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4 .1 INTRODUCTION

Thus far, we have focused on designing combinational and sequential
digital circuits at the schematic level. The process of finding an efficient
set of logic gates to perform a given function is labor intensive and error
prone, requiring manual simplification of truth tables or Boolean equa-
tions and manual translation of finite state machines (FSMs) into gates.
In the 1990’s, designers discovered that they were far more productive if
they worked at a higher level of abstraction, specifying just the logical
function and allowing a computer-aided design (CAD) tool to produce
the optimized gates. The specifications are generally given in a hardware
description language (HDL). The two leading hardware description lan-
guages are Verilog and VHDL.

Verilog and VHDL are built on similar principles but have different
syntax. Discussion of these languages in this chapter is divided into two
columns for literal side-by-side comparison, with Verilog on the left and
VHDL on the right. When you read the chapter for the first time, focus
on one language or the other. Once you know one, you’ll quickly master
the other if you need it.

Subsequent chapters show hardware in both schematic and HDL
form. If you choose to skip this chapter and not learn one of the HDLs,
you will still be able to master the principles of computer organization
from the schematics. However, the vast majority of commercial systems
are now built using HDLs rather than schematics. If you expect to do
digital design at any point in your professional life, we urge you to learn
one of the HDLs.

4 .1 .1 Modules

A block of hardware with inputs and outputs is called a module. An AND
gate, a multiplexer, and a priority circuit are all examples of hardware
modules. The two general styles for describing module functionality are
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behavioral and structural. Behavioral models describe what a module
does. Structural models describe how a module is built from simpler
pieces; it is an application of hierarchy. The Verilog and VHDL code in
HDL Example 4.1 illustrate behavioral descriptions of a module that
computes the Boolean function from Example 2.6,
In both languages, the module is named sillyfunction and has three
inputs, a, b, and c, and one output, y.

y � abc�abc � abc.

168 CHAPTER FOUR Hardware Description Languages

Verilog

module sillyfunction (input a, b, c,
output y);

assign y � ~a & ~b & ~c |
a & ~b & ~c |
a & ~b & c;

endmodule

A Verilog module begins with the module name and a listing
of the inputs and outputs. The assign statement describes
combinational logic. ~ indicates NOT, & indicates AND, and
| indicates OR.

Verilog signals such as the inputs and outputs are
Boolean variables (0 or 1). They may also have floating and
undefined values, as discussed in Section 4.2.8.

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity sillyfunction is
port (a, b, c: in STD_LOGIC;

y: out STD_LOGIC);
end;

architecture synth of sillyfunction is 
begin
y �� ((not a) and (not b) and (not c)) or

(a and (not b) and (not c)) or
(a and (not b) and c);

end;

VHDL code has three parts: the library use clause, the entity
declaration, and the architecture body. The library use clause
is required and will be discussed in Section 4.2.11. The entity
declaration lists the module name and its inputs and outputs.
The architecture body defines what the module does.

VHDL signals, such as inputs and outputs, must have a
type declaration. Digital signals should be declared to be
STD_LOGIC type. STD_LOGIC signals can have a value of ‘0’ or
‘1’, as well as floating and undefined values that will be
described in Section 4.2.8. The STD_LOGIC type is defined in
the IEEE.STD_LOGIC_1164 library, which is why the library
must be used.

VHDL lacks a good default order of operations, so
Boolean equations should be parenthesized.

HDL Example 4.1 COMBINATIONAL LOGIC

A module, as you might expect, is a good application of modularity.
It has a well defined interface, consisting of its inputs and outputs, and it
performs a specific function. The particular way in which it is coded is
unimportant to others that might use the module, as long as it performs
its function.

4 .1 . 2 Language Origins

Universities are almost evenly split on which of these languages is taught
in a first course, and industry is similarly split on which language is pre-
ferred. Compared to Verilog, VHDL is more verbose and cumbersome,
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as you might expect of a language developed by committee. U.S. military
contractors, the European Space Agency, and telecommunications compa-
nies use VHDL extensively.

Both languages are fully capable of describing any hardware system,
and both have their quirks. The best language to use is the one that is
already being used at your site or the one that your customers demand.
Most CAD tools today allow the two languages to be mixed, so that dif-
ferent modules can be described in different languages.

4 .1 . 3 Simulation and Synthesis

The two major purposes of HDLs are logic simulation and synthesis.
During simulation, inputs are applied to a module, and the outputs are
checked to verify that the module operates correctly. During synthesis,
the textual description of a module is transformed into logic gates.

