0

0

1

0

maxterm

C + M

C + M

C + M

C M E

0 0

0 1

1 0

1 1

0

0

1

0

minterm

C M

C M

C M

C M

E = (C + M)(C + M)(C + M)

 = (C + MM)* (C + M)

 = (C + 0)* (C + M)

 = C * (C + M)

 = CC + CM

 = 0 + CM

 = CM

E = CM

Review: Canonical SOP & POS Forms
SOP – sum-of-products

POS – product-of-sums

same

64

Digital Design & Computer Architecture Combinational Logic Design

An expression is in product-of-sums (POS)
form when all sums contain literals only.
• POS form: Y = (A+B)(C+D)(E’+F)
• NOT POS form: Y = (D+E)(F’+GH)
• POS form: Z = A(B+C)(D+E’)

Factoring: POS Form

65

Digital Design & Computer Architecture Combinational Logic Design

Factoring: POS Form

Example 8:
Y = (A + B’CDE)
 Apply T8’ first when possible: W+XZ = (W+X)(W+Z)

 Make: X = B’C, Z = DE and rewrite equation

 Y = (A+XZ) substitution (X=B’C, Z=DE)

 = (A+B’C)(A+DE) T8’: Distributivity

 = (A+B’)(A+C)(A+D)(A+E) T8’: Distributivity

66

Digital Design & Computer Architecture Combinational Logic Design

Factoring: POS Form

Example 9:
Y = AB + C’DE + F
 Apply T8’ first when possible: W+XZ = (W+X)(W+Z)

 Make: W = AB, X = C’, Z = DE and rewrite equation

 Y = (W+XZ) + F substitution W = AB, X = C’, Z = DE

 = (W+X)(W+Z) + F T8’: Distributivity

 = (AB+C’)(AB+DE)+F substitution

 = (A+C’)(B+C’)(AB+D)(AB+E)+F T8’: Distributivity

 = (A+C’)(B+C’)(A+D)(B+D)(A+E)(B+E)+F T8’: Distributivity

 = (A+C’+F)(B+C’+F)(A+D+F)(B+D+F)(A+E+F)(B+E+F) T8’: Distr.

67

Digital Design & Computer Architecture Combinational Logic Design

Y = (A+BD)C

 = (A+BD) + C

 = (A•(BD)) + C

 = (A•(BD)) + C

 = ABD + C

De Morgan’s Theorem

• Work from the outside in
 (i.e., top bar, then down)
• Use involution when

possible

Example 10:

68

Digital Design & Computer Architecture Combinational Logic Design

Y = (ACE+D) + B

 = (ACE+D) • B

 = (ACE•D) • B

 = ((AC+E)•D) • B

 = ((AC+E)•D) • B

 = (ACD + DE) • B

 = ABCD + BDE

De Morgan’s Theorem

Example 11:

69

Chapter 2: Combinational Logic

Boolean Algebra:
Simplifying Equations

Common Errors

Digital Design & Computer Architecture Combinational Logic Design

Common Errors

• Using ticks ‘ instead of bars over variables when writing
equations by hand – ticks are easy to lose

• Not keeping terms aligned from step to step

• Alignment helps you see what changed from step-to-step.

• It helps in both solving and double-checking the problem.

• Applying multiple theorems to the same term in one step

• Applying your own personal theorems – don’t do it ☺

• And, on a related note: almost applying the correct theorem

• Not looking for opportunities to use combining, covering,
and distributivity (especially the dual form).

71

Digital Design & Computer Architecture Combinational Logic Design

Common Errors

• Losing bars (alignment will help you avoid this)

• Losing terms (alignment will help you avoid this)

• Trying to do multiple steps at once – this is prone to errors!

• Applying theorems incorrectly, for example:

• Wrong: ABC + ABC = B Correct: ABC + ABC = AC. Products may
only differ in a single term when using the combining theorem.

• Wrong: (A + A) = 0 Correct: A + A = 1

• Wrong: (A • A) = 1 Correct: A • A = 0

• Wrong: ABC = B Correct: B + ABC = B. In order to use the
covering theorem, you must have a term that covers the other
terms.

