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9.1  INTRODUCTION
Input/Output (I/O) systems are used to connect a computer with external 
devices called peripherals. In a personal computer, the devices typically 
include keyboards, monitors, printers, and wireless networks. In embedded 
systems, devices could include a toaster’s heating element, a doll’s speech 
synthesizer, an engine’s fuel injector, a satellite’s solar panel positioning 
motors, and so forth. A processor accesses an I/O device using the address 
and data busses in the same way that it accesses memory.

This chapter provides concrete examples of I/O devices.  
Section 9.2 shows the basic principles of interfacing an I/O device to a 
processor and accessing it from a program. Section 9.3 examines I/O 
in the context of embedded systems. It shows how to use SparkFun’s 
RED-V RedBoard, which has a RISC-V microcontroller, to access 
on-board peripherals including general-purpose, serial, and analog I/O 
as well as timers and pulse-width modulation (PWM). Section 9.4 gives 
examples of interfacing with other common devices, such as character 
LCDs, VGA monitors, Bluetooth radios, and motors.

9.2  MEMORY-MAPPED I/O
Recall from Section 6.5.1 that a portion of the address space is dedi-
cated to I/O devices rather than memory. For example, suppose that 
physical addresses in the range 0x20000000 to 0x20FFFFFF are used 
for I/O. Each I/O device is assigned one or more memory addresses in 
this range. A store to the specified address sends data to the device. A 
load receives data from the device. This method of communicating with 
I/O devices is called memory-mapped I/O.

In a system with memory-mapped I/O, a load or store may access 
either memory or an I/O device. Figure e9.1 shows the hardware needed 
to support two memory-mapped I/O devices. An address decoder 
determines which device communicates with the processor. It uses the 
Address and MemWrite signals to generate control signals for the rest of 
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the hardware. The ReadData multiplexer selects between memory and 
the various I/O devices. Write-enabled registers hold the values written 
to the I/O devices. 

Example e9.1 COMMUNICATING WITH I/O DEVICES

Suppose that I/O Device 1 in Figure e9.1 is assigned the memory address 
0x20001000. Show the RISC-V assembly code for writing the value 7 to I/O 
Device 1 and for reading the output value from I/O Device 1.

Solution The following RISC-V assembly code writes the value 7 to I/O Device 
1. The .equ assembler directive replaces the named symbol with the given value. 
So, the li s1, ioadr instruction becomes li s1, 0x20001000.

.equ ioadr   0x20001000

  li  s0,  7
  li  s1,  ioadr
  sw  s0,  0(s1)

The address decoder detects address 0x20001000 and MemWrite = 1, so it 
asserts WE1, the write enable for Device 1’s register. At the next clock edge, the 
value on the WriteData bus, 7, is written into the register, whose output con-
nects to the input pins of I/O Device 1.

To read from I/O Device 1, the processor executes the following RISC-V  
assembly code.

 lw s0, 0(s1)

Embedded processors are so  
named because they are typically  
embedded within a larger 
system (such as a toy or an 
automobile) and have a limited  
user interface. In contrast, 
processors found in PCs have 
interfaces such as keyboards 
and screens that make them 
accessible to program or run 
applications. But all types  
of processors are essentially  
the same—they all execute 
instructions. Only the interfaces 
and peripheral devices used 
by embedded and traditional 
processors differ. 

Processor

Memory

Address
MemWrite

WriteData

Address
Decoder

CLK

I/O
Device1

I/O
Device2

ReadData

RData0
RData1

RData2

EN

WE

EN

W
EM

W
E1

W
E2

R
D

sel1:0

10
01
00

Figure e9.1 Support hardware for memory-mapped I/O



Embedded I/O SystemsCHAPTER NINE542.e3

The address decoder detects the address 0x20001000, so it sets RDsel1:0 to 01. 
The multiplexer thus selects RData1, the read data from Device 1, and connects 
it to the ReadData bus, the value of which is then loaded into s0 in the processor.

The addresses associated with I/O devices are often called I/O registers because 
they may correspond with physical registers in the I/O device like those shown 
in Figure e9.1.
 

Software that communicates with an I/O device is called a device 
driver. You have probably downloaded or installed device drivers for 
your printer or other I/O device. Writing a device driver requires detailed 
knowledge about the I/O device hardware, including the addresses and 
behavior of the memory-mapped I/O registers. Other programs call 
functions in the device driver to access the device without having to 
understand the low-level device hardware.

9.3  EMBEDDED I/O SYSTEMS
Embedded systems use a processor to control interactions with the physical 
environment. They are typically built around microcontroller units 
(MCUs) which combine a microprocessor with a set of easy-to-use  
peripherals such as general-purpose digital and analog I/O pins, serial ports,  
timers, etc. Microcontrollers are generally inexpensive and are designed to 
minimize system cost and size by integrating most of the necessary compo-
nents onto a single chip. Most are smaller and lighter than a dime, consume 
milliwatts of power, and range in cost from a few dimes up to several dol-
lars. Microcontrollers are classified by the size of data that they operate on. 
8-bit microcontrollers are the smallest and least expensive, while 32-bit 
microcontrollers provide more memory and higher performance.

9 . 3 . 1   RED-V Board

For the sake of concreteness, this section will illustrate embedded system 
I/O in the context of a real system. Specifically, we will focus on the 
FE310-G002 system-on-chip (SoC) from SiFive, which contains a 320 MHz 
32-bit RISC-V processor that implements the RV32IMAC architecture—
that is, the base 32-bit integer instruction set (RV32I) plus the  
multiply/divide (M), atomic memory accesses (A), and compressed 
16-bit instructions (C) extensions. This MCU is available on the HiFive 
development board from SiFive as well as on a set of third-party devel-
opment boards such as the RED-V series from SparkFun (available in 
both Arduino and Thing Plus footprints). The I/O interfaces described in 
each subsection will be followed by specific examples that run on the 
FE310. All of the examples have been tested on SparkFun’s RED-V 

According to IC Insights, 
approximately 24 billion 
microcontrollers were sold in 
2020, and the market is forecast 
to grow at 10% per year 
through 2029. The average price 
of a standalone microcontroller 
is about 60 cents, and an 
8-bit microcontroller can be 
integrated on a system-on-chip 
(SoC) for less than a tenth of a 
penny. Microcontrollers have 
become ubiquitous and nearly 
invisible, with an estimated 100 
or more microcontrollers in an 
average new car in 2021.

Automobiles are the largest 
and fastest-growing market for 
microcontrollers, followed by 
consumer electronics, industrial 
systems, medical devices, and 
military applications. 16-bit 
microcontrollers account for 
the most revenue in 2020, 
but 32-bit microcontrollers 
are increasing in market 
share because of their greater 
capabilities.

Leading microcontroller 
manufacturers are Infineon, 
Microchip, NXP, Renesas, 
STMicroelectronics, and 
Texas Instruments. Leading 
architectures include the 8051, 
AVR, PIC, and ARM. ARM 
holds a near-monopoly as the 
application processor for 90% 
of mobile devices. However, 
RISC-V is gaining great interest 
as a new and open-source 
architecture. 
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RedBoard and could be readily run on the HiFive development board or 
adapted to the RED-V Thing Plus Board.

Figure e9.2(a) shows SparkFun’s RED-V RedBoard, which is avail-
able for less than $40 and is 2.7” × 2.1”. The figure also shows each 
pin’s signal names, which we describe throughout this section. The 
development board can be powered from a 5  V USB power supply or 
from a 7 to 15  V DC source via the barrel jack. The FE310-G002 on 
board is powered by 3.3  V and 1.8  V on-board regulators. The 
FE310-G002 has a 16-KiB L1 Instruction Cache and a 16-KiB Data 
SRAM Scratchpad. The SparkFun development board also has 32 MiB 
of off-chip flash storage accessible via a serial peripheral interface (SPI) 
that can be used to store programs and data. 

Figure e9.2(b) shows the RED-V Thing Plus, which has capabilities 
similar to the RED-V RedBoard but in a smaller form factor (2.3” × 
0.9”) that fits on a breadboard for easy interfacing. The I/O pins are 
numbered differently than on the RedBoard and are difficult to read on 
the silk screen, but they are labeled in Figure e9.2(b).

The RED-V RedBoard form factor is designed around an Arduino 
R3 footprint in an effort to preserve as much compatibility as possible 
with the many Arduino shields available in this footprint. All 19 config-
urable I/O signals are accessible via header pins and operate at 3.3 V. 
The header also provides 3.3 V, 5 V, and ground to conveniently power 
small devices attached to the RedBoard, but the maximum total current 
is 50 mA from the 3.3 V supply and ~300 mA from the 5 V supply.

Maintaining compatibility with the Arduino R3 footprint results in 
multiple names for each pin: the silkscreen (text printed on the board) 
lists the standard Arduino pin numbers, but the RED-V pinout doc-
umented in Figure e9.2 shows both the Arduino pin numbers and the 
corresponding FE310 GPIO (general-purpose I/O) pin numbers. For 

The RED-V RedBoard is 
called simply the RED-V 
throughout this chapter. 

This book’s companion 
materials (see the Preface) 
include laboratory exercises 
that use the RED-V board. 

Caution: Connecting 5 V to one 
of the 3.3 V I/Os may damage 
the I/O and possibly the entire 
FE310. If you probe the I/O 
pins with a voltmeter, beware 
that you do not accidentally 
make contact between VUSB or 
VBAT and a nearby pin! 

Figure e9.2 (a) RED-V RedBoard; (b) RED-V Thing Plus Board  
(Photos courtesy of SparkFun used under CC BY 2.0)
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example, as shown in Figure e9.2, GPIO5 (FE310 pin 5) corresponds to 
D13 (Arduino pin 13). The RED-V Thing Plus board lacks the Arduino-
compatible pin naming but, thus, also avoids having multiple pin num-
bers for a single pin. Also notice in Figure e9.2 that some GPIO pins 
have multiple purposes. For example, GPIO18 (D2) can also act as the 
transmit line for UART 1 (UART1_TX), as will be described later.

On both boards, GPIO5 is connected to a blue LED. This pin is 
labeled 13 (i.e., D13) on the RedBoard and 5 on the Thing Plus board.

This section begins by describing the FE310-G002 SoC and describ-
ing a general device driver for memory-mapped I/O. The remainder of 
this section illustrates how embedded systems perform general-purpose 
digital, analog, and serial I/O.

9 . 3 . 2   FE310-G002 System-on-Chip

The FE310-G002 SoC is a powerful yet inexpensive microcontroller 
chip designed by SiFive. It includes a RISC-V microprocessor with a 
5-stage pipeline similar to the one described in Chapter 7 and many I/O 
peripherals. The FE310 is packaged in a 48-lead, quad flat no-leads 
package. SiFive publishes a datasheet that describes many features and 
I/O registers; this chapter discusses only a subset of those features.

Table e9.1 shows the FE310 memory map. Upon start-up, the pro-
cessor begins executing code from external flash memory at address 
0x20000000. The memory map has room for up to 512 MiB of exter-
nal flash, although current RED-V boards have much less: the RED-V 
RedBoard has 32 MiB of external flash, and the RED-V Thing Plus has  
4 MiB. The chip also has 16 KiB of RAM, called a data tightly integrated 
memory (DTIM), at address 0x80000000. This RAM has a 2-cycle load 
latency and is used to hold variables. Various peripherals are memory- 
mapped between addresses 0x02000000 and 0x1FFFFFFF and will be 
described in detail in later sections. These peripherals include general- 
purpose I/O, three pulse-width modulation (PWM) blocks for generating 
output waveforms, and many serial ports to connect to external devices, 
including three serial peripheral interfaces (SPIs), two universal asyn-
chronous receiver/transmitters (UARTs), and one inter-integrated circuit 
(I2C) interface.

Figure e9.3 shows a simplified schematic of the RED-V RedBoard. 
The board receives 5 V power from a USB power supply and regulators 
produce 3.3 V and 1.8 V for I/O, powering the low-power always-on 
core and miscellaneous functions.

9 . 3 . 3   General-Purpose Digital I/O

General-purpose I/O (GPIO) pins are used to read or write digital sig-
nals. At a minimum, GPIO pins require memory-mapped I/O registers 

SiFive was founded in 2015 
by three researchers from 
the University of California, 
Berkeley: Krste Asanović, 
Yunsup Lee, and Andrew 
Waterman. SiFive’s vision 
is to make custom silicon 
development faster and 
more affordable than ever 
before. Focused around the 
open RISC-V instruction 
set architecture (ISA), they 
have developed a platform 
that enables system-level 
design of custom chips. More 
information, including the 
FE310-G002 datasheet, can 
be found at sifive.com. 

The RISC-V microcontrollers 
from SiFive continue to advance. 
By the time you read this, a  
newer model might be available  
with a more advanced processor 
and a different set of embedded 
I/O. Nevertheless, the same 
principles discussed here apply 
to that microcontroller as well 
as other microcontrollers. You 
can expect to find the same  
types of I/O and peripherals. You  
will need to consult the datasheet 
to look up the mapping between 
the peripheral, the pin on the  
chip, and the pin on the board,  
as well as the memory-mapped  
I/O addresses (registers) associated 
with each peripheral. But, as 
described here, you will still 
write to configuration registers 
to initialize the peripheral and 
read and write data registers 
to communicate with the 
peripheral. 



9.3 Embedded I/O Systems 542.e6

Table e9.1 FE310 Memory Map

Memory attributes: R: Read, W: Write, X: Execute, C: Cacheable, A: Atomics.
Reprinted with permission from Table 4 of the FE310-G0002 Manual, © 2019 SiFive, Inc. 

to read input pin values, write output pin values, and set the direction 
of the pin. In many embedded systems, the GPIO pins can be shared 
with one or more special-purpose peripherals, so additional configura-
tion registers are necessary to determine whether the pin is general- or 
special-purpose. Furthermore, the processor may generate interrupts 
when an event such as a rising or falling edge occurs on an input pin, 
and configuration registers may be used to specify the conditions for 
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an interrupt. Recall that the FE310 has 19 GPIO pins. This section will 
start with a basic example of controlling these pins and then will look at 
some of the special purposes for these pins.

Figure e9.4 shows three light-emitting diodes (LEDs) and three 
switches connected to six GPIO pins. The LEDs are wired to glow 
when driven to 1 and to turn off when driven to 0. The current-limiting  
(typically around 300 Ω) resistors are placed in series with the LEDs to 
set the brightness and to avoid overloading the current capability of the 
GPIO. The switches are wired to produce a 1 when closed and a 0 when 
open. As shown, the 1 kΩ pull-down resistors pull the pins down to 0 
when the switches are open. Figure e9.4 indicates the (Arduino) pin 
numbers that are labeled on the board as well as the GPIO pin numbers.

Table e9.2 lists the GPIO registers and their address offsets rela-
tive to the GPIO base address, 0x10012000, as shown in Table 51 of 
the FE310-G002 Manual. Let’s first focus on the top four registers 
(i.e., memory-mapped I/O addresses). Each GPIO pin is mapped to one 
bit of the registers. Reading from the input_val (input value) regis-
ter reads the values of the GPIO pins, and writing to the output_val 
(output value) register writes to the GPIO pins. Before reading or writ-
ing to the pins, the input and output enable registers (input_en and  
output_en) must be set to configure the pins as inputs or outputs and 
the hardware-driven function enable register (iof_en) must be cleared 
to configure the pins as GPIO controlled.

GPIO Memory-Mapped I/O
We illustrate how to use the GPIO pins by writing a program that 
reads the state of a switch and controls an LED using the GPIOs. The 
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five most important registers for interacting with the GPIO pins are, 
as described above, input_val, input_en, output_en, output_val, 
and iof_en at offsets of 0x0, 0x4, 0x8, 0xC, and 0x38 from the base 
address. Each register is 32 bits wide and could control up to 32 GPIOs, 
but only 19 GPIOs are physically present on this chip.