Simulation

Humans routinely make mistakes. Such errors in hardware designs are
called bugs. Eliminating the bugs from a digital system is obviously impor-
tant, especially when customers are paying money and lives depend on the
correct operation. Testing a system in the laboratory is time-consuming.
Discovering the cause of errors in the lab can be extremely difficult,
because only signals routed to the chip pins can be observed. There is no
way to directly observe what is happening inside a chip. Correcting errors
after the system is built can be devastatingly expensive. For example,
correcting a mistake in a cutting-edge integrated circuit costs more than
a million dollars and takes several months. Intel’s infamous FDIV (floating
point division) bug in the Pentium processor forced the company to recall
chips after they had shipped, at a total cost of $475 million. Logic simula-
tion is essential to test a system before it is built.

4.1 Introduction 169

The term “bug” predates the
invention of the computer.
Thomas Edison called the “lit-
tle faults and difficulties” with
his inventions “bugs” in 1878.

The first real computer bug
was a moth, which got caught
between the relays of the
Harvard Mark II electro-
mechanical computer in 1947.
It was found by Grace Hopper,
who logged the incident, along
with the moth itself and the
comment “first actual case of
bug being found.”

Source: Notebook entry cour-
tesy Naval Historical Center,
US Navy; photo No. NII
96566-KN

1 The Institute of Electrical and Electronics Engineers (IEEE) is a professional society
responsible for many computing standards including WiFi (802.11), Ethernet (802.3),
and floating-point numbers (754) (see Chapter 5).

VHDL

VHDL is an acronym for the VHSIC Hardware Description
Language. VHSIC is in turn an acronym for the Very High
Speed Integrated Circuits program of the US Department of
Defense.

VHDL was originally developed in 1981 by the Depart-
ment of Defense to describe the structure and function of
hardware. Its roots draw from the Ada programming lan-
guage. The IEEE standardized it in 1987 (IEEE STD 1076)
and has updated the standard several times since. The lan-
guage was first envisioned for documentation but was
quickly adopted for simulation and synthesis.

Verilog

Verilog was developed by Gateway Design Automation as a
proprietary language for logic simulation in 1984. Gateway
was acquired by Cadence in 1989 and Verilog was made an
open standard in 1990 under the control of Open Verilog
International. The language became an IEEE standard1 in
1995 (IEEE STD 1364) and was updated in 2001.

Chapter 04.qxd  1/31/07  8:17 PM  Page 169



Figure 4.1 shows waveforms from a simulation2 of the previous
sillyfunction module demonstrating that the module works correctly.
y is TRUE when a, b, and c are 000, 100, or 101, as specified by the
Boolean equation.

Synthesis

Logic synthesis transforms HDL code into a netlist describing the hard-
ware (e.g., the logic gates and the wires connecting them). The logic syn-
thesizer might perform optimizations to reduce the amount of hardware
required. The netlist may be a text file, or it may be drawn as a
schematic to help visualize the circuit. Figure 4.2 shows the results of
synthesizing the sillyfunction module.3 Notice how the three three-
input AND gates are simplified into two two-input AND gates, as we
discovered in Example 2.6 using Boolean algebra.

Circuit descriptions in HDL resemble code in a programming
language. However, you must remember that the code is intended to
represent hardware. Verilog and VHDL are rich languages with many
commands. Not all of these commands can be synthesized into hard-
ware. For example, a command to print results on the screen during sim-
ulation does not translate into hardware. Because our primary interest is
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Figure 4.2 Synthesized circuit

2 The simulation was performed with the Xilinx ISE Simulator, which is part of the Xilinx
ISE 8.2 software. The simulator was selected because it is used commercially, yet is freely
available to universities.
3 Synthesis was performed with Synplify Pro from Synplicity. The tool was selected
because it is the leading commercial tool for synthesizing HDL to field-programmable
gate arrays (see Section 5.6.2) and because it is available inexpensively for universities.
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to build hardware, we will emphasize a synthesizable subset of the lan-
guages. Specifically, we will divide HDL code into synthesizable modules
and a testbench. The synthesizable modules describe the hardware. The
testbench contains code to apply inputs to a module, check whether the
output results are correct, and print discrepancies between expected and
actual outputs. Testbench code is intended only for simulation and
cannot be synthesized.