• Wrong: 𝐴𝐶 = ҧ𝐴 ҧ𝐶 Correct: 𝐴𝐶 = ҧ𝐴 + ҧ𝐶 (De Morgan’s)

• Wrong: 𝐴 + 𝐶 = ҧ𝐴 + ҧ𝐶 Correct: 𝐴 + 𝐶 = ҧ𝐴 ҧ𝐶 (De Morgan’s)

72

Digital Design & Computer Architecture Combinational Logic Design

Common Errors with De Morgan’s

• Not starting from the outside parentheses and working in: this often
causes additional steps.

• Trying to apply De Morgan’s theorem to an entire complex
operation (instead of just to terms ANDed under a bar or terms
ORed under a bar)

• Losing bars. Remember that applying the De Morgan’s Theorem is a
3 step process. For a product term under a bar:
1. Change ANDs to ORs (or vice versa for a sum term under a bar)
2. Bring down the terms
3. Put bars over the individual terms

• Not keeping terms associated (i.e., losing parentheses)
• For example, ABC = (A+B+C)
• Example error:

• Wrong: (ABC)’C+D’ = A’+B’+C’C + D’ = A’ + B’ + D’
• Correct: (ABC)’C + D’ = (A’+B’+C’)C + D’ = A’C+B’C + D’

73

Chapter 2: Combinational Logic

From Logic to Gates

Digital Design & Computer Architecture Combinational Logic Design

Build the following equation using logic gates:

 Y = AB + CDE

From Logic to Gates

A
B

C
D
E

Y

75

Digital Design & Computer Architecture Combinational Logic Design

• Inputs on the left (or top)

• Outputs on right (or bottom)

• Gates flow from left to right

• Straight wires are best

Circuit Schematics Rules

A
B

C
D
E

Y

76

Digital Design & Computer Architecture Combinational Logic Design

wires connect

at a T junction

wires connect

at a dot

wires crossing

without a dot do

not connect

• Wires always connect at a T junction

• A dot where wires cross indicates a
connection between the wires

• Wires crossing without a dot make no
connection

Circuit Schematic Rules (cont.)

77

Digital Design & Computer Architecture Combinational Logic Design

BA C

Y

minterm: ABC

minterm: ABC

minterm: ABC

A B C

• Two-level logic: ANDs followed by ORs

• Example: Y = ABC + ABC + ABC

Two-Level Logic

Implements functions in SOP form

78

Digital Design & Computer Architecture Combinational Logic Design

• Complex logic is often built from many stages of
simpler gates.