To read GPIO n, a program sets bit n of the input_en (input 
enable) register and then reads the input_val (input value) register and 
looks at bit n. Similarly, to drive GPIO n, a program sets bit n of the 
output_en (output enable) register and then writes the desired value to 
bit n of the output_val (output value) register. In both cases, bit n of 

Table e9.2 GPIO register offsets

Offset Name Description

0x00 input_val Pin value

0x04 input_en Pin input enable*

0x08 output_en Pin output enable*

0x0C output_val Output value

0x10 pue Internal pull-up enable*

0x14 ds Pin drive strength

0x18 rise_ie Rise interrupt enable

0x1C rise_ip Rise interrupt pending

0x20 fall_ie Fall interrupt enable

0x24 fall_ip Fall interrupt pending

0x28 high_ie High interrupt enable

0x2C high_ip High interrupt pending

0x30 low_ie Low interrupt enable

0x34 low_ip Low interrupt pending

0x38 iof_en HW-driven functions enable

0x3C iof_sel HW-driven functions selection

0x40 out_xor Output XOR (invert)

Registers with * are asynchronously reset to 0 at start-up so that GPIO pins are inactive.
Reprinted with permission from Table 52 of the SiFive FE310-G0002 Manual, © 2019 
SiFive, Inc.
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the iof_en register must be cleared to ensure that the pin is driven by 
the GPIO controller instead of other hardware on the chip.

Code Example e9.1 illustrates a simple program that reads the value 
of the switch connected to GPIO19 and accordingly turns ON or OFF 
the on-board LED connected to GPIO5. The hardware setup is shown in 
Figure e9.5.  To access the memory-mapped I/O, it first declares pointers 
to the five registers at the addresses mentioned above. Each pointer is 
of type uint32_t* because the registers contain unsigned 32-bit values. 
The program writes a 1 to bit 19 of the input_en register and a 1 to 
bit 5 of the output_en register to configure GPIO pin 19 as an input 
and GPIO pin 5 as an output. Notice how we use the shift operation  
(1 << 19) to set a 1 in bit 19 and OR it with the existing contents of the 
enable register to turn on that bit without affecting other bits that might 
already be turned on. Then, we write a 0 to bits 5 and 19 in the iof_
en register to ensure that the pins are driven by the GPIO controller. To 
write a 0 to a bit, we AND iof_en with 1’s in every position except 
that bit so that the desired bit is forced low and the other bits are not 
affected. Next, the program repeatedly reads the input pin and writes 
the output pin. To read the input pin, the program reads the input_val 
register, right-shifts the value by 19 (to move pin 19’s value into bit 0), 
and performs a bitwise AND with 0x1 to retain only bit 0, leaving a single 
0 or 1 corresponding to the value originally in bit 19. To write a high 
value to a bit of the output_val register, we use the OR operation, as 
we did to turn on a bit in the enable registers. To write a 0 to a bit in the 
output_val register, we use the same approach as described above for 
clearing bits in the iof_en register.

In the context of bit 
manipulation, “setting” 
means to write 1 to a bit and 
“clearing” means to write 0 
to a bit. 

#include <stdint.h>
int main(void) {
  volatile uint32_t *input_val  = (uint32_t*)0x10012000;
  volatile uint32_t *input_en   = (uint32_t*)0x10012004;
  volatile uint32_t *output_en   = (uint32_t*)0x10012008;
  volatile uint32_t *output_val = (uint32_t*)0x1001200C;
  volatile uint32_t *iof_en   = (uint32_t*)0x10012038;
  int val;

  *iof_en  &= ~(1 << 19);  // Pin 19 is a GPIO
  *input_en   |=    (1 << 19);  // Pin 19 is an input
  *iof_en   &= ~ (1 << 5);  // Pin 5 is a GPIO
  *output_en    |=    (1 << 5);  // Pin 5 is an output
  while (1)   {
               val = (*input_val >> 19) & 1;  // Read value on pin 19
               if (val) *output_val |= (1 << 5);  // Turn ON pin 5
               else        *output_val &= ~(1 << 5);  // TURN OFF pin 5
        }
}

Code Example e9.1 SETTING GPIO OUTPUT BASED ON SWITCH INPUT

GPIO5

GPIO19

RED-V
3.3 V

1k�

330 �

Switch

Figure e9.5 LED output on GPIO 
pin 5 and switch input from GPIO 
pin 19
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Other GPIO Registers

Table e9.2 listed several other GPIO control registers of interest, partic-
ularly the pin drive strength (ds), internal pull-up enable (pue), and I/O 
function (iof_sel and iof_en) registers.

The ds register controls each pin’s maximum output current. The 
default value (0) configures IOL/IOH as 15 to 16 mA, while setting a pin’s 
ds to 1 increases that pin’s output current modestly to 21 mA, which 
might be helpful to drive a brighter LED.

The pue register configures an internal pull-up resistor. Figure e9.4 
showed an example of an external pull-down resistor. If the power and 
ground connections on the switch were reversed, the resistor would then 
be a pull-up resistor that drives the pin to 1 when the switch is not con-
nected. In that case, when the switch was pressed, the pin would drop 
to 0. To save money and circuit board space, many microcontrollers 
contain internal pull-up resistors that can optionally be enabled in soft-
ware. Writing a 1 to a bit of the pue register activates the internal pull-up 
resistor for the corresponding GPIO pin. According to Table 4.2 of the 
FE310-G002 datasheet, the pull-up current is 85 μA when the pin is at 0 
V. Hence, the effective pull-up resistance is 3.3  V/85 μA = 39 kΩ (V/I = R).

As shown in Table e9.3, most GPIO pins can also perform a special  
function, such as acting as a serial port or a pulse-width modulation 
(PWM) output. We discuss these functions in detail later in this chap-
ter. The iof_sel and iof_en registers together determine whether each 
pin is acting as a GPIO or as a special function. When iof_en is 0 (the 
default), the pin acts as a GPIO. When it is 1, it takes on the special 
function. The special function is chosen from Table e9.3 based on the 
iof_sel bit for that pin. For example, to use GPIO11 to generate a 
pulse-width modulated waveform, set bit 11 of iof_sel and iof_en to 1. 
Then, use the PWM registers to control the output. iof_en is mapped 
to address 0x10012038 and iof_sel to 0x1001203C. Table e9.3 lists 
32 GPIOs; however, remember that the RED-V boards only include 19 
GPIOs: GPIOs 0 to 5, 9 to 13, and 16 to 23.

9 . 3 . 4   Device Drivers

As we saw in Code Example e9.1, programmers can manipulate I/O 
devices directly by reading or writing the memory-mapped I/O registers. 
However, it is better programming practice to call functions that access 
the memory-mapped I/O. These functions are called device drivers. Some 
of the benefits of using device drivers include:

▸ The code is easier to read when it involves a clearly named function 
call rather than a write to bit fields at an obscure memory address.

▸ Somebody who is familiar with the deep workings of the I/O devices 
can write the device driver and casual users can call it without hav-
ing to understand the details.
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Table e9.3 GPIO pins special functions map

Reprinted with permission from Table 53 of the SiFive 
FE310-G0002 Manual, © 2019 SiFive, Inc.

▸ The code is easier to port to another processor with different mem-
ory mapping or I/O devices because only the device driver must 
change.

▸ If the device driver is part of the operating system (OS), the OS can 
control access to physical devices shared among multiple programs 
running on the system and can manage security (e.g., so a malicious 
program can’t read the keyboard while you are typing your pass-
word into a web browser).
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This chapter will develop a simple device driver called EasyREDVIO 
to access FE310 peripherals so that you can understand what is happen-
ing under the hood in a device driver. To access all features of the FE310, 
users may prefer the Freedom Metal environment, which provides  
convenient software interfaces for controlling SiFive Core IP features 
and peripheral devices. Freedom Metal is powerful since it is written in 
such a way that its API will work on any device that has a Freedom 
Metal board support package (BSP). A BSP is a software package con-
taining drivers and other commonly used routines. SiFive also provides 
the Freedom E software developer kit (SDK) and Freedom Studio, which 
allow users to develop software for any SiFive core.

Example e9.2 DEVICE DRIVERS IN C

Accessing and modifying the values for memory-mapped I/O is accomplished by 
reading or writing to memory addresses. In assembly, this is done using lw and sw 
instructions. As illustrated in Code Example e9.2, C can do the same thing with 
pointers, but it is tedious and error-prone to declare pointers for every memory- 
mapped I/O register. A more natural way to describe and control memory-mapped  
I/O in C is using structures.

As discussed in Section C.8.5 in the appendix, structures in C are a way to group 
a collection of different data types into a single unit. Using structures in the con-
text of memory-mapped registers allows communication with the I/O device 
using the name of a given register or field as opposed to a memory address. A C 
program can declare a structure for a memory-mapped peripheral, listing the reg-
isters in the order they appear in the memory map. It can then declare a pointer 
to such a structure and access the peripheral via the structure pointer.

Start the EasyREDVIO library by writing pinMode, digitalRead, and  
digitalWrite functions to configure a pin’s direction and read or write it.

▸  The pinMode function takes two inputs: the pin number and the mode. For 
example, pinMode(5, INPUT) sets GPIO pin 5 as an input, and pinMode(17, 
OUTPUT) sets GPIO pin 17 as an output.

▸  digitalRead takes one input, the pin number, and returns the value of that 
pin. For example, digitalRead(19) reads the value of GPIO19.

▸  digitalWrite takes two inputs: the pin number and the value. For exam-
ple, digitalWrite(3, 1) writes 1 to GPIO pin 3, and digitalWrite(5, 0) 
writes 0 to GPIO pin 5.

After writing these functions, write a C program that uses these functions to read the 
three switches and turn on the corresponding LEDs, using the hardware in Figure e9.4.

Solution The EasyREDVIO code is given below. The functions must choose 
which registers and bits within those registers to access. For example, to 

EasyREDVIO and the code 
examples in this chapter can 
be downloaded from the 
textbook website (see the 
Preface). More information 
about Freedom Metal and 
documentation can be found 
at https://github.com/sifive/
freedom-metal. 

https://github.com/sifive/freedom-metal
https://github.com/sifive/freedom-metal
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configure a pin as an input, pinMode must set that pin’s bit in input_en and 
clear that pin’s bit in output_en. digitalWrite handles writing either 1 or 0 by 
writing to output_val. digitalRead reads the desired bit of input_val.

The GPIO structure (struct) specifies the 32-bit registers by name. Two define 
statements then specify the base address of the GPIO (GPIO0_BASE) and instantiate 
a pointer of type GPIO located at that base address. Each of the 32-bit variables in 
the structure are then located in memory in ascending order from that base address.
 

Code Example e9.2 GPIO FOR SWITCHES AND LEDS

// EasyREDVIO.h
// Joshua Brake, David Harris, and Sarah Harris, 7 October 2020

#include <stdint.h>

#define INPUT   0
#define OUTPUT 1

// Define statements to map Arduino pin names to FE310 GPIO pin number according to Figure e9.2
#define D0    16
#define D1    17
#define D2    18
#define D3    19
#define D4    20
#define D5    21
#define D6    22
#define D7    23
#define D8    0
#define D9    1
#define D10 2
#define D11 3
#define D12 4
#define D13 5
#define D15 9
#define D16 10
#define D17 11
#define D18 12
#define D19 13

// Declare a GPIO structure defining the GPIO registers in the order they appear in Table e9.2
typedef struct {

 volatile uint32_t   input_val;  // (GPIO offset 0x00) Pin value
 volatile uint32_t   input_en;  // (GPIO offset 0x04) Pin input enable*
 volatile uint32_t   output_en;  // (GPIO offset 0x08) Pin output enable*
 volatile uint32_t   output_val;  // (GPIO offset 0x0C) Output value
 volatile uint32_t   pue;  // (GPIO offset 0x10) Internal pull-up enable*
 volatile uint32_t   ds;  // (GPIO offset 0x14) Pin drive strength
 volatile uint32_t   rise_ie;  // (GPIO offset 0x18) Rise interrupt enable
 volatile uint32_t   rise_ip;  // (GPIO offset 0x1C) Rise interrupt pending
 volatile uint32_t   fall_ie;  // (GPIO offset 0x20) Fall interrupt enable
 volatile uint32_t   fall_ip;  // (GPIO offset 0x24) Fall interrupt pending
 volatile uint32_t   high_ie;  // (GPIO offset 0x28) High interrupt enable
 volatile uint32_t   high_ip;  // (GPIO offset 0x2C) High interrupt pending
 volatile uint32_t   low_ie;  // (GPIO offset 0x30) Low interrupt enable
 volatile uint32_t   low_ip;  // (GPIO offset 0x34) Low interrupt pending
 volatile uint32_t   iof_en;  // (GPIO offset 0x38) HW-Driven functions enable
 volatile uint32_t   iof_sel;  // (GPIO offset 0x3C) HW-Driven functions selection
 volatile uint32_t   out_xor;  // (GPIO offset 0x40) Output XOR (invert)
 // Registers marked with * are asynchronously reset to 0 at startup

} GPIO;
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// Define the base address of the GPIO registers (see Table e9.1) and a pointer to this  
// structure
// The 0x…U notation in 0x10012000U indicates an unsigned hexadecimal number
#define GPIO0_BASE   (0x10012000U)
#define GPIO0 ((GPIO*) GPIO0_BASE)

// To access the members of the structure, the member-access operator –> is used.

void pinMode(int gpio_pin, int function) {
 switch(function) {

 case INPUT:
 GPIO0->input_en      |=    (1 << gpio_pin);   // Sets a pin as an input
 GPIO0->output_en   &= ~(1 << gpio_pin);   // Clear output_en bit
 GPIO0->iof_en        &= ~(1 << gpio_pin);   // Disable IOF
 break;

 case OUTPUT:
 GPIO0->output_en     |=    (1 << gpio_pin);   // Set pin as an output
 GPIO0->input_en      &= ~(1 << gpio_pin);   // Clear input_en bit
 GPIO0->iof_en          &= ~(1 << gpio_pin);   // Disable IOF
 break;

 }
}

void digitalWrite(int gpio_pin, int val) {
 if (val) GPIO0->output_val |=    (1 << gpio_pin);
 else         GPIO0->output_val &= ~(1 << gpio_pin);

}

int digitalRead(int gpio_pin) {
 return (GPIO0->input_val >> gpio_pin) & 0x1;

}

// The program below reads switches and writes LEDs. It sets pins 2 to 4 as inputs (for the  
// switches) and pins 7 to 9 as outputs (for the LEDs). It then continuously reads the  
// switches and writes their values to the corresponding LEDs.

#include "EasyREDVIO.h"
int main(void) {
 // Set GPIO 4:2 as inputs
 pinMode(2, INPUT);
 pinMode(3, INPUT);
 pinMode(4, INPUT);
 // Set GPIO 10:8 as outputs
 pinMode(8, OUTPUT);
 pinMode(9, OUTPUT);
 pinMode(10, OUTPUT);
 while (1) { // Read each switch and write corresponding LED
 digitalWrite(8,    digitalRead(2));
 digitalWrite(9,    digitalRead(3));
 digitalWrite(10, digitalRead(4));

 }
}

9 . 3 . 5   Serial I/O

A microcontroller can send multiple bits to a peripheral device by 
using multiple wires or by sending multiple bits in series over a sin-
gle wire. The former is called parallel I/O and the latter is called serial 
I/O. Serial I/O is popular, especially when pins are limited, because it 
uses few wires and is fast enough for many applications. Indeed, it is 
so popular that many standards for serial I/O have been established 
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and microcontrollers offer dedicated hardware to easily send data via 
these standards. This section describes the SPI and UART standard 
serial interfaces.

Other common serial standards include inter-integrated circuit (I2C),  
universal serial bus (USB), and Ethernet. I2C (pronounced “I squared C”) 
is a 2-wire interface with a clock and a bidirectional data pin; it is 
used in a fashion similar to SPI. USB and Ethernet are more complex, 
high-performance standards. The FE310 supports SPI, UART, and I2C 
via on-board specialized peripherals.

Serial Peripheral Interface (SPI)
SPI (pronounced “S-P-I”) is a simple synchronous serial protocol that is 
easy to use and relatively fast. The physical interface consists of three 
pins: serial clock (SCK), serial data out (SDO), and serial data in (SDI). 
SPI connects a controller device to a peripheral device, as shown in 
Figure e9.6(a). The controller produces the clock. It initiates communi-
cation by sending clock pulses on SCK. The controller sends data from 
its SDO pin to the peripheral’s SDI pin one bit per cycle, starting with 
the most significant bit. The peripheral may simultaneously respond 
with its SDO pin back to the controller’s SDI pin. Figure e9.6(b) shows 
the SPI waveforms for an 8-bit data transmission. Bits change on the 
falling edge of SCK and are stable to sample on the rising edge. The SPI 
interface may also send an active-low chip enable to alert the receiver 
that data is coming.

