Digital Design and Computer Architecture, 2nd Edition

David Money Harris and Sarah L. Harris, © Elsevier 2012
Errata List as of 15 April 2021

Chapter Page Front material		Errata
		In Praise of Digital Design and Computer Architecture section: "...FGPAs..." \rightarrow "...FPGAs..."
Preface	xxiii	End of 2nd paragraph: "...selection of designs on the DE2 Board using Cyclone II Web Edition." \rightarrow "...selection of designs on the DE2 Board using Quartus II Web Edition."
Preface	xxiii	"Please send your bug reports to ddcabugs@onehotlogic.com ." \rightarrow "Please send your bug reports to ddcabugs@gmail.com."
1	23	Figure 1.22: Although logically equivalent, the columns should be labeled "A B C D" (instead of "A C B D")
2	65	1st paragraph: "...Figure 2.9: $Y=A^{\prime} B^{\prime}+A B^{\prime}$. By Theorem T10, the equation simplifies to $Y=B^{\prime}$. " \rightarrow "...Figure 2.9: $Y=A^{\prime} B+A B$. By Theorem T10, the equation simplifies to $Y=B$."
2	76	3rd full paragraph: "...while $01: 10$ would change A from 1 to 0 and B from 0 to $1 . " \rightarrow " . .$. while $01: 10$ would change A from 0 to 1 and B from 1 to 0 ."
2	93	Figure 2.74: $85 \mathrm{~ns} \rightarrow 85 \mathrm{ps}, 100 \mathrm{~ns} \rightarrow 100 \mathrm{ps}, \mathrm{tpd}$ _TRLSY \rightarrow tpd_TRI_sy
4	204	HDL Example 4.26: SystemVerilog: the "<=" should be replaced with "=".
4	205	HDL Example 4.27: SystemVerilog: the "<=" should be replaced with "=".
4	210	HDL Example 4.30: SystemVerilog: the "<=" under case(state) should be replaced with "=".
4	210	HDL Example 4.30: "statetype [1:0] state, nextstate;" \rightarrow "statetype state, nextstate;"
4		To use VHDL 2008 in ModelSim, you may need to set VHDL93 $=2008$ in the modelsim.ini configuration file.
5	241	Last sentence: "...using the carry in to the block $C_{j} .4 \rightarrow$ "... using the carry in to the block $C_{j-1 .} .4$
5	241	Equation 5.5 should be: $C_{i}=G_{i: j}+P_{i, j} C_{j-1}$
5	278	"However, in this case $\mathrm{Y}=\mathrm{S}_{0}{ }^{\prime \prime} \rightarrow$ "However, in this case $\mathrm{Y}=\mathrm{S}_{0}{ }^{\prime} . "$
5	278	Figure 5.61: in LE1, the input of the Y mux should connect to the output of the LUT.
6	319	Code Example 6.20: High-level code should include "int i;" as the second line.
6	320	Example 6.6: High-level code should include "int i;" as the second line.
6	327	5th paragraph: "In particular, it should not modify any registers besides the one containing the return value $\$ \mathrm{v} 0 . " \rightarrow$ "In particular, it should not modify any registers besides the one containing the return value $\$ \mathrm{v} 0$ (and $\$ \mathrm{v} 1$ for 64 bit results)."
6	331	Code Example 6.27: "iw" \rightarrow "lw"
6	338	Code Example 6.30: "iw" \rightarrow " lw "
6	340	Last line: "For example, the first store instruction..." \rightarrow "For example, the second store instruction..."
6	346	Figure 6.35: "cop" \rightarrow "fop"
6	346	3rd paragraph: "They require both a funct field and a cop (coprocessor) field to indicate..." \rightarrow "They require both a funct field and a fop (floating point operation) field to indicate..."
6	346	3rd paragraph: "cop = $16\left(10000_{2}\right)$ for single-precision..." \rightarrow "fop $=16\left(10000_{2}\right)$ for single-precision...
6	365	Exercise 6.30(d): "...can the jump instruction (j) jump backward?" \rightarrow "...$c a n$ the jump instruction (j) jump forward?"
7	395	First paragraph, last sentence: "The RegDst instruction selects..." \rightarrow "The RegDst multiplexer selects..."
7	397	First line: "The main controller produces multiplexer select and register enable signals..." \rightarrow "The main controller produces multiplexer select and enable signals..."
7	409	End of 3rd paragraph: "...the single-cycle processor has an instruction latency of $250+150+200+250$ $+100=950 \mathrm{ps} . . .7 \rightarrow " .$. the single-cycle processor has an instruction latency of $250+150+200+250+$ $100=950 \mathrm{ps}$ (where the final 100 ps is the time to write to the register file) ...
7	428	Equation 7.5, Decode stage: "2(...T_mux +...)" \rightarrow "2(...tmux...)"
7	429	Figure 7.59, the Main Decoder should have a Jump signal that connects to the Datapath
7	449	First paragraph, last sentence: "for an IPC of 1.17." \rightarrow "for an IPC of 1.2."
7	454	Figure 7.72: In the Bit position row, '32' should be '31'
7	470	Exercise 7.23: addi \$s0, \$0, done \rightarrow addi \#s0, \$0, 5
7	471	Exercises 7.30 and 7.31: "iw" \rightarrow "lw"
8	480	Last full paragraph: "If 50\% of a program's instructions are loads and stores, ..." \rightarrow "If 50% of a program's performance is due to loads and stores..."
8	543	The top of the page should read: "The horizontal timing involves a front porch of 16 clocks, hsync pulse of 96 clocks, and back porch of 48 clocks. The vertical timing involves a front porch of 11 scan lines, vsync pulse of 2 lines, and back porch of 32 lines."
8	547	Last paragraph: "wireless phones" \rightarrow "wireless routers"