Multilevel Logic

A
B

C

D

Y

79

Digital Design & Computer Architecture Combinational Logic Design

A
0

A
1

PRIORITY

CiIRCUIT

A
2

A
3

Y
0

Y
1

Y
2

Y
3

• Example: Priority Circuit
 Output asserted

 corresponding to most

 significant TRUE input
0

A
1

A
0

0 0
0 1
1 0
1 1

0

0
0

Y
3
Y
2

Y
1

Y
0

0
0
0
0

0
0
1
1

0
1
0
0

A
3

A
2

0 0
0 0
0 0
0 0

0 0 0 1 0 00 1
0 1
1 0
1 1
0 0

0 1
0 1
0 1
1 0

0 11 0
1 0
1 1
0 0
0 1

1 0
1 0
1 1
1 1

1 01 1
1 11 1

0
0
0
1

1
1
1
0

0
0
0
0

0
0
0
0

1 0 0 0
1
1
1
1

0
0
0
0

0
0
0
0

0
0
0
0

1 0 0 0
1 0 0 0

Multiple-Output Circuits

80

Digital Design & Computer Architecture Combinational Logic Design

A
3
A

2
A

1
A

0

Y
3

Y
2

Y
1

Y
0

Priority Circuit Hardware

0

A
1

A
0

0 0
0 1
1 0
1 1

0

0
0

Y
3
Y
2

Y
1

Y
0

0
0
0
0

0
0
1
1

0
1
0
0

A
3

A
2

0 0
0 0
0 0
0 0

0 0 0 1 0 00 1
0 1
1 0
1 1
0 0

0 1
0 1
0 1
1 0

0 11 0
1 0
1 1
0 0
0 1

1 0
1 0
1 1
1 1

1 01 1
1 11 1

0
0
0
1

1
1
1
0

0
0
0
0

0
0
0
0

1 0 0 0
1
1
1
1

0
0
0
0

0
0
0
0

0
0
0
0

1 0 0 0
1 0 0 0

Y3 = A3

Y2 = A3 A2

Y1 = A3 A2 A1

Y0 = A3 A2 A1 A0

81

Digital Design & Computer Architecture Combinational Logic Design

A
1

A
0

0 0
0 1
1 X
X X

0
0
0
0

Y
3
Y
2

Y
1

Y
0

0
0
0
1

0
0
1
0

0
1
0
0

A
3

A
2

0 0
0 0
0 0
0 1

X X 1 0 0 01 X

Don’t Cares

0

A
1

A
0

0 0
0 1
1 0
1 1

0

0
0

Y
3
Y
2

Y
1

Y
0

0
0
0
0

0
0
1
1

0
1
0
0

A
3

A
2

0 0
0 0
0 0
0 0

0 0 0 1 0 00 1
0 1
1 0
1 1
0 0

0 1
0 1
0 1
1 0

0 11 0
1 0
1 1
0 0
0 1

1 0
1 0
1 1
1 1

1 01 1
1 11 1

0
0
0
1

1
1
1
0

0
0
0
0

0
0
0
0

1 0 0 0
1
1
1
1

0
0
0
0

0
0
0
0

0
0
0
0

1 0 0 0
1 0 0 0

Y3 = A3

Y2 = A3 A2

Y1 = A3 A2 A1

Y0 = A3 A2 A1 A0

82

Chapter 2: Combinational Logic

Two-Level

Logic Forms

Digital Design & Computer Architecture Combinational Logic Design

• ANDs followed by ORs: SOP form

• ORs followed by ANDs: POS form

• Only NAND gates: SOP form

• Only NOR gates: POS form

Two-Level Logic Variations

Most common form of two-level logic

84

Digital Design & Computer Architecture Combinational Logic Design

• Two-level logic variation: ORs followed by ANDs

• Example: Y = (A+B)(A+B+C)

Two-Level Logic Variation

BA C

Y

(A+B)

(A+B+C)

A B C

Implements functions in POS form

85

Digital Design & Computer Architecture Combinational Logic Design

BA C

Y

minterm: ABC

minterm: ABC

minterm: ABC

A B C

• Two-level logic: ANDs followed by ORs → NANDs

• Example: Y = ABC + ABC + ABC

Two-Level Logic

Put bubbles on internal nodes.

BA C

Y

minterm: ABC

minterm: ABC

minterm: ABC

A B C

BA C

Y

minterm: ABC

minterm: ABC

minterm: ABC

A B C

Both: SOP form

86

Digital Design & Computer Architecture Combinational Logic Design

• Two-level logic: ORs followed by ANDs → NORs

• Example: Y = (A+B)(A+B+C)

Two-Level Logic Variation

BA C

Y

(A+B)

(A+B+C)

A B C

Put bubbles on internal nodes.

BA C

Y

(A+B)

(A+B+C)

A B C

Both: POS form

87

Chapter 2: Combinational Logic

Bubble Pushing

Digital Design & Computer Architecture Combinational Logic Design

De Morgan’s Theorem

Theorem Dual Name

T12 B•C•D… = B+C+D… B+C+D…= B•C•D… De Morgan’s
Theorem

89

Digital Design & Computer Architecture Combinational Logic Design

Y = A+BC

 = A•BC

 = A•BC

 = ABC

De Morgan’s Theorem

• Work from the outside in
 (i.e., top bar, then down)
• Use involution when possible

Example D1:

90

Digital Design & Computer Architecture Combinational Logic Design

Y = A+BC+AB

 = A•BC •AB

 = A•BC •(A + B)

 = ABC •(A + B)

 = ABCA + ABCB

 = ABC

DeMorgan’s Theorem

• De Morgan applies to:
▪ Products under a bar
▪ Sums under a bar

• Do not try to apply
DeMorgan’s to a mix of
operations

Example D2:

91

Digital Design & Computer Architecture Combinational Logic Design

Y = A+BC+AB

 = A•BC •AB

 = A•BC •(A + B)

 = ABC •(A + B)

 = ABCA + ABCB

 = ABC

De Morgan’s Theorem

Example D2:
Don’t forget these
parentheses!
 Remember:

 AB = (A + B)

92

Digital Design & Computer Architecture Combinational Logic Design

A
B

Y

A
B

Y

• Y = AB = A + B

• Y = A + B = A B

A
B

Y

A
B

Y

De Morgan’s Theorem: Gates

NAND gate
two forms

NOR gate
two forms

93

Digital Design & Computer Architecture Combinational Logic Design

A
B

Y
A
B

Y

• Backward:
– Body changes

– Adds bubbles to inputs

• Forward:
– Body changes

– Adds bubble to output

A
B

Y
A
B

Y

Bubble Pushing

94

Digital Design & Computer Architecture Combinational Logic Design

A
B

Y
C
D

Bubble Pushing

• What is the Boolean expression for this
circuit?