The terms master/slave used 
to be common (instead of 
controller/peripheral), but 
they are now outdated. Serial 
data out (SDO) or controller-
out peripheral-in (COPI) is 
now used in place of master-
out slave-in (MOSI). Serial 
data in (SDI) or controller-in 
peripheral-out (CIPO) is now 
used in place of master-in 
slave-out (MISO). 

SCK

SDO

SDI

Controller

SCK

SDI

SDO

Peripheral

(a)

SCK

(b)

SDO
(controller)

SDO
(peripheral)

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

SPI_CE0 CE

SPI_CE0

(optional)

Figure e9.6 SPI configuration: (a) SPI controller-peripheral connection diagram, (b) Example SPI data signals



9.3 Embedded I/O Systems 542.e16

The FE310 has three SPI controller ports, but only two (SPI1 and 
SPI2) are available to the user. The remaining SPI controller port, SPI0, 
is used to communicate with external flash memory for program and 
data storage. This section describes the SPI1 controller port, which is 
accessible using GPIO pins 5:2. The SPI2 controller port is identical 
except that it is connected to different GPIO pins and its control regis-
ters are located at different memory addresses. To use pins for SPI rather 
than GPIO, their iof_sel bits should be set to 0 to select the SPI1 func-
tion and their iof_en bits should be set to 1 to give the SPI controller 
access to the pins. When the FE310 writes to the SPI txdata register, the 
data is transmitted serially to the peripheral. Simultaneously, data 
received from the peripheral is collected and the FE310 can read it from 
rxdata when the transfer is complete.

SPI ports on a microcontroller normally offer a variety of configu-
ration options to match the requirements of peripheral devices. When 
designing an interface to communicate with a particular peripheral 
device, the controller must be configured properly to ensure that the 
data being transmitted via the link is properly interpreted.

Two common configuration parameters are clock polarity (CPOL) 
and clock phase (CPHA). CPOL sets the level of the clock when it is 
idle and CPHA sets the clock edge when data (SDO and SDI) is sam-
pled (and changed). If CPOL = 1, SCK remains high (1) when data is 
not being transmitted; if CPOL = 0, SCK remains low (0) when idle. If 
CPHA = 0, data are sampled on the leading edge (and change on the 
trailing edge) of SCK; if CPHA = 1, data are sampled on the trailing 
edge (and change on the leading edge) of SCK. The edge on which data 
changes is also referred to as the shifting edge because the underlying 
hardware is usually a shift register. Figure e9.7 shows the four possi-
ble combinations of CPHA and CPOL. The example from Figure  e9.6 
shows CPOL = 0 and CPHA = 0.

SPI always sends data in both 
directions on each transfer. 
If the system only needs 
unidirectional communication, 
it can ignore the unwanted 
data. For example, if the 
controller only needs to send 
data to the peripheral, the byte 
received from the peripheral 
can be ignored. If the controller 
only needs to receive data from 
the peripheral, it must still 
trigger the SPI communication 
by sending an arbitrary byte 
that the peripheral will ignore. 
It can then read the data 
received from the peripheral. 
The SPI clock (SCK) only 
toggles while the controller is 
transmitting data. 

The term port refers to a pin 
or a group of associated pins. 
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Figure e9.7 Timing diagram and 
configurations for SPI peripherals
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Table e9.4 Memory map of SPI registers

Reprinted with permission from Table 65 of the SiFive 
FE310-G0002 Manual, © 2019 SiFive, Inc.

Table e9.4 shows the control registers associated with SPI1, and 
Table e9.5 shows the fields of the key registers. sckdiv (see Table e9.4) 
configures the SPI clock frequency by specifying a divisor (div) for the 
selected input peripheral clock—on the RED-V board, the peripheral 
clock’s default frequency is 16 MHz. The frequency of the SPI clock is 
given by fsck

fin
div= +2 1( )  . For example, if div = 15, then the serial clock 

is fsck = +
16
2 15 1

MHz
( ) = 500 kHz. If the frequency is too high (>~1 MHz on a 

breadboard or tens of MHz on an unterminated printed circuit board), 
the SPI connection may become unreliable due to reflections, crosstalk, 
or other signal integrity issues.
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Table e9.5 SPI register bitfields

Reprinted with permission from Tables 66, 67, 80, and 81 of the SiFive FE310-G0002 
Manual, © 2019 SiFive, Inc.

 

 

 

 

sckmode controls the phase and polarity of the clock. sckmode uses 
only the two least significant bits. Bit 0 is CPHA and bit 1 is CPOL.

txdata is written to transmit a byte over the SPI channel, and 
rxdata is read to get the received byte. Only the least significant byte 
(LSB) written to txdata is transmitted. The SPI instances on the FE310 
have 8-entry first-in-first-out (FIFO) buffers on both the transmit and 
receive data registers. This means that when data is written to the 
txdata register, it is placed in the FIFO buffer and the hardware within 
the SPI peripheral takes care of sending it out. The most significant bit 
(msb) of the txdata register is a flag bit called full, which is 1 when 
the FIFO is full and cannot receive any more data.

Care must be taken when reading data in from the FE310 SPI 
rxdata register. The SPI controller is designed such that the data in the 
register is removed from the receive FIFO when the register is read. To 
check if the rxdata register has valid data, the register should be read 

Configuration registers have 
many unused or “reserved” 
bits. These bits might be 
used in a future version of 
the chip, so they should not 
be written lest they cause 
unintended consequences in 
the future. 
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Controller
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Figure e9.8 RED-V to Altera 
Cyclone FPGA connection diagram

once and then the empty bit should be checked to determine if the data 
is valid. The programmer should take care to avoid reading the register 
more than once for each byte, as this will result in lost data.

The registers csid, csdef, and csmode are optionally used to con-
trol parameters related to the control and configuration of the chip 
select line. Alternatively, the chip select pin can be configured as a GPIO 
output pin and controlled in software through digitalWrite.

Some SPI registers pack multiple small fields of information into a 
single 32-bit word. In C, we can declare the number of bits of each field 
with a colon and number as part of a bitfield structure. Example e9.3 
shows how to use bitfields and structures to define these registers.

Example e9.3 SENDING AND RECEIVING BYTES OVER SPI

Design a system to communicate between a FE310 controller and an FPGA 
peripheral over SPI. Sketch a schematic of the interface. Write the C code for the 
FE310 to send the character “A” and receive a character back. Write HDL code 
for an SPI peripheral on the FPGA. How could the peripheral be simplified if it 
only needs to receive data?

Solution Figure e9.8 shows the connection between the FE310 controller and the 
FPGA peripheral using SPI1. The pin numbers are obtained from the component 
datasheets (e.g., Table e9.3 for the FE310). Notice that both the pin numbers and signal 
names are shown on the diagram to indicate both the physical and logical connec-
tivity. When the SPI connection is enabled, these pins cannot be used for GPIO.

The following code from EasyREDVIO.h is used to initialize the SPI channel and to 
send and receive a character. The file first declares the SPI bitfields and memory map. 
The pinMode function is generalized to support I/O functions as well as inputs and 
outputs. The function spiSendReceive completes a full SPI transaction sending and 
receiving a single byte. It initially checks to make sure that the transmit FIFO is not 
full and can accept another entry. If yes, it writes the character to the transmit FIFO 
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///////////////////////////////////////////////////////////////////////////////
//  SPI Registers
///////////////////////////////////////////////////////////////////////////////
typedef struct {

 volatile uint32_t  div :  12; // Clock divisor
 volatile uint32_t   :  20;

} sckdiv_bits;

typedef struct {
 volatile uint32_t  pha  :  1; // Serial clock phase
 volatile uint32_t  pol  :  1; // Serial clock polarity
 volatile uint32_t   :  30;

} sckmode_bits;

...

typedef struct {
 volatile uint32_t  data  :  8; // Transmit data
 volatile uint32_t   :  23;
 volatile uint32_t  full  :  1; // FIFO full flag

} txdata_bits;

typedef struct {
 volatile uint32_t  data  :  8; // Received data
 volatile uint32_t   :   23;
 volatile uint32_t  empty  :  1; // FIFO empty flag

} rxdata_bits;

// Pin modes
#define INPUT    0
#define OUTPUT 1
#define GPIO_IOF0 2
#define GPIO_IOF1 3

void pinMode(int gpio_pin, int function) {
 switch(function) {

 case INPUT:
 GPIO0->input_en  |=   (1 << gpio_pin);  // Set a pin as an input
 GPIO0->iof_en  &= ~(1 << gpio_pin);  // Disable IOF
 break;

 case OUTPUT:
 GPIO0->output_en  |=    (1 << gpio_pin);  // Set pin as an output
 GPIO0->iof_en  &= ~(1 << gpio_pin);  // Disable IOF
 break;

 case GPIO_IOF0:
 GPIO0->iof_en  |=    (1 << gpio_pin);  // Enable IOF
 GPIO0->iof_sel &= ~(1 << gpio_pin);  // IO Function 0
 break;

 case GPIO_IOF1:
 GPIO0->iof_en  |=  (1 << gpio_pin);  // Enable IOF
 GPIO0->iof_sel  |=  (1 << gpio_pin);  // IO Function 1
 break;

 }
}

Code Example e9.3 SPI FUNCTIONS

to be shifted out. After transmitting, the rxdata register is read. Here, care must be 
taken because the empty flag bit of the rxdata register is updated whenever the reg-
ister is read. So, the entire 32-bit rxdata register should be read. Then, after checking 
that the empty flag is not set (i.e., the data is valid), the received byte is returned.
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#include "EasyREDVIO.h"

int main(void) {
    uint8_t volatile received;

    // Initialize the SPI
    // Clock divisor of div = 15, CPOL = 0, CPHA = 0
    spiInit(15, 0, 0);

    digitalWrite(2, 0);                     // enable the peripheral (chip select = 0), if necessary
    received = spiSendReceive('A'); // Send letter A and receive byte
    digitalWrite(2, 1);                     // turn off chip enable
}

Code Example e9.4 SPI FUNCTIONS

The C code in Code Example e9.4 initializes the SPI and then sends 
and receives a character. Using the formula fclk

fin
div= +2 1( ) 

, where fin is 
the 16 MHz coreclk, it sets the SPI clock to 500 kHz.

void spiInit(uint32_t clkdivide, uint32_t cpol, uint32_t cpha) {

 // Initially assigning SPI pins (GPIO 2-5) to HW I/O function 0
 pinMode(3, GPIO_IOF0); // SDO
 pinMode(4, GPIO_IOF0); // SDI
 pinMode(5, GPIO_IOF0); // SCK

 digitalWrite(2, 1);  // make sure CS0 doesn’t pulse low
 pinMode(2, OUTPUT);  // CS0 is manually controlled

 SPI1->sckdiv.div = clkdivide; // Set the clock divisor

 SPI1->sckmode.pol = cpol;  // Set the polarity
 SPI1->sckmode.pha = cpha;  // Set the phase

}

/* Transmits a character (1 byte) over SPI and returns the received character.
 *  send: the character to send over SPI
 *  return value: the character received over SPI */
uint8_t spiSendReceive(uint8_t send) {

 while(SPI1->txdata.full);  // Wait until transmit FIFO is ready for new data
 SPI1->txdata.data = send;  // Transmit the character over SPI

 rxdata_bits rxdata;
 while (1) {

 rxdata = SPI1->rxdata; // Read the rxdata register EXACTLY once
 if (!rxdata.empty) {  // If the empty bit was not set, return the data

 return (uint8_t)rxdata.data;
 }

 }
} 
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HDL Example e9.2 gives the SystemVerilog code for an SPI periph-
eral that can both send and receive data (i.e., an SPI transceiver), 
and Figure e9.9 shows its block diagram and timing with CPHA = 
CPOL = 0. The main component is still a shift register, shown on the 
right of Figure e9.9. The shift register parallel loads the byte to send  
(d[7:0]) into the shift register and then shifts out this data on sdo 
while it shifts in data transmitted from the controller (t[7:0]) on sdi. 
A counter, cnt, keeps track of how many bits have been sent/received. 
When sck is idle, cnt = 0 and the most significant bit of d (d[7]) sits 
on the sdo wire. One subtlety is that sdo can only change on the falling 
clock edge, so the sdo output (which is the most significant bit of the 
shift register, q[7], is delayed by half a clock cycle by the negative-edge 
triggered qdelayed register on the bottom left of Figure e9.9.

If the peripheral needs to receive data only from the controller, it is 
a simple shift register, as shown in HDL Example e9.1. On each rising 
sck edge, a new sdi bit is shifted into the shift register, starting with the 
data’s most significant bit. After eight clock cycles, the entire byte has 
been read into the shift register.

module spi_peripheral_receive_only(input   logic           sck,  // From controller
                                                           input    logic           sdi,  // From controller
                                                           output  logic [7:0] q);   // Data received
    always_ff @(posedge sck)
       q < = {q[6:0], sdi}; // shift register
endmodule 

HDL Example e9.1 HDL FOR SPI PERIPHERAL (RECEIVER ONLY)

module spi_peripheral(input    logic           sck,     // From controller
                                        input    logic           sdi,     // From controller
                                        output logic           sdo,     // To controller
                                        input    logic            reset, // System reset
                                        input    logic [7:0] d,         // Data to send
                                        output logic [7:0] q);       // Data received
    logic [2:0] cnt;
    logic   qdelayed;

    // 3-bit counter tracks when full byte is transmitted
    always_ff @(negedge sck, posedge reset)
       if (reset) cnt = 0;
       else           cnt = cnt + 3’b1;

     // Loadable shift register
     // Loads d at the start, shifts sdi into bottom on each step
     always_ff @(posedge sck)
         q < = (cnt = = 0) ? {d[6:0], sdi} : {q[6:0], sdi};

     // Align sdo to falling edge of sck
     // Load d at the start
     always_ff @(negedge sck)
         qdelayed = q[7];

     assign sdo = (cnt = = 0) ? d[7] : qdelayed;
endmodule

HDL Example e9.2 HDL FOR SPI PERIPHERAL
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Universal Asynchronous Receiver/Transmitter (UART)
A UART (pronounced “you-art”) is a serial I/O peripheral that com-
municates between two systems without sending a clock. Instead, the 
systems must agree in advance about what data rate to use and must 
each locally generate their own clocks. Hence, the transmission is asyn-
chronous because the clocks are not synchronized. Although these sys-
tem clocks may have a small frequency error and an unknown phase 
relationship, the UART manages reliable asynchronous communication. 
UARTs are used in protocols such as RS-232 and RS-485. For example, 
old computer serial ports use the RS-232C standard, introduced in 1969 
by the Electronics Industries Associations. The standard originally envi-
sioned connecting data terminal equipment (DTE) such as a mainframe 
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Figure e9.9 Block and timing diagram for SPI peripheral on FPGA
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computer to data communication equipment (DCE) such as a modem. 
Although a UART is relatively slow compared with SPI and prone to 
misconfiguration issues, the standards have been around for so long that 
they remain important today.

Figure e9.10(a) shows an asynchronous serial link. The DTE sends 
data to the DCE over the TX line and receives data back over the RX 
line. Figure e9.10(b) shows one of these lines sending a character at a 
data rate of 9600 baud. The lines idle at a logic “1” when not in use. 
Each character is sent as a start bit (0), 7 or 8 data bits, an optional 
parity bit, and one or more stop bits (1’s). Most typically, start and stop 
bits and 8 bits of data are sent. The UART detects the falling transi-
tion from idle to start to lock on to the transmission at the appropriate 
time. Although seven data bits is sufficient to send an ASCII character, 
eight bits are normally used because they can convey an arbitrary byte 
of data.

The optional parity bit allows the system to detect if a bit was cor-
rupted during transmission. It can be configured as even or odd; even 
parity means that the parity bit is chosen such that the total collection 
of data and parity has an even number of 1’s. In other words, the par-
ity bit is the XOR of the data bits. The receiver can then check if an 
even number of 1’s was received and signal an error if not. Odd parity 
is the reverse.