One of the most common mistakes for beginners is to think of HDL
as a computer program rather than as a shorthand for describing digital
hardware. If you don’t know approximately what hardware your HDL
should synthesize into, you probably won’t like what you get. You might
create far more hardware than is necessary, or you might write code that
simulates correctly but cannot be implemented in hardware. Instead,
think of your system in terms of blocks of combinational logic, registers,
and finite state machines. Sketch these blocks on paper and show how
they are connected before you start writing code.

In our experience, the best way to learn an HDL is by example.
HDLs have specific ways of describing various classes of logic; these
ways are called idioms. This chapter will teach you how to write
the proper HDL idioms for each type of block and then how to put
the blocks together to produce a working system. When you need to
describe a particular kind of hardware, look for a similar example
and adapt it to your purpose. We do not attempt to rigorously
define all the syntax of the HDLs, because that is deathly boring and
because it tends to encourage thinking of HDLs as programming
languages, not shorthand for hardware. The IEEE Verilog and
VHDL specifications, and numerous dry but exhaustive textbooks,
contain all of the details, should you find yourself needing more infor-
mation on a particular topic. (See Further Readings section at back of
the book.)

4 . 2 COMBINATIONAL LOGIC

Recall that we are disciplining ourselves to design synchronous sequen-
tial circuits, which consist of combinational logic and registers. The out-
puts of combinational logic depend only on the current inputs. This
section describes how to write behavioral models of combinational logic
with HDLs.

4 . 2 .1 Bitwise Operators

Bitwise operators act on single-bit signals or on multi-bit busses. For
example, the inv module in HDL Example 4.2 describes four inverters
connected to 4-bit busses.

4.2 Combinational Logic 171
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The endianness of a bus is purely arbitrary. (See the sidebar in Section
6.2.2 for the origin of the term.) Indeed, endianness is also irrelevant to
this example, because a bank of inverters doesn’t care what the order of
the bits are. Endianness matters only for operators, such as addition,
where the sum of one column carries over into the next. Either ordering is
acceptable, as long as it is used consistently. We will consistently use the
little-endian order, [N�1:0] in Verilog and (N�1 downto 0) in VHDL,
for an N-bit bus.

After each code example in this chapter is a schematic produced
from the Verilog code by the Synplify Pro synthesis tool. Figure 4.3
shows that the inv module synthesizes to a bank of four inverters,
indicated by the inverter symbol labeled y[3:0]. The bank of inverters
connects to 4-bit input and output busses. Similar hardware is produced
from the synthesized VHDL code.

The gates module in HDL Example 4.3 demonstrates bitwise oper-
ations acting on 4-bit busses for other basic logic functions.

172 CHAPTER FOUR Hardware Description Languages

y [3:0]

y [3:0]a[3:0]
[3:0][3:0]

Figure 4.3 inv synthesized circuit

Verilog

module inv (input [3:0] a,
output [3:0] y);

assign y � ~a;
endmodule

a[3:0] represents a 4-bit bus. The bits, from most significant
to least significant, are a[3], a[2], a[1], and a[0]. This is
called little-endian order, because the least significant bit has
the smallest bit number. We could have named the bus
a[4:1], in which case a[4] would have been the most signifi-
cant. Or we could have used a[0:3], in which case the bits,
from most significant to least significant, would be a[0],
a[1], a[2], and a[3]. This is called big-endian order.

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity inv is
port (a: in STD_LOGIC_VECTOR (3 downto 0);

y: out STD_LOGIC_VECTOR (3 downto 0));
end;

architecture synth of inv is
begin
y �� not a;

end;

VHDL uses STD_LOGIC_VECTOR, to indicate busses of
STD_LOGIC. STD_LOGIC_VECTOR (3 downto 0) represents a 4-bit
bus. The bits, from most significant to least significant, are
3, 2, 1, and 0. This is called little-endian order, because the
least significant bit has the smallest bit number. We could
have declared the bus to be STD_LOGIC_VECTOR (4 downto 1),
in which case bit 4 would have been the most significant. Or
we could have written STD_LOGIC_VECTOR (0 to 3), in which
case the bits, from most significant to least significant, would
be 0, 1, 2, and 3. This is called big-endian order.