Y = AB + CD

A
B

Y
C
D

95

Digital Design & Computer Architecture Combinational Logic Design

A
B

C

D

Y

• Begin at output, then work toward inputs

• Push bubbles on final output back

• Draw gates in a form so bubbles cancel

Bubble Pushing Rules

96

Digital Design & Computer Architecture Combinational Logic Design

A
B

C

D

Y

bubble on

input and outputA
B

C

D

Y

A
B

C Y

D

Y = ABC + D

no output

bubble

no bubble on

input and output

Bubble Pushing Example

97

A
B

C

D

Y

Chapter 2: Combinational Logic

X’s and Z’s, Oh My

Digital Design & Computer Architecture Combinational Logic Design

A = 1

Y = X

B = 0

• Contention: circuit tries to drive output to 1 and 0
– Actual value somewhere in between
– Could be 0, 1, or in forbidden zone
– Might change with voltage, temperature, time, noise
– Often causes excessive power dissipation

• X is also used for:
– Uninitialized values
– Don’t Care

• Warnings:
– Contention or uninitialized outputs usually indicate a bug.

– Look at the context to tell meaning

Contention: X

99

Digital Design & Computer Architecture Combinational Logic Design

E A Y
0 0 Z

0 1 Z

1 0 0

1 1 1

A

E

Y

• Floating, high impedance, open,
high Z

• Floating output might be 0, 1, or
somewhere in between
– A voltmeter won’t indicate whether a

node is floating

– But if you touch the node or your
instructor walks over for a checkoff, it may
change randomly

Floating: Z

Tristate Buffer

100

Digital Design & Computer Architecture Combinational Logic Design

en1

to bus

from bus

en2

to bus

from bus

en3

to bus

from bus

en4

to bus

from bus

s
h

a
re

d
 b

u
s

processor

video

Ethernet

memory

Floating nodes are used in tristate
busses

– Many different drivers

– Exactly one is active at once

Tristate Busses

101

Chapter 2: Combinational Logic

Karnaugh Maps

Digital Design & Computer Architecture Combinational Logic Design

C
00 01

0

1

Y

11 10
AB

1

1

0

0

0

0

0

0

C 00 01

0

1

Y

11 10
AB

ABC

ABC

ABC

ABC

ABC

ABC

ABC

ABC

B C
0 0

0 1

1 0

1 1

A
0

0

0

0

0 0

0 1

1 0

1 1

1

1

1

1

1

1

0

0

0

0

0

0

Y

• Boolean expressions can be minimized by
combining terms

• K-maps minimize equations graphically

– PA + PA = P

Karnaugh Maps (K-Maps)

103

Digital Design & Computer Architecture Combinational Logic Design

C
00 01

0

1

Y

11 10
AB

1 0

0

0

0

0

0

C 00 01

0

1

Y

11 10
AB

ABC

ABC

ABC

ABC

ABC

ABC

ABC

ABC

B C
0 0

0 1

1 0

1 1

A
0

0

0

0

0 0

0 1

1 0

1 1

1

1

1

1

1

1

0

0

0

0

0

0

Y

1

K-Map

• Circle 1’s in adjacent squares

• In Boolean expression: include only literals
whose true and complement form are not in
the circle

 Y = AB Y = ABC+ABC = AB

104

Digital Design & Computer Architecture Combinational Logic Design

3-Input K-Map

1

B C Y
0 0 0

0 1 0

1 0

1 1 1

Truth Table

C 00 01

0

1

Y

11 10
ABA

0

0

0

0

0 0 0

0 1 0

1 0 0

1 1 1

1

1

1

1

K-Map

110 0

0 00 1

105

Y = AB + BC

1

B C Y
0 0 0

0 1 0

1 0

1 1 1

Truth Table

C 00 01

0

1

Y

11 10
ABA

0

0

0

0

0 0 0

0 1 0

1 0 0

1 1 1

1

1

1

1

K-Map

110 0

0 00 1

• Circle 1’s in adjacent squares

• In Boolean expression: include only literals
whose true and complement form are not in
the circle