A common choice is 1 start bit, 8 data bits, no parity, and 1 stop bit, 
making a total of 10 symbols to convey an 8-bit character of informa-
tion. Hence, signaling rates are referred to in units of baud rather than 
bits/sec. For example, 9600 baud indicates 9600 symbols/sec, or 960 
characters/second. Both the transmitter and receiver must be configured 
for the appropriate baud rate and number of data, parity, and stop bits 
or the data will be garbled. This is a hassle, especially for nontechnical 
users, which is one of the reasons that USB has replaced UARTs in per-
sonal computer systems.

Typical baud rates include 300, 1200, 2400, 9600, 14400, 19200, 
38400, 57600, and 115200. The lower rates were used in the 1970’s and 
1980’s for modems that sent data over the phone lines as a series of 
tones. In contemporary systems, 9600 and 115200 are two of the most 

Baud rate gives the signaling 
rate, measured in symbols per 
second, whereas bit rate gives 
the data rate, measured in bits 
per second. In a simple system 
like SPI, where each symbol 
is a data bit, the baud rate is 
equal to the bit rate. UARTs 
and some other signaling 
conventions require overhead 
bits in addition to the data. For 
example, a UART that adds 
start and stop bits for each 8 
bits of data (i.e., 10 symbols 
per 8 bits of data) and operates 
at a baud rate of 9600 has a bit 
rate of (9600 symbols/second) 
× (8 bits/10 symbols) = 7680 
bits/second = 960 characters/
second. 
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Figure e9.10 Asynchronous serial link
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common baud rates; 9600 is encountered where speed does not matter, 
and 115200 is the fastest standard rate, though still slow compared with 
other modern serial I/O standards.

The RS-232 standard defines several additional signals. The request 
to send (RTS) and clear to send (CTS) signals can be used for hardware 
handshaking. They can be operated in either of two modes: flow control 
or simplex. In flow control mode, the DTE clears RTS to 0 when it is 
ready to accept data from the DCE. Likewise, the DCE clears CTS to 0 
when it is ready to receive data from the DTE. Some datasheets use an 
overbar to indicate that they are active-low. In the older simplex mode, 
the DTE clears RTS to 0 when it is ready to transmit. The DCE replies 
by clearing CTS when it is ready to receive the transmission.

Some systems, especially those connected over a telephone line, 
also used data terminal ready (DTR), data carrier detect (DCD), data 
set ready (DSR), and ring indicator (RI) signals to indicate when equip-
ment is connected to the line. These signals still show up in some 
connectors.

The original RS-232 standard recommended a massive 25-pin 
DB-25 connector, but PCs streamlined it to a male 9-pin DE-9 con-
nector with the pinout shown in Figure e9.12(a). The cable wires nor-
mally connect straight across, as shown in Figure e9.12(b). However, 
when directly connecting two DTEs, a null modem cable shown in 
Figure e9.12(c) may be needed to swap RX and TX and complete the 
handshaking. As a final insult, some connectors are male and some 
are female. In summary, it can take a large box of cables and a cer-
tain amount of guesswork to connect two systems over RS-232, again 
explaining the shift to USB. Fortunately, embedded systems typically 
use a simplified 3- or 5-wire setup consisting of GND, TX, RX, and 
possibly RTS and CTS.

RS-232 represents a 0 electrically with 3 to 15 V and a 1 with −3 
to −15 V; this is called bipolar signaling. A transceiver converts the digi-
tal logic levels of the UART to the positive and negative levels expected 
by RS-232 and also provides electrostatic discharge protection to protect 
the serial port from getting zapped when the user plugs in a cable. The 
MAX3232E is a popular transceiver compatible with both 3.3 and 5 V 
digital logic. It contains a charge pump that, in conjunction with exter-
nal capacitors, generates ±5 V outputs from a single low-voltage power 
supply. Some serial peripherals intended for embedded systems omit the 
transceiver and just use 0 V for a 0 and 3.3 or 5 V for a 1; check the 
datasheet!

The FE310 has two UARTs, named UART0 and UART1. UART0 
can be configured to operate on pins 16 and 17; UART1 operates on 
pins 18 and 23. To use these pins as a UART instead of as GPIOs, their 
corresponding iof_sel bits should be set to 0 (to select IOF0) and 

In the 1950’s through  
1970’s, early hackers calling 
themselves phone phreaks 
learned to control the phone 
company switches by whistling 
appropriate tones. A 2600 Hz 
tone produced by a toy whistle 
from a Cap’n Crunch cereal 
box (Figure e9.11). could be 
exploited to place free long-
distance and international calls. 

Handshaking refers to the 
negotiation between two 
systems. Typically, one system 
signals that it is ready to send or 
receive data and the other system 
acknowledges that request. 

Figure e9.11 Cap’n Crunch  
Bosun Whistle 

(Photograph by Evrim Sen, 
reprinted with permission.)
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iof_en bits set to 1 to enable peripheral control. As with SPI, the FE310 
must first configure the port. Unlike SPI, reading and writing can occur 
independently because either system may transmit without receiving and 
vice versa. UART0’s registers are shown in Table e9.6.

To configure the UART, first set the baud rate. The UART uses 
the on-board TileLink bus clock, tlclk, as its clock source. For the 
FE310-G002, this bus clock is configured by default to be the same 
as the processor clock, coreclk, at 16 MHz. This clock signal must be 
divided down to produce the desired baud rate. The final baud rate is 
given by Equation 9.1:

 fbaud
inf

div
=

+ 1
 (e9.1)

The FE310 UART peripheral supports only 8-N-1 and 8-N-2  
protocol configurations. Both protocols support 8 data bits and 
no parity bit, and the packets can be configured to have either one 
stop bit (in 8-N-1) or two stop bits (in 8-N-2). The stop bit configu-
ration is set in the txctrl register using the nstop field. By default,  
nstop = 0, which sets the peripheral to use one stop bit.

Data is transmitted and received using the txdata and rxdata  
registers, respectively. Both the transmit and receive registers are buff-
ered by 8-entry, FIFO buffers. To transmit data, check that the full bit of 
the txdata register is 0, which indicates that there is room in the FIFO 
buffer for new data to be written. Then, write a byte to the data field in 
txdata. To read data, read the rxdata register and check that the empty 
bit is 0 to confirm that the byte in the data field is valid.

Example e9.4 SERIAL COMMUNICATION WITH A PC

Develop a circuit and a C program for an FE310 to communicate with a PC 
over a serial port at 115200 baud with 8 data bits, 1 stop bit, and no parity. The 
PC should be running a console program such as PuTTY1 to read and write over 
the serial port. The program should ask the user to type a string. It should then 
indicate what the user typed.

Solution Figure e9.13(a) shows a basic schematic of the serial link illustrating the 
issues of level conversion and cabling. Because few PCs still have physical serial 
ports, we use a Plugable USB to RS-232 DB9 Serial Adapter from plugable.com 
shown in Figure e9.14 to provide a serial connection to the PC. The adapter con-
nects to a female DE-9 connector soldered to wires that feed a transceiver, which 

1  PuTTY is available for free download at www.putty.org.
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Figure e9.12 DE-9 male cable (a) 
pinout, (b) standard wiring, and (c) 
null modem wiring

Table e9.6 UART memory mapped 
registers

0x10013018 div

rxctrl
txctrl

rxdata
txdata

0x1001300C
0x10013008
0x10013004
0x10013000

...

...

...

Adapted and printed with permission 
from Table 55 of the SiFive FE310- 
G002 Manual, © 2019 SiFive, Inc.
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converts the voltages from the bipolar RS-232 levels to the FE310’s 3.3 V level. 
The FE310 and PC are both DTE, so the TX and RX pins must be cross-con-
nected in the circuit. The RTS/CTS handshaking from the FE310 is not used, 
and the RTS and CTS on the DE9 connector are tied together so that the PC will 
shake its own hand.
 

Figure e9.13(b) shows an easier approach with an Adafruit 954 USB 
to TTL serial cable. The cable is directly compatible with 3.3 V levels.

To configure PuTTY to work with the serial link, set Connection 
type to Serial and Speed to 115200. Set Serial line to the COM port 
assigned by the operating system to the Serial to USB Adapter. In 

TX / GPIO17 D1

RX / GPIO16 D0

RED-V
MAX3232E
Transceiver

11 T1IN

10 T2IN

12 R1OUT

9 R2OUT

T1OUT 14

T2OUT 7

R1IN 13

R2IN 8

1 C1+

4 C2+

3 C1-

5 C2-

16 VDD

15 GND

2 V+

6 V-

0.1 �F

0.1 �F

0.1 �F

0.1 �F
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DE-9
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1 DCD
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6 DSR

8 CTS
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Plugable
USB to RS-232
Serial Adapter

To PC
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(b)

Adafruit 954 USB to TTL Serial Cable

To PC
USB
Port
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TX

GND

white

green

black

TX / GPIO17 D1

RX / GPIO16 D0

GND

Figure e9.13 Serial communication link schematics: (a) serial communication via RS-232, (b) serial communication with USB to 
TTL serial cable
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Windows, this can be found in the Device Manager; for example, it 
might be COM3. Under the Connection → Serial tab, set flow control 
to NONE or RTS/CTS. Under the Terminal tab, set Local Echo to Force 
On to have characters appear in the terminal as you type them.

The serial port device driver code in EasyREDVIO.h is shown in 
Code Example e9.5. The Enter key in the terminal program corresponds 
to a carriage return character represented as \r in C with an ASCII code 
of 0x0D. To advance to the beginning of the next line when printing, 
send both the \n and \r (new line and carriage return) characters.2  
The uartInit function configures the UART as described above. 
getCharSerial and putCharSerial read and write characters to the 
terminal, respectively, using the UART (Code Example e9.5).

The main function in Code Example e9.6 demonstrates printing to 
the console and reading from the console using the putStrSerial and 
getStrSerial functions.

2  PuTTY prints correctly even if the \r is omitted.

void uartInit(uint32_t baud) {
 uint32_t div = 16000000/baud-1;           // 16 MHz tileclock
 pinMode(16, GPIO_IOF0);
 pinMode(17, GPIO_IOF0);

 UART0->div.div = div;                           // Set clock divisor
 UART0->txctrl.txen = 1;                        // Enable transmitter
 UART0->txctrl.nstop = 1;                      // Set one stop bit
 UART0->rxctrl.rxen = 1;                        // Enable receiver

}

uint8_t getCharSerial(void) {
 uart_rxdata_bits rxdata;                      // Create temporary variable to store register

 while(1) {
 rxdata = UART0->rxdata;                // Read register exactly once
 if(!rxdata.empty) {

 return (uint8_t)rxdata.data; // Check to see if the data is valid
 }

 }
}

void putCharSerial(uint8_t c) {
 while(UART0->txdata.full);                 // Wait until ready to transmit
 UART0->txdata.data = c;

}

Code Example e9.5  READING AND WRITING CHARACTERS (CHARS)  
TO A TERMINAL USING A UART

Figure e9.14 Plugable USB to 
RS-232 DB9 serial adapter
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Communicating with the serial port from a C program on a PC is 
a bit of a hassle because serial port driver libraries are not standardized 
across operating systems. Other programming environments such as 
Python, MATLAB, or LabVIEW make serial communication painless.

9 . 3 . 6   Timers

Embedded systems commonly need to measure time. For example, a micro-
wave oven needs a timer to keep track of the time of day and another to 
measure how long to cook. It might use yet another to generate pulses to 
the motor spinning the platter and a fourth to control the power setting by 
only activating the microwave’s energy for a fraction of every second.

The FE310 has a system timer with a 64-bit free-running counter 
that increments according to an externally provided clock signal. On the 
RED-V, this clock source is a 32.768  kHz oscillator (conveniently 215 Hz). 
Figure e9.16 shows the memory map for the system timer. It is located 
within the core-local interruptor (CLINT) block. mtime contains the 
64-bit current value of the counter. It can be read or written; so, to restart 

#include "EasyREDVIO.h"

#define MAX_STR_LEN 80

void getStrSerial(char *str) {
       int i = 0;
       do {  // Read an entire string until detecting
             str[i] = getCharSerial();  // Carriage return
       } while ((str[i++] != '\r') && (i < MAX_STR_LEN));  // Look for carriage return
       str[i−1] = 0;  // Null-terminate the string
}

void putStrSerial(char *str) {
       int i = 0;
        while (str[i] != 0) {      // Iterate over string
               putCharSerial(str[i++]); // Send each character
       }
}

int main(void) {
       char str[MAX_STR_LEN];

       uartInit(115200); // initialize UART with baud rate

       while(1) {
             putStrSerial("Please type something: \r\n");
             getStrSerial(str);
             putStrSerial("You typed: ");
             putStrSerial(str);
             putStrSerial("\r\n");
       }
}

Code Example e9.6  READING AND WRITING STRINGS TO A TERMINAL 
USING A UART
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the timer, a zero can be written. mtimecmp is a 64-bit register containing 
the timer comparison value and msip is the machine-mode software inter-
rupt register. When the counter hits the value in mtimecmp, the least sig-
nificant bit in the msip register is set to 1. Using the msip and mtimecmp 
registers is an efficient way to check that a delay has taken place.  
Table e9.7 shows the memory addresses for these registers.

If additional timers are needed, the PWM module (see Section 9.3.7.2) 
provides additional counters that can be used to measure precise delays.

Example e9.5 BLINKING LED

Write a program that blinks the status LED on the RED-V 5 times per second 
for 4 seconds.

Solution The delay function in EasyREDVIO (see Code Example e9.7) creates a 
delay of a specified number of milliseconds using the timer compare channel.
 

#define MTIME_CLK_FREQ 32768  // RTC frequency in Hz
volatile uint64_t *mtime = (uint32_t*) 0x0200BFF8;
void delay(int ms) {
       uint64_t doneTime = *mtime + (ms*MTIME_CLK_FREQ)/1000;
       while (*mtime < doneTime);                   // Wait until time is reached
}

GPIO5 (D13) drives the activity LED on the RED-V board. The program in Code 
Example e9.8 sets this pin to be an output. It then turns the LED OFF and ON through a 
series of digital writes with a 200 ms repetition rate (5 Hz).

Code Example e9.7 DELAY FUNCTION

9 . 3 . 7   Analog I/O

The real world is an analog place. Many embedded systems need 
analog inputs and outputs to interface with the world. They use 

#include "EasyREDVIO.h"

void main(void) {
 uint32_t i;

 pinMode(D13, OUTPUT);  // status led as output

 for(i = 0; i < 20; i++) {
 delay(100);
 digitalWrite(D13, 0); // turn led off
 delay(100);
 digitalWrite(D13, 1); // turn led on

 }
}

Code Example e9.8 BLINK ACTIVITY LED

Table e9.7 System timer registers

0x0200BFFC
0x0200BFF8

0x02004004
0x02004000

0x02000000

...

...

...

...

mtime (hi)
mtime (lo)

mtimecmp (hi)
mtimecmp (lo)

msip

Adapted and printed with 
permission from Table 24 of the 
SiFive FE310-G002 Manual,  
© 2019 SiFive, Inc.
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analog-to-digital converters (ADCs) to quantize analog signals into dig-
ital values and digital-to-analog-converters (DACs) to do the reverse. 
Figure e9.15 shows symbols for these components. Such converters are 
characterized by their resolution, dynamic range, sampling rate, and 
accuracy. For example, an ADC might have N = 12-bit resolution over 
a range Vref

− to Vref
+ of 0 to 5 V with a sampling rate of fs = 44 kHz 

and an accuracy of ±3 least significant bits (lsbs). Sampling rates are 
also listed as samples per second (sps), where 1 sps = 1 Hz. The rela-
tionship between the analog input voltage Vin(t) and the digital sample  
X[n = t / fs] is

 X n N V t V

V V

in ref

ref ref

[ ]
( )

=
−

−

−

+ −
2  (e9.2)

For example, an input voltage of 2.5 V (half of full scale) would cor-
respond to 212/2 (half of the maximum value), that is, an output of 
1000000000002  = 0x800 = 211 = 2048, with an uncertainty of up to 3  lsbs.

Similarly, a DAC might have N = 16-bit resolution over a full-scale 
output range of Vref  =  2.56 V. It produces an output of

 V t Vout ref
X n

N
( )

[ ]
=

2

 (e9.3)

Many microcontrollers have built-in ADCs of moderate perfor-
mance. For higher performance (e.g., 16-bit resolution or sampling 
rates in excess of 1 MHz), it is often necessary to use a separate ADC 
connected to the microcontroller. Fewer microcontrollers have built-in 
DACs, so separate chips must be used to convert digital values to an 
analog voltage. However, microcontrollers often produce analog outputs 
using a technique called pulse-width modulation (PWM).