HDL Example 4.2 INVERTERS
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Figure 4.4 gates synthesized circuit

Verilog

module gates (input [3:0] a, b,
output [3:0] y1, y2,

y3, y4, y5);

/* Five different two-input logic
gates acting on 4 bit busses */

assign y1 � a & b; // AND
assign y2 � a | b; // OR
assign y3 � a � b; // XOR
assign y4 � ~(a & b); // NAND
assign y5 � ~(a | b); // NOR

endmodule

~, �, and | are examples of Verilog operators, whereas a, b,
and y1 are operands. A combination of operators and
operands, such as a & b, or ~(a | b), is called an expression.
A complete command such as assign y4 � ~(a & b); is
called a statement.

assign out � in1 op in2; is called a continuous assign-
ment statement. Continuous assignment statements end with a
semicolon. Anytime the inputs on the right side of the � in a
continuous assignment statement change, the output on the left
side is recomputed. Thus, continuous assignment statements
describe combinational logic.

HDL Example 4.3 LOGIC GATES

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity gates is
port (a, b: in  STD_LOGIC_VECTOR (3 downto 0);

y1, y2, y3, y4,
y5:   out STD_LOGIC_VECTOR (3 downto 0));

end;

architecture synth of gates is
begin
— — Five different two-input logic gates
— —acting on 4 bit busses
y1 �� a and b;
y2 �� a or b;
y3 �� a xor b;
y4 �� a nand b;
y5 �� a nor b;

end;

not, xor, and or are examples of VHDL operators, whereas a,
b, and y1 are operands. A combination of operators and
operands, such as a and b, or a nor b, is called an expression.
A complete command such as y4 �� a nand b; is called a
statement.

out �� in1 op in2; is called a concurrent signal assign-
ment statement. VHDL assignment statements end with a
semicolon. Anytime the inputs on the right side of the �� in
a concurrent signal assignment statement change, the output
on the left side is recomputed. Thus, concurrent signal
assignment statements describe combinational logic.
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4 . 2 . 3 Reduction Operators

Reduction operators imply a multiple-input gate acting on a single bus.
HDL Example 4.4 describes an eight-input AND gate with inputs a7,
a6, . . . , a0.
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Verilog

Verilog comments are just like those in C or Java. Comments
beginning with /* continue, possibly across multiple lines, to
the next */. Comments beginning with // continue to the end
of the line.

Verilog is case-sensitive. y1 and Y1 are different signals
in Verilog.

VHDL

VHDL comments begin with — — and continue to the end of the
line. Comments spanning multiple lines must use — — at the
beginning of each line.

VHDL is not case-sensitive. y1 and Y1 are the same sig-
nal in VHDL. However, other tools that may read your file
might be case sensitive, leading to nasty bugs if you blithely
mix upper and lower case.

4 . 2 . 2 Comments and White Space

The gates example showed how to format comments. Verilog and
VHDL are not picky about the use of white space (i.e., spaces, tabs, and
line breaks). Nevertheless, proper indenting and use of blank lines is
helpful to make nontrivial designs readable. Be consistent in your use of
capitalization and underscores in signal and module names. Module and
signal names must not begin with a digit.

Verilog

module and8 (input [7:0] a,
output y);

assign y � &a;

// &a is much easier to write than
// assign y � a[7] & a[6] & a[5] & a[4] &
// a[3] & a[2] & a[1] & a[0];

endmodule

As one would expect, |, �, ~&, and ~ | reduction operators
are available for OR, XOR, NAND, and NOR as well.
Recall that a multi-input XOR performs parity, returning
TRUE if an odd number of inputs are TRUE.

VHDL

VHDL does not have reduction operators. Instead, it pro-
vides the generate command (see Section 4.7). Alternatively,
the operation can be written explicitly, as shown below.

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity and8 is
port (a: in STD_LOGIC_VECTOR (7 downto 0);

y: out STD_LOGIC);
end;

architecture synth of and8 is
begin
y �� a(7) and a(6) and a(5) and a(4) and

a(3) and a(2) and a(1) and a(0);
end;

HDL Example 4.4 EIGHT-INPUT AND
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4 . 2 . 4 Conditional Assignment

Conditional assignments select the output from among alternatives
based on an input called the condition. HDL Example 4.5 illustrates a
2:1 multiplexer using conditional assignment.
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Figure 4.5 and8 synthesized circuit

Verilog

The conditional operator ?: chooses, based on a first expres-
sion, between a second and third expression. The first
expression is called the condition. If the condition is 1, the
operator chooses the second expression. If the condition is 0,
the operator chooses the third expression.