Digital Design & Computer Architecture Combinational Logic Design

• Complement: variable with a bar over it

 A, B, C

• Literal: variable or its complement

 A, A, B, B, C, C

• Implicant: product of literals

 ABC, AC, BC

• Prime implicant: implicant corresponding to the
largest circle in a K-map

Some Definitions

106

Digital Design & Computer Architecture Combinational Logic Design

• Every 1 must be circled at least once

• Each circle must span a power of 2 (i.e. 1, 2,
4) squares in each direction

• Each circle must be as large as possible

• A circle may wrap around the edges

K-Map Rules

107

Digital Design & Computer Architecture Combinational Logic Design

0

C D
0 0

0 1

1 0

1 1

B
0

0

0

0

0 0

0 1

1 0

1 1

1

1

1

1

1

1

1

0

1

1

1

YA
0

0

0

0

0

0

0

0

0 0

0 1

1 0

1 1

0

0

0

0

0 0

0 1

1 0

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

01 11

1

0

0

1

0

0

1

101

1

1

1

1

0

0

0

1

11

10

00

00

10
AB

CD

Y

4-Input K-Map

108

Digital Design & Computer Architecture Combinational Logic Design

0

C D
0 0

0 1

1 0

1 1

B
0

0

0

0

0 0

0 1

1 0

1 1

1

1

1

1

1

1

1

0

1

1

1

YA
0

0

0

0

0

0

0

0

0 0

0 1

1 0

1 1

0

0

0

0

0 0

0 1

1 0

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

01 11

1

0

0

1

0

0

1

101

1

1

1

1

0

0

0

1

11

10

00

00

10
AB

CD

Y

Y = AC + ABD + ABC + BD

4-Input K-Map

109

Chapter 2: Combinational Logic

Karnaugh Maps with
Don’t Cares

Digital Design & Computer Architecture Combinational Logic Design

• Every 1 must be circled at least once

• Each circle must span a power of 2 (i.e. 1, 2,
4) squares in each direction

• Each circle must be as large as possible

• A circle may wrap around the edges

• Circle a “don't care” (X) only if it helps
minimize the equation

K-Map Rules

111

Digital Design & Computer Architecture Combinational Logic Design

01 11

1

0

0

X

X

X

1

101

1

1

1

1

X

X

X

X

11

10

00

00

10
AB

CD

Y

0

C D
0 0

0 1

1 0

1 1

B
0

0

0

0

0 0

0 1

1 0

1 1

1

1

1

1

1

1

1

0

X

1

1

YA
0

0

0

0

0

0

0

0

0 0

0 1

1 0

1 1

0

0

0

0

0 0

0 1

1 0

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

X

X

X

X

X

X

K-Maps with Don’t Cares

112

Digital Design & Computer Architecture Combinational Logic Design

01 11

1

0

0

X

X

X

1

101

1

1

1

1

X

X

X

X

11

10

00

00

10
AB

CD

Y

Y = A + BD + C

0

C D
0 0

0 1

1 0

1 1

B
0

0

0

0

0 0

0 1

1 0

1 1

1

1

1

1

1

1

1

0

X

1

1

YA
0

0

0

0

0

0

0

0

0 0

0 1

1 0

1 1

0

0

0

0

0 0

0 1

1 0

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

X

X

X

X

X

X

K-Maps with Don’t Cares

113

Chapter 2: Combinational Logic

Combinational Building
Blocks: Multiplexers

Digital Design & Computer Architecture Combinational Logic Design

• Selects between one of N inputs to connect
to output

• Select input is log2N bits – control input
• Example: 2:1 Mux

Multiplexer (Mux)