D/A Conversion
The FE310 has no general-purpose DAC. This section describes D/A 
conversion using external DACs and illustrates interfacing the FE310 
with other chips over parallel and serial ports. The next section achieves 
the same result using PWM.

Some DACs accept the N-bit digital input on a parallel interface 
with N wires, while others accept it over a serial interface, such as SPI. 
Some DACs require both positive and negative power supply voltages, 
while others operate off of a single supply. Some support a flexible range 
of supply voltages, while others demand a specific voltage. The input 
logic levels should be compatible with the digital source. Some DACs 

ADC
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DACX[n]

VDD

Vref

Vout(t)

(b)

(a)

N

N

clk

Vref+

X[n]

Figure e9.15 ADC and DAC 
symbols
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produce a voltage output proportional to the digital input, while others 
produce a current output; an operational amplifier may be needed to 
convert this current to a voltage in the desired range.

In this section, we use the Linear Technology LTC1450 12-bit  
parallel DAC and the Microchip MCP4801 8-bit serial DAC. Both produce  
voltage outputs, run off a single 5 to 15 V power supply, use VIH  =  2.4 V 
such that they are compatible with 3.3 V I/O, come in DIP packages 
that make them easy to breadboard, and are easy to use. The LTC1450  
produces an output on a scale of 0 to 2.048 V or 0 to 4.095 V depending on  
the gain setting, consumes 2 mW, comes in a 24-pin package, and has 
a 4 µs settling time, permitting an output rate of 250 ksamples/second. 
The datasheet is at analog.com. The MCP4801 produces an output on 
a scale of 0 to 2.048 V or 0 to 4.096 V, consumes less than 2 mW, comes 
in an 8-pin package, and has a 4.5 µs settling time. Its SPI operates at a 
maximum of 20 MHz. The datasheet is at microchip.com.

Example e9.6 ANALOG OUTPUT WITH EXTERNAL DACS

Sketch a circuit and write the software for a simple signal generator producing 
sine and triangle waves using a RED-V, an LTC1450, and an MCP4801.

Solution The circuit is shown in Figure e9.16. Two DAC chips are used in this 
example. Both DACs use a 5 V power supply and have a 0.1 µF decoupling 
capacitor to reduce power supply noise.

The LTC1450 DAC has 12 data inputs, D0 to D11, that specify the analog volt-
age to generate on VOUT. In our example, we use only 8-bit precision, so we tie 
the four least significant bits, D0 to D3, to ground. To load data into the DAC, 
the RED-V puts the desired value on D4 to D11. Then, the RED-V drives the 
active-low write (WR) pin low to write the data to the DAC. CLR is tied to VCC 
because we don’t need to clear the input data latches. LDAC, the low-asserted 
load DAC signal, is tied to GND to load data every time WR goes low.

The MCP4801 connects to the RED-V via SPI1. In addition to the standard SPI 
signals, the MCP4801 has an analog output voltage pin (VOUT) and two active-
low control inputs: hardware shutdown (SHDN) and latch DAC (LDAC). SHDN 
is used to turn off the output driving circuitry and save power when the output 
value is not needed. The LDAC latches the input values when it is low. To send 
data to the MCP4801, a 16-bit value is sent over SPI: bits 11 to 4 hold D7 to 
D0; bit 13 is the gain selection (1x if set to 1, 2x if set to 0); and bit 12 con-
trols SHDN (0 shuts down the output, 1 allows VOUT to drive an analog value).  
In this case, SHDN is controlled in software, so it is left floating (not driven) in 
the circuit.

http://analog.com
http://linear.com
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Figure e9.16 DAC parallel and 
serial interfaces to a RED-V board

The program for driving both DACs is shown in Code Example 
e9.9. The program configures the 8 parallel port pins as outputs 
and also configures GPIO0 as an output to drive the WR signal on the 
LTC1450 and GPIO1 to drive the chip select signal on the MCP4801. It 
initializes the SPI to 500 kHz. initWaveTables precomputes an array of 
sample values for the sine and triangle waves. It then updates the serial 
DAC. Then, the program delays until the timer indicates that it is time 
for the next sample. The maximum frequency of the generated wave-
forms is set by the time to send each point in the genWaves function, 
which is limited by the SPI transmission time.
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Pulse-Width Modulation
Another way for a digital system to generate an analog output is with 
pulse-width modulation (PWM), in which a periodic output is pulsed 
high for part of the period and low for the remainder. The duty cycle 
is the fraction of the period for which the pulse is high (pulse width/
period), as shown in Figure e9.17. The average value of the output is 

#include "EasyREDVIO.h"
#include <math.h> // required to use the sine function

#define NUMPTS 64
int sine[NUMPTS], triangle[NUMPTS];

#define SHDNn_Pos 12
#define Gain_Pos  13

int parallelPins[8] = {D0, D1, D2, D3, D4, D5, D6, D7};

void initWaveTables(void) {
      int i;
      for (i = 0; i<NUMPTS; i++) {
           sine[i] = 127*(sin(2*3.14159*i/NUMPTS) + 1);  // 8-bit scale
           if (i < NUMPTS/2) triangle[i] = i*255/NUMPTS;  // 8-bit scale
           else triangle[i] = 254 – i*255/NUMPTS;
      }
}

void genWaves(int freq) {
      int i, j;
      int delay_cycles = MTIME_CLK_FREQ/(NUMPTS*freq);

      for (i = 0; i < 2000; i++){
           for (j = 0; j < NUMPTS; j++) {
                uint64_t doneTime = *mtime + delay_cycles; // Set sample period

                // Load serial DAC
                digitalWrite(1, 0);   //  enable chip (chip select: CS = 0)
                // Set SHDNn to active (bit 12) and gain to 1 (bit 13)
                volatile uint16_t sine_samp_dac = ((uint16_t) sine[j] << 4) \

                |(1 << SHDNn_Pos) | (1 << Gain_Pos);
                spiSendReceive16(sine_samp_dac);
                digitalWrite(1, 1);   // disable chip (chip select: CS = 1)

                // Load parallel DAC
                digitalWrite(0, 1);   // No load while changing inputs
                digitalWrites(parallelPins, 8, triangle[j]);
                digitalWrite(0, 0);   // Load new points into DACs
                while(*mtime < doneTime); // Wait for mtime_cmp to hit
             }
      }
}

int main(void) {
 pinsMode(parallelPins, 8, OUTPUT); // Set pins connected to the AD558 as outputs
 pinMode(0, OUTPUT);                          // Make pin 0 an output to control LOAD
 pinMode(1, OUTPUT);                          // Make pin 1 an output to control CE
 spiInit(15, 0, 0);                            // Initialize the SPI
 initWaveTables();
 genWaves(100);

}

Code Example e9.9 GENERATING A SINE WAVE USING A DAC
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Scaled Clock

PWM 1 Output

pwmcmp1 = 3
pwmcmp0 = 5

Tcs

pulse width
period

Figure e9.17 Pulse-width modulated (PWM) signal

proportional to the duty cycle. For example, if the output swings 
between 0 and 3.3 V and has a duty cycle of 25%, the average value 
will be 0.25 × 3.3 = 0.825 V. Low-pass filtering a PWM signal eliminates 
the oscillation and leaves a signal with the desired average value. Thus, 
PWM is an effective way to produce an analog output if the pulse rate is 
much higher than the analog output frequencies of interest. Other appli-
cations of PWM include making square wave audio tones and digital 
control of a motor or light at partial power or brightness.

The FE310 has three PWM peripherals and, as shown in Table 
e9.3, each PWM has four PWM outputs, for a total of 12 available 
PWM outputs. The outputs on PWM0 have 8-bit precision, and PWM1 
and PWM2 have 16-bit precision. In this section, we show how to use 
PWM2, but configuring and using the other two PWM peripherals fol-
lows similar steps. PWM2 has four outputs (PWM2_PWM0, PWM2_
PWM1, PWM2_PWM2, PWM2_PWM3) that are available on pins 
GPIO10-13 using pin function IOF1.

PWMs have several waveform generation modes, but we focus on 
generating PWM waveforms such as those in Figure e9.17. To do this, 
the peripheral is configured in a repeating mode in which comparator 
0 (pwmcmp0) sets the period and comparator 1 (pwmcmp1) sets the low 
time. These times are in units of a scaled clock period, Tcs. For example, 
as shown in Figure e9.17, if the scaled clock period is 0.5 μs (2 MHz) 
and pwmcmp0 = 5, then PWM2_PWM1 (pin 11) will oscillate at a period 
of 5 × 0.5 μs = 2.5 μs (400 kHz). If pwmcmp1 = 3, then the duty cycle is 
1−(3/5) = 40%.

Table e9.8 shows the memory map for the PWM2 registers. In this 
section, we describe the steps needed to configure the PWM1_PWM1 
output; the other PWMs and their outputs are configured using a similar 
procedure.

Table e9.9 shows the bitfields in the PWM configuration  
register pwmcfg. Note that most bits are not cleared on system reset, 

Table e9.8 PWM2 configuration 
registers

pwmcmp3
pwmcmp2
pwmcmp1
pwmcmp0

pwms

pwmcount

pwmcfg

...

...

...

...

...

0x1002502C
0x10025028
0x10025024
0x10025020

0x10025010
0x1002500C
0x10025008
0x10025004
0x10025000

Adapted and printed with permission 
from Table 89 of the SiFive 
FE310-G002 Manual, © 2019 
SiFive, Inc.
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Table e9.9 PWM configuration register fields

Reprinted with permission from Table 91 of the SiFive FE310-G0002 Manual, © 2019 SiFive, Inc.

so it is prudent to start by resetting all bits to 0, then writing a 1 to  
pwmen always and pwmzerocmp to configure the PWM to generate a 
repeating waveform with the period set by pwmcmp0.

The scaled clock frequency fscaled is the base bus clock frequency of 
fbase = 16 MHz divided by 2pwmscale, where pwmscale is a 4-bit number 
in the range of 0 to 15 in the pwmcfg register. The PWM frequency is 
fpwm = fscaled/pwmcmp0 = fbase/(pwmcmp0 × 2pwmscale). As described above, 
the duty cycle is 1−(pwmcmp1/pwmcmp0). Many possible choices exist for 
pwmscale and pwmcmp0 to give a desired PMW frequency. However, the 
PWM frequency resolution (error between desired and actual frequency) 
is best when pwmscale is as small as possible and pwmcmp0 is as large as 
possible, within the constraint that pwmcmp0 is an unsigned 16-bit num-
ber (i.e., it cannot exceed 65,535).
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Example e9.7 PULSE-WIDTH MODULATION (PWM)

Choose pwmscale and pwmcmp0 to blink an LED at 1.2 Hz. Repeat the question 
to generate a tone of 1190 Hz.

Solution To illustrate this, suppose that we wished to blink an LED at fpwm = 
1.2 Hz. fpwm = fbase/(pwmcmp0 × 2pwmscale). Thus, choose pwmscale = 8 and 
pwmcmp0 = 52083.33 to get the desired frequency with fscaled = 16 MHz/28 = 
62.5 KHz. pwmcmp0 is a 16-bit register, so we must round to 52083, giving an 
actual fpwm = 16 MHz/(52083 × 28) = 1.20000768 Hz, which is very close to the 
desired frequency and comparable to the 10 parts per million accuracy of a typi-
cal quartz crystal clock reference.

On the other hand, suppose that we wanted a 1190  Hz output. If we didn’t change 
pwmscale, pwmcmp0 would need to be 52.521. Rounding to 53 gives an actual fpwm 
= 16 MHz/(53 × 28) = 1179.2 Hz, an error of about 10 Hz, or 0.91%. If we needed 
a more accurate output frequency, we could reduce pwmscale to 0 and increase 
pwmcmp0 to 13445, obtaining fpwm = 16 MHz/(13445 × 20) = 1190.03 Hz.
 

A PWM device driver could have pwmInit() and pwm(int freq, 
float duty) functions. pwmInit would set the appropriate pin for the 
PWM peripheral and set the bits in the pwmcfg register. The pwm func-
tion would choose the appropriate pwmscale, pwmcmp0, and pwmcmp1 
to generate a waveform with the specified frequency and duty cycle. 
Writing these functions is similar to writing the SPI or UART device 
driver; details are left as an exercise for the reader.

A/D Conversion
Many microcontrollers have at least one built-in ADC, but the FE310 
does not. This section describes A/D conversion using an external con-
verter similar to the external DACs described in the prior section.

Example e9.8 ANALOG INPUT WITH AN EXTERNAL ADC

Interface a 10-bit MCP3002 A/D converter to an FE310 using SPI and print the 
input value. Set a full-scale voltage of 3.3 V. Search for the datasheet on the web 
for full details of operation.

Solution Figure e9.18 shows a schematic of the connection between the FE310 
and the MCP3002 ADC and Code Example e9.10 shows the driver code. The 
MCP3002 uses VDD as its full-scale reference: that is, VDD (Pin 8) is con-
nected to 3.3 V. It can accept a 3.3 to 5.5 V supply; we choose 3.3 V. The ADC 



9.3 Embedded I/O Systems 542.e38

has two input channels, CH0 and CH1. We connect channel 0 to a potenti-
ometer (not shown in the figure) that we rotate to adjust the input voltage 
between 0 and 3.3 V.

The FE310 code (see Code Example e9.10) initializes the SPI and repeatedly 
reads and prints samples. According to the datasheet, the FE310 must send the 
16-bit quantity 0x6000 over SPI to read CH0 and will receive the 10-bit result 
back in the bottom 10 bits of the 16-bit result. Since we cannot directly set the 
FE310 to transmit 16-bit frames, we can put together two 8-bit packets without 
raising the chip select line in between. Although the SPI peripheral has the option 
to control the chip select line automatically, here we manually configure GPIO2 
as an output and toggle it appropriately at the beginning of the transmission  
(writing the chip select line to 0) and the end of the transmission (writing the 
chip select line to 1).
 

RED-V

1 CS

2 CH0

3 CH1

4 GND

VDD 8

CLK 7

Dout 6

Din 5

IN
0.1 �FM

C
P3002

SPI1_SCK GPIO5 D13

SPI1_SDO GPIO3 D11

3.3V

GND

SPI1_SDI GPIO4 D12

SPI1_CS0 GPIO2 D10

1 k�

Figure e9.18 Reading an analog 
input using an external ADC

#include "EasyREDVIO.h"

int main(void) {
  uint8_t sample;
  spiInit(15, 0, 0);   // Initialize the SPI
                       // Clock divisor of div = 15, CPOL = 0, CPHA = 0
  pinMode(D10,  OUTPUT);
  while(1) {

 digitalWrite(D10, 0);
 spiSendReceive('0x60');
 sample = spiSendReceive('0x00');
 digitalWrite(D10, 1);
 printf("Read %d\n", sample);
 delay(200);

 }
}

Code Example e9.10 CODE FOR INTERFACING WITH ADC
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9 . 3 . 8   Interrupts

So far, we have relied on polling, in which the program continually 
checks a value until an event occurs such as data arriving on a UART 
or a timer reaching its compare value. This can be a waste of the proces-
sor’s power and makes it difficult to write programs that do interesting 
work while simultaneously waiting for events to occur.

Most microcontrollers support interrupts. When an event occurs, 
the microcontroller stops the executing program and jumps to an inter-
rupt handler that responds to the interrupt. After handling the interrupt, 
the processor then returns to the user program and seamlessly contin-
ues where it was interrupted. Interrupts are the hardware exceptions dis-
cussed in Section 6.6.2. 

The FE310 has a core-local interruptor (CLINT) that handles timer 
and software interrupts. Software interrupts are used for interprocessor 
communication and debugging. The FE310 also has a platform-level 
interrupt controller (PLIC) that collects interrupts from other peripher-
als. In a multiprocessor system, the PLIC routes the peripheral interrupt 
to an appropriate processor to handle it.

Example e9.9 shows how to blink an LED using interrupts instead 
of polling.

Example e9.9 BLINKING AN LED WITH A TIMER INTERRUPT

We configure local interrupts on the FE310 using the CLINT. For the 
FE310-G002 chip used on the RED-V RedBoard and RED-V Thing Plus, 
information on how to use interrupts is provided in Chapters 8 to 10 of the 
FE310-G002 Manual. The basic configuration procedure for local interrupts 
through the CLINT is outlined below.

 1. Write a trap handler to handle execution whenever an interrupt or 
exception is triggered. The main purpose of the trap handler is to figure out 
what interrupt or exception was triggered and then to perform the desired 
operation in response.

 2. Configure mtvec, a control and status register (CSR), with the address of 
the trap handler and the mode (direct or vectored).

 3. Enable the specific interrupt (e.g., from the timer)

 4. Globally enable all interrupts.

After defining constants and function pointer arrays, the code declares the global 
trap handler function handle_trap(), as shown in Code Example e9.11. This 
function is called whenever we trigger a trap (interrupt or exception). Its job is 
to figure out which trap triggered the call and jump to the correct interrupt or 
exception handler. The trap handler performs two tasks. First, it uses a mask 
(MCAUSE_INT_MASK) to check the most significant bit of the  mcause  register, 
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which indicates whether the trap is an interrupt (generated from a device exter-
nal to the core) or an exception (generated internally in the core). The structure 
of mcause is shown in Table e9.10 and the listing of interrupt and exception 
codes is shown in Table 6.6. Then, it uses an additional mask (MCAUSE_CODE_
MASK) to determine the trap code and jumps to the appropriate interrupt or 
exception handler based on the index of the interrupt_handler or excep-
tion_handler function pointer arrays.
 

// Function pointer arrays for interrupt and exception handlers
#define MAX_INTERRUPTS 16
void (*interrupt_handler[MAX_INTERRUPTS])();
void (*exception_handler[MAX_INTERRUPTS])();

// Masks for isolating interrupt vs. exception and the relevant code
#define MCAUSE_INT_MASK 0x80000000    // If [31] = 1 interrupt, else exception
#define MCAUSE_CODE_MASK 0x7FFFFFFF // low bits show code

// Declaration for interrupt handler. Declared with attribute interrupt which
// maps to GCC helper function.
void handle_trap(void) __attribute((interrupt));

// Define trap handler
void handle_trap() {

 unsigned long mcause_value = read_csr(mcause);
 if (mcause_value & MCAUSE_INT_MASK) {

 // Branch to interrupt handler here
 // Index into 32-bit array containing addresses of functions
 interrupt_handler[mcause_value & MCAUSE_CODE_MASK]();

 }
 else {

 // Branch to exception handler here
 exception_handler[mcause_value & MCAUSE_CODE_MASK]();

 }
}

Code Example e9.11 SETTING UP THE TRAP HANDLER

Table e9.10 mcause register fields

Bits Field Name Description

[9:0] Exception Code A code identifying the most recent exception

[30:10] Reserved

31 Interrupt 1 if trap was caused by an interrupt; 0 otherwise

Reprinted with permission from Table 22 of the SiFive FE310-G0002 Manual, © 2019 SiFive, Inc.

Next, we define an interrupt service routine (ISR) for the timer.  
This is a function that contains instructions we want to execute  
whenever we get a timer interrupt. In this example, we call this function  
timer_handler(). It reads the current value of the GPIO pin driving the 
on-board LED (D13/GPIO5) and toggles the state using digitalWrite(). 
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Unlike the other registers we have used in this chapter, most of the 
registers related to the CLINT—such as mtvec, mie, and mstatus—are 
not memory mapped. These registers are called control and status registers 
(CSRs). To manipulate CSRs, we must use the RISC-V assembly instructions 
CSR read (csrr) and CSR write (csrw). These instructions can conveniently 
be wrapped in C macros to enable us to more easily interact with them.

After setting up the trap handler, we register it by placing its address 
in the  mtvec  register. Its structure is shown in Table e9.11. mtvec is a 
32-bit register where bits [31:2] hold bits [31:2] of the address of the trap 
handler function (bits [1:0] are automatically assumed to be 0 since the 
instructions must be word aligned in the memory). Bits [1:0] of mtvec are 
instead used to configure whether the exceptions are handled in direct or 
vector mode. In direct mode, regardless of what interrupt or exception  
fires, we jump to the function address indicated by mtvec[31:2]. This 
is the mode we will use here. In vectored mode, we jump to different  
memory addresses depending on what interrupt is triggered.

After configuring the trap handler and setting up the timer interrupt 
service routine, we finish by enabling the machine timer interrupt by set-
ting bit 7, the machine timer interrupt enable (MTIE) bit, in the machine 
interrupt enable mie register and by enabling interrupts globally by  

Then, it resets the timer by calling reset_timer(), which sets the cur-
rent count in the mtime register to 0 and resets the count value at which 
the next interrupt should be triggered.

void timer_handler() {
volatile int pin_val = (GPIO0->output_val >> D13) & 1; // Read the current output state
 if(pin_val) digitalWrite(D13, LOW);
 else digitalWrite(D13, HIGH);
 reset_timer(MTIME_CLK_FREQ / (2 * BLINK_FREQ));

}

void reset_timer(int count_val) {
 *MTIME = 0;
 *MTIMECMP = count_val;

} 

Code Example e9.12 TIMER ISR AND FUNCTION TO RESET TIMER

// Macros for reading and writing the control and status registers (CSRs)
#define read_csr(reg) ({ unsigned long __tmp; \
  asm volatile ("csrr %0, " #reg : " = r"(__tmp)); \
  __tmp; })

#define write_csr(reg, val) ({ \
  asm volatile ("csrw " #reg ", %0" :: "rK"(val)); }) 

Code Example e9.13 MACROS FOR WRITING AND READING CSRs
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setting bit 3, the machine interrupt enable (MIE) bit, in the machine status  
register (mstatus). Simple helper functions for globally enabling and 
disabling interrupts are shown in Code Example e9.15. Complete details 
about the structure of mstatus and mie can be found in Tables 17 and 
20 in the SiFive FE310-G002 Manual.

Table e9.11 mtvec register fields

Bits Field Name Description

[1:0] MODE Sets the interrupt processing mode to direct 
(00) or vectored (10)

[31:2] BASE[31:2] Base address of the trap_handler

Adapted and printed with permission from Table 18 of the SiFive FE310-G0002 Manual, 
© 2019 SiFive, Inc.

Finally, we put all the pieces together and call the functions we built 
in our main function, as shown in Code Example e9.16. Here, because 
our application is interrupt driven, we don’t do anything in the main 
while loop.

Care should be taken when developing safety- or timing-critical 
applications with interrupts as they are asynchronous events and can be 
triggered at any time during program execution. You as a programmer 
should consider what bugs may be introduced by an interrupt triggering 
at an inopportune time. If you have a segment of code where you want 
to avoid being interrupted, you can disable interrupts (i.e., clear MIE in 

Code Example e9.14  FUNCTIONS TO REGISTER TRAP HANDLER BY 
WRITING TO mtvec

void register_trap_handler(void *func) {
       // Set mtvec[31:2] to interrupt handler function address
       // The two lsbs are not meaningful because instructions are aligned to 4 bytes
       // Set mtvec[1:0] to 00 for direct mode.
       write_csr(mtvec, ((unsigned long) func) & ~(0b11));
} 

void enable_interrupts() {
       // Set bit 3 in mstatus (MIE) to enable machine interrupts
       write_csr(mstatus, read_csr(mstatus) | (1 << 3));

void disable_interrupts() {
       // Clear bit 3 in mstatus (MIE) to disable machine interrupts
       write_csr(mstatus, read_csr(mstatus) & ~(1 << 3));
}

Code Example e9.15 GLOBALLY ENABLE OR DISABLE INTERRUPTS
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mstatus) when executing the instructions and then re-enable interrupts 
when finished (i.e., set MIE in mstatus).

9.4  OTHER MICROCONTROLLER PERIPHERALS
Microcontrollers frequently interface with other external peripherals. 
This section describes a variety of common examples, including character- 
mode liquid crystal displays (LCDs), VGA monitors, Bluetooth wireless 
links, and motor controllers.

9 . 4 . 1   Character LCDs

A character LCD is a small liquid crystal display capable of showing one 
or a few lines of text. They are commonly used in the front panels of appli-
ances such as cash registers, laser printers, and fax machines that need to 
display a limited amount of information. They are easy to interface with 
a microcontroller over parallel, RS-232, or SPI interfaces. Crystalfontz 
America sells a wide variety of character LCDs ranging from 8 columns × 
1 row to 40 columns × 4 rows with choices of color, backlight, 3.3 or 5 V  

#include "EasyREDVIO.h"

// CLINT memory map pointers
#define MTIMECMP ((uint64_t *) 0x02004000UL)
#define MTIME ((uint64_t *) 0x0200BFF8UL)

#define BLINK_FREQ 4 // This is an arbitrary constant used to specify the LED blink 
frequency

int main(void) {

 // Set LED pin as an output
 pinMode(D13, OUTPUT);

 // Register interrupt handler.
 // The machine timer interrupt is exception code 7 as shown in   so we put the
 // timer_handler() function at index 7 of the array.
 interrupt_handler[7] = timer_handler;

 // Set up interrupt by configuring mtvec
 register_trap_handler(handle_trap);

 // Reset timer
 reset_timer(MTIME_CLK_FREQ / (2 * BLINK_FREQ));

 // Enable timer interrupt
 write_csr(mie, read_csr(mie) | (1 << 7));

 enable_interrupts();

 while(1) {
 };

 return 0;
}

Code Example e9.16 BLINK LED WITH TIMER INTERRUPTS
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operation, and daylight visibility. Their LCDs can cost $20 or more in 
small quantities, but prices come down to under $5 in high volume.

This section shows how to interface the RED-V board to the 
Crystalfontz CFAH2002A-TMI-JT 20 × 2 parallel LCD shown in Figure 
e9.19. The interface is an 8-bit parallel interface, which is compatible 
with the industry-standard HD44780 LCD controller originally devel-
oped by Hitachi.

Figure e9.20 shows the LCD connected to a RED-V board over an 
8-bit parallel interface (inputs D0-D7 on the LCD). The LCD logic oper-
ates at 5 V but is compatible with 3.3 V inputs from the RED-V board. 
The LCD contrast is set by a second voltage (input to pin 3, VO) pro-
duced using a potentiometer; it is usually most readable at a setting of 
4.2 to 4.8 V. The LCD receives three control signals: RS (1 for charac-
ters, 0 for instructions), R/W  (1 to read from the display, 0 to write), 
and E (pulsed high for at least 250 ns to enable the LCD when the next 
data byte is ready to be written to it). In addition to sending data bits, 
the data lines (D0–D7) are used to set LCD configurations when RS = 
0 (i.e., when in instruction mode). When read, LCD port D7 returns the 
busy flag, which is 1 when the LCD is busy and 0 when it is ready to 
accept another instruction or byte of data.

To initialize the LCD, the RED-V board must write a sequence of 
instructions to the LCD as given in Table e9.12. Instructions are writ-
ten by making RS = 0 and R/W = 0, putting the value on the eight 
data lines, and pulsing E for at least 250 ns. Data bytes are writ-
ten by doing the same thing except making RS = 1. After sending an 
instruction or data byte, the processor must wait for at least a speci-
fied amount of time (or sometimes until the busy flag is clear) before 
sending another instruction or data byte. The busy flag (D7) is read 
by making RS = 0 and R/W = 1 and pulsing E for at least 250 ns. 
Remember that GPIO23 must also be temporarily set as an input when 
reading the busy flag (D7).

After configuration is complete, the LCD is ready to accept text to 
display. Write text to the LCD by making RS = 1 and R/W = 0, putting 

Figure e9.19 Crystalfontz CFAH2002A-TMI 20 × 2 character LCD
 © 2012 Crystalfontz America; reprinted with permission.
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the value on the eight data lines, and pulsing E for at least 250 ns. After 
each character, the RED-V must wait for the busy bit to clear before 
sending another character. It may also send the instruction 0x01 to clear 
the display or 0x02 to return to the home position in the upper left.

Example e9.10 LCD CONTROL

Write a program to print “I love LCDs” to the Crystalfontz CFAH2002A-TMI 
character display.

Solution The program in Code Example e9.17 writes “I love LCDs” to the dis-
play by initializing the display and then sending the characters.
 

9 . 4 . 2   VGA Monitor

A more flexible display option is to drive a computer monitor. This 
section explains the low-level details of driving a VGA (video graphics 
array) monitor directly from an FPGA.
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#include "EasyREDVIO.h"

int LCD_IO_Pins[] = {D0, D1, D2, D3, D4, D5, D6, D7};

typedef enum {INSTR, DATA} mode;
#define RS D10
#define RW D9
#define E    D8

char lcdRead(mode md) {
       char c;
        pinsMode(LCD_IO_Pins, 8, INPUT);
        digitalWrite(RS,(md = = DATA));  // set instr/data mode
        digitalWrite(RW, 1);   // RWbar = read mode
        digitalWrite(E, 1);      // pulse enable
        delay(1);                       // wait for LCD response
        c = digitalReads(LCD_IO_Pins, 8); // read a byte from parallel port
        digitalWrite(E, 0);              // turn off enable
        delay(1);
        return c;
}

void lcdBusyWait(void) {
        char state;
        do {
  state = lcdRead(INSTR);
        } while(state & 0x80);
}

void lcdWrite(char val, mode md) {
       pinsMode(LCD_IO_Pins, 8, OUTPUT);
       digitalWrite(RS, (md = = DATA)); // set instr/data mode. OUTPUT = 1, INPUT = 0
       digitalWrite(RW, 0);  // set RW pin to write   (RW = 0)
       digitalWrites(LCD_IO_Pins, 8, val);  // write the char to the parallel port
       digitalWrite(E, 1); delay(1);          // pulse E
       digitalWrite(E, 0); delay(1);
}

void lcdClear(void) {
       lcdWrite(0x01, INSTR); delay(1);
}

void lcdPrintString(char* str) {
       while (*str ! = 0) {
               lcdWrite(*str, DATA); lcdBusyWait();
               str++;
  }
}

void lcdInit(void) {
       pinMode(RS, OUTPUT); pinMode(RW, OUTPUT); pinMode(E,OUTPUT);
       // send initialization routine:
       delay(15);
       lcdWrite(0x30, INSTR); delay(1);
       lcdWrite(0x30, INSTR); delay(1);
       lcdWrite(0x30, INSTR); lcdBusyWait();
       lcdWrite(0x3C, INSTR); lcdBusyWait();
       lcdWrite(0x08, INSTR); lcdBusyWait();
       lcdClear();
       lcdWrite(0x06, INSTR); lcdBusyWait();
       lcdWrite(0x0C, INSTR); lcdBusyWait();
}

int main(void) {
        lcdInit();
        lcdPrintString("I love LCDs!");
}

Code Example e9.17 WRITING “I LOVE LCDS” TO LCD
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The VGA monitor standard was introduced in 1987 for the IBM 
PS/2 computers, with a 640 × 480 pixel resolution on a cathode ray tube 
(CRT) and a 15-pin connector conveying color information with ana-
log voltages. Modern LCD monitors have higher resolution but remain 
backward compatible with the VGA standard.

In a CRT, an electron gun scans across the screen from left to right, 
exciting fluorescent material to display an image. Color CRTs use three 
different phosphors for red, green, and blue, and three electron beams. 
The strength of each beam determines the intensity of each color in the 
pixel. At the end of each scan line, the gun must turn off for a horizontal 
blanking interval to return to the beginning of the next line. After all of 
the scan lines are complete, the gun must turn off again for a vertical 
blanking interval to return to the upper left corner. This entire process 
repeats about 60 to 75 times per second to refresh the fluorescence and 
give the visual illusion of a steady image. Modern displays typically use 
LCD technology, which doesn’t require the same electron scan gun but 
uses the same VGA interface timing for compatibility.