Y

0 0

0 1

1 0

1 1

0

1

0

1

0

0

0

0

0 0

0 1

1 0

1 1

1

1

1

1

0

0

1

1

0

1

S

D
0

Y
D

1

D
1

D
0

S Y

0

1 D
1

D
0

S

115

Digital Design & Computer Architecture Combinational Logic Design

D1

Y

D0

S

S
00 01

0

1

Y

11 10
D0 D1

0

0

0

1

1

1

1

0

Y = D0S + D1S

• Logic gates
– Sum-of-products form

• Tristates
– Two tristates

– Turn on exactly one to
select the appropriate
input

2:1 Multiplexer Implementations

Y

D0

S

D1

116
116

Digital Design & Computer Architecture Combinational Logic Design

4:1 Multiplexer Implementations

117
117

2-Level Logic Tristates

Hierarchical

4:1 Mux Symbol

Digital Design & Computer Architecture Combinational Logic Design

Using mux as a lookup table

Logic using Multiplexers

A B Y
0 0 0

0 1 1

1 0 0

1 1 0

Y = AB

00

Y
01

10

11

A B

S1S0

118

Chapter 2: Combinational Logic

Combinational Building
Blocks: Decoders

Digital Design & Computer Architecture Combinational Logic Design

2:4

Decoder

A1

A0

Y3

Y2

Y1

Y000
01
10
11

0 0

0 1

1 0

1 1

0

0

0

1

Y3 Y2 Y1 Y0A0A1

0

0

1

0

0

1

0

0

1

0

0

0

• N inputs, 2N outputs

• One-hot outputs: only one output HIGH at
once

Decoders

120

Digital Design & Computer Architecture Combinational Logic Design

Y3

Y2

Y1

Y0

A0A1

Decoder Implementation

121

Digital Design & Computer Architecture Combinational Logic Design

2:4

Decoder

A

B
00
01
10
11

Y = AB + AB

Y

AB
AB
AB
AB

Minterm

= A  B

OR the minterms:

Logic Using Decoders

122

Chapter 2: Combinational Logic

Timing

Digital Design & Computer Architecture Combinational Logic Design

A

Y

Time

delay

A Y

• Delay: time between input change and output
changing

• How to build fast circuits?

Timing

124

Digital Design & Computer Architecture Combinational Logic Design

A

Y

Time

A Y

t
pd

t
cd

• Propagation delay: tpd = max delay from
input to output

• Contamination delay: tcd = min delay from
input to output

Propagation & Contamination Delay

125

Digital Design & Computer Architecture Combinational Logic Design

• Delay is caused by
– Capacitance and resistance in a circuit

– Speed of light limitation

• Reasons why tpd and tcd may be different:
– Different rising and falling delays

– Multiple inputs and outputs, some of which are
faster than others

– Circuits slow down when hot and speed up when
cold

Propagation & Contamination Delay

126

Digital Design & Computer Architecture Combinational Logic Design

A
B

C

D Y

Critical Path

Short Path

n1

n2

 Critical (Long) Path: tpd = 2tpd_AND + tpd_OR (max delay)

 Short Path: tcd = tcd_AND (min delay)

Critical (Long) & Short Paths

127

Digital Design & Computer Architecture Combinational Logic Design

When a single input change causes an output
to change multiple times

Glitches

128

Digital Design & Computer Architecture Combinational Logic Design

A
B

C

Y

00 01

1

Y

11 10
AB

1

1

0

1

0

1

0

0

C

0

Y = AB + BC

What happens when A = 0, C = 1, B falls?

Glitch Example

129

Digital Design & Computer Architecture Combinational Logic Design

A = 0
B = 1 0

C = 1

Y = 1 0 1

Short Path

Critical Path

B

Y

Time

1 0

0 1

glitch

n1

n2

n2

n1

Glitch Example (cont.)

130

Digital Design & Computer Architecture Combinational Logic Design

B = 1 0
Y = 1

A = 0

C = 1

00 01

1

Y

11 10
AB

1

1

0

1

0

1

0

0

C

0

Y = AB + BC + ACAC

Fixing the Glitch

131

Digital Design & Computer Architecture Combinational Logic Design

• Because of synchronous design
conventions (see Chapter 3), glitches don’t
cause problems.

• It’s important to recognize a glitch: in
simulations or on oscilloscope.

• We can’t get rid of all glitches –
simultaneous transitions on multiple inputs
can also cause glitches.

Why Understand Glitches?

132

Digital Design & Computer Architecture Combinational Logic Design

Digital Design and Computer Architecture Lecture Notes

© 2021 Sarah Harris and David Harris

These notes may be used and modified for educational and/or
non-commercial purposes so long as the source is attributed.

About these Notes

133

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11: Sum-of-Products Form
	Slide 12: Sum-of-Products Form
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133