In a 640 × 480 pixel VGA monitor, the full frame is actually 800 pixels ×  
525 horizontal scan lines as shown in Figure e9.21, but only 480 of the 
scan lines and 640 pixels per scan line actually convey the image, while 
the remainder are black. A scan line begins with a 48-pixel back porch, 
the blank section on the left edge of the screen. It then contains 640 active 
pixels, followed by a blank 16-pixel front porch at the right edge of the 
screen and a 96-pixel clock horizontal sync (hsync) pulse to rapidly move 

Table e9.12 LCD initialization sequence

Code (D7-D0) Purpose Wait (µs)

(apply VDD) Allow device to turn on 15000

0x30 Set 8-bit mode 4100

0x30 Set 8-bit mode again 100

0x30 Set 8-bit mode yet again Until busy flag is clear

0x3C Configure 2 lines and 5  ×  8 dot font Until busy flag is clear

0x08 Turn display OFF Until busy flag is clear

0x01 Clear display 1530

0x06 Set entry mode that increments  
cursor after each character

Until busy flag is clear

0x0C Turn display ON with no cursor

(These are instructions: so RS  =  0 and R/W = 0.)
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the gun back to the left edge. In the ver tical direction, the screen starts 
with a 32-scan line back porch at the top, followed by 480 active scan 
lines, a front porch of 11 scan lines at the bottom and a 2-scan line ver-
tical sync (vsync) pulse to return to the top to start the next frame. For a 
640 × 480 pixel VGA monitor refreshed at 59.52 Hz, the pixel clock oper-
ates at 800 × 525 × 59.52 = 25 MHz, so each pixel is 40 ns wide.

Figure e9.22(a) shows the timing of each of the scan lines. The entire 
scan line is 32 μs long. Figure e9.22(b) shows the vertical timing; note 
that the time units are now scan lines rather than pixel clocks. A new 
frame is drawn approximately 60 times per second. Higher resolutions 
use a faster pixel clock, up to 388 MHz for 2048 × 1536 refreshed at 
85 Hz. For example, a 1024 × 768 display refreshed at 60 Hz can be 
achieved with a 65 MHz pixel clock.

Figure e9.23 shows the pinout for a female connector coming from 
a video source. Pixel information is conveyed with three analog voltages 
for red, green, and blue. Each voltage ranges from 0 to 0.7 V, with more 
positive indicating brighter. The voltages should be 0 during the front 
and back porches. The video signal must be generated in real time at high 
speed, which is difficult on a microcontroller but easy on an FPGA. A  
simple black-and-white display could be produced by driving all three color 
pins with either 0 or 0.7 V using a voltage divider connected to a digital 
output pin. A color monitor, on the other hand, uses a video DAC with 
three separate D/A converters to independently drive the three color pins.

Figure e9.24 shows an FPGA driving a VGA monitor through an 
ADV7125 triple 8-bit video DAC. The DAC receives 8 bits of R, G, 
and B from the FPGA. It also receives a SYNC_b signal that is driven 
active low whenever HSYNC or VSYNC are asserted. The video DAC 
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Figure e9.22 VGA timing: (a) horizontal, (b) vertical
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Figure e9.24 FPGA driving VGA 
cable through video DAC

produces three output currents to drive the red, green, and blue analog  
lines, which are normally 75 Ω transmission lines parallel terminated 
at both the video DAC and the monitor. The RSET resistor sets the 
scale of the output current to achieve the full range of color. The clock 
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Figure e9.23 VGA connector 
pinout
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rate depends on the resolution and refresh rate; it may be as high as 
330 MHz with a fast-grade ADV7125JSTZ330 model DAC.

Example e9.11 VGA MONITOR DISPLAY

Write HDL code to display text and a green box on a VGA monitor using the 
circuitry from Figure e9.24.

Solution The code assumes a system clock frequency of 50 MHz and uses a clock 
divider to generate the 25 MHz VGA clock. You could also use a PLL to gener-
ate the clock. PLL configuration varies among FPGAs; for the Cyclone III, the 
frequencies are specified with Altera’s megafunction wizard. Alternatively, the 
VGA clock could be provided directly from a signal generator.

The VGA controller counts through the columns and rows of the screen, gener-
ating the hsync and vsync signals at the appropriate times. It also produces a 
blank_b signal that is asserted low to draw black when the coordinates are out-
side the 640 × 480 active region. 

The video generator produces red, green, and blue color values based on the 
current (x, y) pixel location. (0, 0) represents the upper left corner. The gener-
ator draws a set of characters on the screen, along with a green rectangle. The 
character generator draws an 8 × 8-pixel character, giving a screen size of 80 
× 60 characters. It looks up the character from a ROM, where it is encoded in 
binary as 6 columns by 8 rows. The other two columns are blank. The bit order 
is reversed by the SystemVerilog code because the leftmost column in the ROM 
file is the most significant bit, while it should be drawn in the least significant 
x-position.

Figure e9.25c shows a photograph of the VGA monitor while running this  
program. The rows of letters alternate red and blue. A green box overlays part of 
the image.

Figure e9.25 VGA output



Embedded I/O SystemsCHAPTER NINE542.e51

module vga(input   logic clk, reset,
                   output logic vgaclk,  // 25 MHz VGA clock
                  output logic hsync, vsync,
                  output logic sync_b, blank_b, // to monitor & DAC
               output logic [7:0] r, g, b);  // to video DAC

  logic [9:0] x, y;

 // divide 50 MHz input clock by 2 to get 25 MHz clock
  always_ff @(posedge clk, posedge reset)
     if (reset) vgaclk = 1'b0;
     else           vgaclk = ~vgaclk;

  // generate monitor timing signals
  vgaController vgaCont(vgaclk, reset, hsync, vsync, sync_b, blank_b, x, y);

  // user–defined module to determine pixel color 
  videoGen videoGen(x, y, r, g, b);

endmodule

module vgaController #(parameter HBP         = 10'd48,     // horizontal back porch
                                              HACTIVE = 10'd640,  // number of pixels per line
                                             HFP        = 10'd16,     // horizontal front porch
                                              HSYN      = 10'd96,      // horizontal sync pulse = 60 to move 

// electron gun back to left
                                               // number of horizontal pixels (i.e., clock cycles) 

HMAX      = HBP + HACTIVE + HFP + HSYN,  //48+640+16+96=800:  
                                              VBP         = 10'd32,     // vertical back porch
                                              VACTIVE = 10'd480,  // number of lines
                                               VFP       = 10'd11,     // vertical front porch
                                                VSYN      = 10'd2,       // vertical sync pulse = 2 to move  

// electron gun back to top
                                                // number of vertical pixels (i.e., clock cycles) 

VMAX      = VBP + VACTIVE + VFP  + VSYN) //32+480+11+2=525:

 (input   logic vgaclk, reset,
       output logic hsync, vsync, sync_b, blank_b,
       output logic [9:0] hcnt, vcnt);

      // counters for horizontal and vertical positions
      always @(posedge vgaclk, posedge reset) begin

             if (reset) begin 
                 hcnt <= 0;
                 vcnt <= 0;
          end
           else   begin
              hcnt++;
                if (hcnt = = HMAX) begin 
                 hcnt <= 0; 
                        vcnt++;
                        if (vcnt = = VMAX)
                           vcnt <= 0;
                  end
            end
       end

       // compute sync signals (active low)
       assign hsync   = ~( (hcnt >= (HACTIVE + HFP)) & (hcnt < (HACTIVE + HFP + HSYN)) );
       assign vsync   = ~( (vcnt >= (VACTIVE + VFP)) & (vcnt < (VACTIVE + VFP + VSYN)) );
       assign sync_b = 1'b0;    // this should be 0 for newer monitors
                                            // for older monitors, use: assign sync_b = hsync & vsync;
       // force outputs to black when not writing pixels
       assign blank_b = (hcnt < HACTIVE) & (vcnt < VACTIVE);
endmodule

HDL Example e9.3 vga.sv
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module videoGen(input logic [9:0] x, y, output logic [7:0] r, g, b);
 logic pixel, inrect;

 // given y position, choose a character to display
// then look up the pixel value from the character ROM
 // and display it in red or blue. Also draw a green rectangle.
 chargenrom chargenromb(y[8:3]+8'd65, x[2:0], y[2:0], pixel);
 rectgen rectgen(x, y, 10'd120, 10'd150, 10'd200, 10'd230, inrect);
 assign {r, b} = (y[3]= =0) ? {{8{pixel}},8'h00} : {8'h00, {8{pixel}}};
  assign g         = inrect    ? 8'hFF : 8'h00;
endmodule

 module chargenrom(input  logic [7:0] ch,
                            input  logic [2:0] xoff, yoff,
                            output logic           pixel);

   logic [5:0] charrom[2047:0]; // character generator ROM
   logic [7:0] line;                   // a line read from the ROM

    // initialize ROM with characters from text file
 initial $readmemb("charrom.txt", charrom);

   // index into ROM to find line of character 
  assign line = charrom[yoff+{ch–65, 3'b000}];  // subtract 65 because A
                                                                          // is entry 0 
  // reverse order of bits
  assign pixel = line[3'd7-xoff];
endmodule

module rectgen(input   logic [9:0] x, y, left, top, right, bot,
                         output logic inrect);

   assign inrect = (x >= left & x < right & y >= top & y < bot);
endmodule

// A ASCII 65
011100
100010
100010
111110
100010
100010
100010
000000
//B ASCII 66
111100
100010
100010
111100
100010
100010
111100
000000
//C ASCII 67
011100
100010
100000
100000
100000
100010
011100
000000
... 

HDL Example e9.4 charrom.txt: CONTENTS OF THE CHARACTER ROM
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9 . 4 . 3   Bluetooth Wireless Communication

Many standards are now available for wireless communication, includ-
ing Wi-Fi, ZigBee, and Bluetooth. The standards are elaborate and 
require sophisticated integrated circuits, but a growing assortment 
of modules abstract away the complexity and give the user a sim-
ple interface for wireless communication. One of these modules is the 
BlueSMiRF, which is an easy-to-use Bluetooth wireless interface that can 
be used instead of a serial cable.

Bluetooth is a wireless standard initially developed by Ericsson in 
1994 for low-power, moderate-speed communication over distances of 5 
to 100 meters, depending on the transmitter power level. It is commonly 
used to connect an earpiece to a cellphone or a keyboard to a computer. 
Unlike infrared communication links, it does not require a direct line of 
sight between devices.

Bluetooth operates in the 2.4 GHz unlicensed industrial-scientific- 
medical (ISM) band. It defines 79 radio channels spaced at 1 MHz  
intervals starting at 2402 MHz. It hops between these channels in a pseudo- 
random pattern to avoid consistent interference with other devices, 
such as wireless routers operating in the same band. As given in  
Table e9.13, Bluetooth transmitters are classified at one of three power 
levels, which dictate the range and power consumption. In the basic 
rate mode, it operates at 1 Mbit/sec using Gaussian frequency shift key-
ing (FSK). In ordinary FSK, each bit is conveyed by transmitting a fre-
quency of fc ± fd, where fc is the center frequency of the channel and 
fd is an offset of at least 115 kHz. The abrupt transition in frequencies 
between bits consumes extra bandwidth. In Gaussian FSK, the change in 
frequency is smoothed to make better use of the spectrum. Figure e9.26 
shows the frequencies being transmitted for a sequence of 0’s and 1’s on a  
2402 MHz channel using FSK and GFSK.

A BlueSMiRF Silver module, shown in Figure e9.27(a), contains a 
Class 2 Bluetooth radio, modem, and interface circuitry on a small card 
with a serial interface. It communicates with another Bluetooth device,  
such as a laptop with built-in Bluetooth, or a Bluetooth USB dongle 
connected to a PC. Thus, it can provide a wireless serial link between a 
RED-V and a PC similar to the link from Figure e9.13 but without the 
cable. The wireless link is compatible with the same software as is the 
wired link.

Figure e9.28 shows a schematic for such a link. The TX pin of the 
BlueSMiRF connects to the RX pin of the RED-V and vice versa. The 
RTS and CTS pins are connected so that the BlueSMiRF shakes its own 
hand.

The BlueSMiRF defaults to 115.2 kbaud with 8 data bits, 1 stop 
bit, and no parity or flow control. It operates at 3.3 V digital logic 

King Bluetooth
(So... this is actually Olof 
Kindgren, but we imagine King 
Bluetooth looked similar. Photo 
reprinted with permission.)
The Bluetooth standard is named 
for King Harald Bluetooth of  
Denmark, a 10th century monarch 
who unified the warring Danish 
tribes. This wireless standard is  
only partially successful at unifying 
a host of competing wireless 
protocols! 
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Figure e9.26 FSK and GFSK 
waveforms

Table e9.13 Bluetooth classes

Class

Transmitter 
Power 
(mW)

Range 
(m)

1 100 100

2 2.5 10

3 1 5
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Figure e9.29 DC motor

(a)

(b)

Figure e9.27 (a) BlueSMiRF 
module and (b) USB dongle
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Figure e9.28 BlueSMiRF RED-V to PC link

levels, so no RS-232 transceiver is necessary to connect with another 
3.3 V device.

To use the interface, plug a USB Bluetooth dongle into a PC. Power 
up the RED-V and BlueSMiRF. The red STAT light will flash on the 
BlueSMiRF, indicating that it is waiting to make a connection. Open the 
Bluetooth icon in the PC system tray and use the Add Bluetooth Device 
Wizard to pair the dongle with the BlueSMiRF. The default passkey for 
the BlueSMiRF is 1234. Take note of which COM port is assigned to the 
dongle. Then communication can proceed just as it would over a serial 
cable. Note that the dongle typically operates at 9600 baud and that 
PuTTY must be configured accordingly.

9 . 4 . 4   Motor Control

Another major application of microcontrollers is to drive actuators such 
as motors. This section describes three types of motors: DC motors, 
servo motors, and stepper motors. DC motors require a high drive cur-
rent, typically on the order of 1 A. Thus, a microcontroller’s GPIO can-
not drive them directly and a powerful driver such as an H-bridge must 
be connected between the microcontroller and the motor. Motors also 
require a shaft encoder if the user wants to know the current position of 
the motor. Servo motors accept a pulse-width modulated signal to spec-
ify their position over a limited range of angles. They are very easy to 
interface but are not as powerful and are not suited to continuous rota-
tion. Stepper motors accept a sequence of pulses, each of which rotates 
the motor by a fixed angle, called a step. They are more expensive and 
still need an H-bridge to drive the high current, but the position can be 
precisely controlled.

Motors can draw a substantial amount of current and may intro-
duce glitches on the power supply that disturb digital logic. One way to 
reduce this problem is to use a different power supply or battery for the 
motor than for the digital logic.
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DC Motors

Figure e9.29 shows the structure of a brushed DC motor. The motor is 
a two-terminal device. It contains permanent stationary magnets called 
the stator and a rotating electromagnet called the rotor or armature 
connected to the shaft. The front end of the rotor connects to a split 
metal ring called a commutator. Metal brushes attached to the power 
lugs (input terminals) rub against the commutator, providing current to 
the rotor’s electromagnet. This induces a magnetic field in the rotor that 
causes the rotor to spin to become aligned with the stator field. Once 
the rotor has spun part way around and approaches alignment with the 
stator, the brushes touch the opposite sides of the commutator, reversing 
the current flow and magnetic field and causing it to continue spinning 
indefinitely.

DC motors tend to spin at thousands of rotations per minute (RPM) 
at very low torque. Most systems add a gear train to reduce the speed 
to a more reasonable level and increase the torque. Look for a gear 
train designed to mate with your motor. Pittman manufactures a wide 
range of high-quality DC motors and accessories, while inexpensive toy 
motors are popular among hobbyists.

A DC motor requires substantial current and voltage to deliver sig-
nificant power to a load. The current should also be reversible so the 
motor can spin in both directions. Most microcontrollers cannot pro-
duce enough current to drive a DC motor directly. Instead, they use 
an H-bridge, which conceptually contains four electrically controlled 
switches, as shown in Figure e9.30(a). It is called an H-bridge because 
the configuration of switches mimics the letter H. If switches A and D 
are closed, current flows from left to right through the motor and it 
spins in one direction. If B and C are closed, current flows from right to 
left through the motor and it spins in the other direction. If A and C or 
B and D are closed, the voltage across the motor is forced to 0, causing 
the motor to actively brake. If none of the switches are closed, the motor 
will coast to a stop. The switches in an H-bridge are power transistors, 
that is, they can carry high currents of one or more Amps. The H-bridge 
also contains some digital logic to conveniently control the switches. 
The microcontroller supplies a low-current digital input to control the 
H-bridge high-current output.

When the motor current changes abruptly, the inductance of the 
motor’s electromagnet will induce a large voltage spike that could damage 
the power transistors. Therefore, many H-bridges also have protection  
diodes in parallel with the switches, as shown in Figure e9.30(b). If the 
inductive kick drives either terminal of the motor above Vmotor or below 
ground, the diodes will turn ON and clamp the voltage at a safe level. 
H-bridges can dissipate large amounts of power, so a heat sink may be 
necessary to keep them cool.

M
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D
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Vmotor
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Figure e9.30 H-bridge
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Table e9.14 H-Bridge control

EN12 1A 2A Motor

0 X X Coast

1 0 0 Brake

1 0 1 Reverse

1 1 0 Forward

1 1 1 Brake

Example e9.12 AUTONOMOUS VEHICLE

Design a system in which a RED-V board controls two drive motors for a robot 
car. Write a library of functions to initialize the motor driver and to make the car 
drive forward and back, turn left or right, and stop. Use PWM to vary the volt-
age output and, thus, control the speed of the motors.

Solution Figure e9.31 shows a pair of DC motors controlled by a RED-V via a  
Texas Instruments SN754410 dual H-bridge. The H-bridge requires a 5 V 
logic supply VCC1 and a 4.5 to 36 V motor supply VCC2; it has VIH = 2 V and, 
hence, is compatible with the 3.3 V I/O from the RED-V. It can deliver up to  
1 A of current to each of two motors. Vmotor should come from a separate bat-
tery pack; the 5 V output of the RED-V cannot supply enough current to drive 
most motors and the RED-V could be damaged.

GPIO23 D7

RED-V
M

Vmotor

1 EN12

3 1Y

2 1A

4 GND

5 GND

6 2Y

7 2A

8 VCC2

VCC1 16

4Y 14

4A 15

GND 13

GND 12

3Y 11

3A 10

EN34 9

SN754410 H-Bridge 5 V

MGPIO22 D6

GPIO21 D5

GPIO20 D4

PWM1_PWM1 / GPIO19 D3

left right

Figure e9.31 Motor control with dual H-bridge

Table e9.14 describes how the inputs to each H-bridge control a motor. The  
microcontroller drives the enable signals with a PWM signal to control the speed  
of the motors. It drives the four other pins to control the direction of each motor.

The PWM is configured to work at about 5 kHz with a duty cycle ranging from 
0% to 100%. Any PWM frequency far higher than the motor’s bandwidth will 
give the effect of smooth movement. Note that the relationship between duty 
cycle and motor speed is nonlinear and that below some duty cycle, the motor 
will not move at all.

Code Example e9.18 shows how to use PWM control with the dual H-bridge 
configuration shown in Figure e9.31 to drive two DC motors.
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#include "EasyREDVIO.h"

// Motor Constants
#define EN D3
#define MOTOR_1A D4
#define MOTOR_2A D5
#define MOTOR_3A D6
#define MOTOR_4A D7

void setMotorLeft(int dir) {   // dir of 1 = forward, 0 = backward
       digitalWrite(MOTOR_1A, dir);
       digitalWrite(MOTOR_2A, !dir);
}

void setMotorRight(int dir) {   // dir of 1 = forward, 0 = backward
        digitalWrite(MOTOR_3A, dir);
        digitalWrite(MOTOR_4A, !dir);
}

void forward(void) {
        setMotorLeft(1); setMotorRight(1); // both motors drive forward
}

void backward(void) {
        setMotorLeft(0); setMotorRight(0); // both motors drive backward
}

void left(void) {
        setMotorLeft(0); setMotorRight(1); // left back, right forward
}

void right(void) {
        setMotorLeft(1); setMotorRight(0); // right back, left forward
}

void halt(void) {   // turn both motors off
        digitalWrite(MOTOR_1A, 0);
        digitalWrite(MOTOR_2A, 0);
        digitalWrite(MOTOR_3A, 0);
        digitalWrite(MOTOR_4A, 0);
}

void initMotors(void) {
        pinMode(MOTOR_1A, OUTPUT);
        pinMode(MOTOR_2A, OUTPUT);
        pinMode(MOTOR_3A, OUTPUT);
        pinMode(MOTOR_4A, OUTPUT);
        halt();  // ensure motors are not spinning
        pwmInit(EN, 1, 255);  // turn on PWM
        analogWrite(200);  // default to partial power
}

int  main(void) {
        initMotors();
        while(1)
        {
               forward();
               delay(5000);
               backward();
               delay(5000);
               left();
               delay(5000);
               right();
               delay(5000);
               halt();
       }
}

Code Example e9.18 DC MOTOR DRIVER



9.4 Other Microcontroller Peripherals 542.e58

Figure e9.33 SG90 servo motor

 

In the previous example, there is no way to measure the position of 
each motor. Two motors are unlikely to be exactly matched, so one is 
likely to turn slightly faster than the other, causing the robot to veer off 
course. To solve this problem, some systems add shaft encoders. Figure 
e9.32(a) shows a simple shaft encoder consisting of a disk with slots 
attached to the motor shaft. An LED is placed on one side and a light 
sensor is placed on the other side. The shaft encoder produces a pulse 
every time the gap rotates past the LED. A microcontroller can count 
these pulses to measure the total angle that the shaft has turned. By 
using two LED/sensor pairs spaced half a slot width apart, an improved 
shaft encoder can produce quadrature outputs shown in Figure e9.32(b) 
that indicate the direction the shaft is turning, as well as the angle by 
which it has turned. Sometimes shaft encoders add another hole to indi-
cate when the shaft is at an index position.

Servo Motor
A servo motor is a DC motor integrated with a gear train, a shaft 
encoder, and some control logic so that it is easier to use. It has a lim-
ited rotation, typically 180°. Figure e9.33 shows a servo with the lid 
removed to reveal the gears. A servo motor has a 3-pin interface with 
power (typically 5 V), ground, and a control input. The control input 
is typically a 50 Hz pulse-width modulated signal. The servo’s control 
logic drives the shaft to a position determined by the duty cycle of the 
control input. The servo’s shaft encoder is typically a rotary potentiome-
ter that produces a voltage dependent on the shaft position.

In a typical servo motor with 180 degrees of rotation, a pulse width 
of 1 ms drives the shaft to 0°, 1.5 ms to 90°, and 2 ms to 180°. For 
example, Figure e9.34 shows a control signal with a 1.5   ms pulse width. 
Driving the servo outside its range may cause it to hit mechanical stops 
and be damaged. The servo’s power comes from the power pin rather 
than the control pin, so the control can connect directly to a micro-
controller without an H-bridge. Servo motors are commonly used in 
remote-control model airplanes and small robots because they are small, 
light, and convenient. Finding a motor with an adequate datasheet can 

(a) (b)

A

B

Figure e9.32 Shaft encoder (a) disk, (b) quadrature outputs
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be difficult. The center pin with a red wire is normally power, and the 
black or brown wire is normally ground.

Example e9.13 SERVO MOTOR

Design a system in which a RED-V drives a servo motor to a desired angle.

Solution Figure e9.35 shows a diagram of the connection to an SG90 servo 
motor, including the colors of the wires on the servo cable. The servo operates 
off of a 4.0 to 7.2 V power supply. It can draw as much as 0.5 A if it must deliver 
a large amount of force but may run directly off the RED-V power supply if the 
load is light. A single wire carries the PWM signal, which can be provided at  
5 or 3.3 V logic levels. The code configures the PWM generation and computes 
the appropriate duty cycle for the desired angle. It cycles through positioning the 
servo at 0°, 90°, and 180°.
 

20 ms period (50 Hz)

1.5 ms pulse width

Figure e9.34 Servo control waveform

#include "EasyREDVIO.h"

void genPulseMicroseconds(uint16_t pulse_len_us) {
        PWM1->pwmcmp1.pwmcmp = pulse_len_us;
}

void setServo(float angle) {
        volatile uint16_t pulse_len_us = (uint16_t) (1000 + (angle / 180) * 1000);
        genPulseMicroseconds(pulse_len_us);
}

int main(void) {
        uint32_t scale = 4; // Set scale to get 16e6/2^4 = 1 MHz count speed for 1 us accuracy
        float freq = 50.0;
        volatile uint32_t pwm_period_count = (uint32_t) (1/freq * 1e6); // Period for PWM in  
                                                                                                            // microseconds

        pwmInit(D3, scale, pwm_period_count);
        while(1) {
    setServo(0.0);
       delay(1000);
        setServo(90.0);
        delay(1000);
         setServo(180.0);
           delay(1000);
        }
} 

Code Example e9.19 SERVO MOTOR DRIVER

RED-V
PWM1_PWM1 / GPIO19 D3

SG90
Servo

VIN (5V)

GND

orange

red

brown

Figure e9.35 Servo motor control
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Figure e9.36 Two-phase bipolar 
motor: (a) simplified diagram, (b) 
symbol

It is also possible to convert an ordinary servo into a continuous 
rotation servo by carefully disassembling it, removing the mechanical 
stop, and replacing the potentiometer with a fixed voltage divider. Many 
websites show detailed directions for particular servos. The PWM will 
then control the velocity rather than position, with 1.5 ms indicating 
stop, 2 ms indicating full speed forward, and 1 ms indicating full speed 
backward. A continuous rotation servo may be more convenient and less 
expensive than a simple DC motor combined with an H-bridge and gear 
train.

Stepper Motor
A stepper motor advances in discrete steps as pulses are applied to  
alternate inputs. The step size is usually a few degrees, allowing precise 
positioning and continuous rotation. Small stepper motors generally 
come with two sets of coils called phases wired in bipolar or unipolar  
fashion. Bipolar motors are more powerful and less expensive for a 
given size but require an H-bridge driver, while unipolar motors can be 
driven with transistors acting as switches. This section focuses on the 
more efficient bipolar stepper motor.

Figure e9.36(a) shows a simplified two-phase bipolar motor with a 
90-degree step size. The rotor is a permanent magnet with one north and 
one south pole. The stator is an electromagnet with two pairs of coils 
comprising the two phases. Two-phase bipolar motors thus have four 
terminals. Figure e9.36(b) shows a symbol for the stepper motor mod-
eling the two coils as inductors. Practical motors add gearing to reduce 
the output step size and increase torque.

Figure e9.37 shows three common drive sequences for a two-phase 
bipolar motor. Figure e9.37(a) illustrates wave drive, in which the coils 
are energized in the sequence AB–CD–BA–DC. Note that BA means that 
the winding AB is energized with current flowing in the opposite direc-
tion; this is the origin of the name bipolar. The rotor turns by 90 degrees 
at each step. Figure e9.37(b) illustrates two-phase-on drive, following 
the pattern (AB, CD)–(BA, CD)–(BA, DC)–(AB, DC). (AB, CD) indicates 
that both coils AB and CD are energized simultaneously. The rotor again 
turns by 90 degrees at each step, but aligns itself halfway between the 
two pole positions. This gives the highest torque operation because both 
coils are delivering power at once. Figure e9.37(c) illustrates half-step 
drive, following the pattern (AB, CD)–CD–(BA, CD)–BA–(BA, DC)–
DC–(AB, DC)–AB. The rotor turns by 45 degrees at each half-step. The 
rate at which the pattern advances determines the speed of the motor. To 
reverse the motor direction, the same drive sequences are applied in the 
opposite order.
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In a real motor, the rotor has many poles to make the angle between 
steps much smaller. For example, Figure e9.39 shows an AIRPAX 
LB82773-M1 bipolar stepper motor with a 7.5-degree step size. The 
motor operates off 5 V and draws 0.8 A through each coil.
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Figure e9.37 Bipolar motor drive
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Figure e9.39 AIRPAX 
LB82773-M1 bipolar stepper 
motor

The torque in the motor is proportional to the coil current. This cur-
rent is determined by the voltage applied and by the inductance L and 
resistance R of the coil. The simplest mode of operation is called direct 
voltage drive or L/R drive, in which the voltage V is directly applied to 
the coil. The current ramps up to I = V/R with a time constant set by 
L/R, as shown in Figure e9.38(a). This works well for slow speed oper-
ation. However, at higher speed, the current doesn’t have enough time 
to ramp up to the full level, as shown in Figure e9.38(b), and the torque 
drops off.

A more efficient way to drive a stepper motor is by pulse-width 
modulating a higher voltage. The high voltage causes the current to 
ramp up to full current more rapidly; then, it is turned off (during the 
off portion of the PWM duty cycle) to avoid overloading the motor. 
The voltage is then modulated or chopped to maintain the current near 
the desired level. This is called chopper constant current drive and is 
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Figure e9.38 Bipolar stepper motor direct drive current: (a) slow rotation, (b) fast rotation,  
(c) fast rotation with chopper drive
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shown in Figure e9.38(c). The controller uses a small resistor in series 
with the motor to sense the current being applied by measuring the volt-
age drop and applies an enable signal to the H-bridge to turn off the 
drive when the current reaches the desired level. In principle, a micro-
controller could generate the right waveforms, but it is easier to use a 
stepper motor controller. The L297 controller from ST Microelectronics 
is a convenient choice, especially when coupled with the L298 dual 
H-bridge with current sensing pins and a 2 A peak power capability. 
Unfortunately, the L298 is not available in a DIP package, so it is harder 
to breadboard. ST’s application notes AN460 and AN470 are valuable 
references for stepper motor designers.

Example e9.14 BIPOLAR STEPPER MOTOR DIRECT WAVE DRIVE

Design a system to drive an AIRPAX bipolar stepper motor at a specified speed 
and direction using direct wave drive.

Solution Figure e9.40 shows the bipolar stepper motor driven directly by an 
H-bridge with the same interface as the DC motor. Note that VCC2 must supply 
enough voltage and current to meet the motor’s demands or the motor may skip 
steps as the rotation rate increases.

5V

1 EN12

3 1Y

2 1A

4 GND

5 GND

6 2Y

7 2A

8 VCC2

VCC1 16

4Y 14

4A 15

GND 13

GND 12

3Y 11

3A 10

EN34 9

SN754410 H-Bridge 5 V

0.1 �F

M
A

B
C D

Bipolar
Stepper
Motor

Fr
om

R
ED

-V

Fr
om

R
ED

-V

GPIO19 D3

GPIO20 D4

GPIO21 D5

GPIO19 D3

GPIO22 D6

GPIO23 D7
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9.5  SUMMARY
Most processors use memory-mapped I/O to communicate with the 
real world. Microcontrollers offer a range of basic peripherals including  
general-purpose, serial, and analog I/O and timers.

This chapter has provided many specific examples of I/O using 
the FE310 RISC-V microcontroller on a SparkFun RED-V RedBoard. 
Embedded system designers continually encounter new processors and 
peripherals. The general principle for incorporating simple embedded 
I/O is to consult the datasheet to identify the peripherals that are avail-
able and which pins and memory-mapped I/O registers are involved. 
Then, it is usually straightforward to write a simple device driver that 
initializes the peripheral’s registers and transmits or receives data.

For more complex standards such as USB, writing a device driver 
is a highly specialized undertaking best done by an expert with detailed 
knowledge of the device and the USB protocol stack. Casual designers 
should select a processor that comes with proven device drivers and 
example code for the devices of interest.

Code Example e9.20 STEPPER MOTOR DRIVER

#include "EasyREDVIO.h"

#define STEPSIZE 7.5
#define SECS_PER_MIN 60
#define MILLIS_PER_SEC 1000
#define DEG_PER_REV 360

int stepperPins[] = {19, 22, 23, 20, 21};
int curStepState; // Keep track of the current position of stepper motor

void stepperInit(void) {
    pinsMode(stepperPins, 5, OUTPUT);
    curStepState = 0;
}

void stepperSpin(int dir, int steps, float rpm) {
    int sequence[4] = {0b00011, 0b01001, 0b00101, 0b10001}; //{2A, 1A, 4A, 3A, EN}
    int step = 0;

    unsigned int millisPerStep = (SECS_PER_MIN * MILLIS_PER_SEC * STEPSIZE) /
                                                  (rpm * DEG_PER_REV);

    for (step = 0; step < steps; step++) {
       digitalWrites(stepperPins, 5, sequence[curStepState]);
       if (dir = = 0) curStepState = (curStepState + 1) % 4;
       else   curStepState = (curStepState + 3) % 4;
       delay(millisPerStep);
    }
}
int main(void) {
    stepperInit();
    stepperSpin(1, 12000, 120); // Spin 60 revolutions at 120 rpm
} 