?: is especially useful for describing a multiplexer because,
based on the first input, it selects between two others. The fol-
lowing code demonstrates the idiom for a 2:1 multiplexer with
4-bit inputs and outputs using the conditional operator.

module mux2 (input [3:0] d0, d1,
input s,
output [3:0] y);

assign y � s ? d1 : d0;
endmodule

If s is 1, then y � d1. If s is 0, then y � d0.
?: is also called a ternary operator, because it takes three

inputs. It is used for the same purpose in the C and Java
programming languages.

VHDL

Conditional signal assignments perform different operations
depending on some condition. They are especially useful for
describing a multiplexer. For example, a 2:1 multiplexer can
use conditional signal assignment to select one of two 4-bit
inputs.

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity mux2 is
port (d0, d1: in STD_LOGIC_VECTOR (3 downto 0);

s: in STD_LOGIC;
y: out STD_LOGIC_VECTOR (3 downto 0));

end;

architecture synth of mux2 is
begin
y �� d0 when s � ‘0’ else d1;

end;

The conditional signal assignment sets y to d0 if s is 0.
Otherwise it sets y to d1.

HDL Example 4.5 2:1 MULTIPLEXER
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Figure 4.6 mux2 synthesized circuit
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HDL Example 4.6 shows a 4:1 multiplexer based on the same
principle as the 2:1 multiplexer in HDL Example 4.5.

Figure 4.7 shows the schematic for the 4:1 multiplexer produced by
Synplify Pro. The software uses a different multiplexer symbol than this
text has shown so far. The multiplexer has multiple data (d) and one-hot
enable (e) inputs. When one of the enables is asserted, the associated
data is passed to the output. For example, when s[1] � s[0] � 0, the
bottom AND gate, un1_s_5, produces a 1, enabling the bottom input of
the multiplexer and causing it to select d0[3:0].

4 . 2 . 5 Internal Variables

Often it is convenient to break a complex function into intermediate
steps. For example, a full adder, which will be described in Section 5.2.1,
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Verilog

A 4:1 multiplexer can select one of four inputs using nested
conditional operators.

module mux4 (input  [3:0] d0, d1, d2, d3,
input  [1:0] s,
output [3:0] y);

assign y � s[1] ? (s[0] ? d3 : d2)
: (s[0] ? d1 : d0);

endmodule

If s[1] is 1, then the multiplexer chooses the first expression,
(s[0] ? d3 : d2). This expression in turn chooses either d3
or d2 based on s[0] (y � d3 if s[0] is 1 and d2 if s[0] is 0).
If s[1] is 0, then the multiplexer similarly chooses the second
expression, which gives either d1 or d0 based on s[0].

VHDL

A 4:1 multiplexer can select one of four inputs using multiple
else clauses in the conditional signal assignment.

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity mux4 is
port (d0, d1,

d2, d3: in STD_LOGIC_VECTOR (3 downto 0);
s: in STD_LOGIC_VECTOR (1 downto 0);
y: out STD_LOGIC_VECTOR (3 downto 0));

end;

architecture synthl of mux4 is
begin
y �� d0 when s � “00” else

d1 when s � “01” else
d2 when s � “10” else
d3;

end;

VHDL also supports selected signal assignment statements to
provide a shorthand when selecting from one of several
possibilities. This is analogous to using a case statement in
place of multiple if/else statements in some programming
languages. The 4:1 multiplexer can be rewritten with selected
signal assignment as follows:

architecture synth2 of mux4 is
begin
with a select y ��

d0 when “00”,
d1 when “01”,
d2 when “10”,
d3 when others;

end;

HDL Example 4.6 4:1 MULTIPLEXER
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is a circuit with three inputs and two outputs defined by the following
equations:

(4.1)

If we define intermediate signals, P and G,

(4.2)

we can rewrite the full adder as follows:

(4.3)

P and G are called internal variables, because they are neither inputs nor
outputs but are used only internal to the module. They are similar to
local variables in programming languages. HDL Example 4.7 shows
how they are used in HDLs.

HDL assignment statements (assign in Verilog and �� in VHDL)
take place concurrently. This is different from conventional program-
ming languages such as C or Java, in which statements are evaluated in
the order in which they are written. In a conventional language, it is

Cout�G � PCin

S� P ⊕ Cin

G�AB

P�A ⊕ B

Cout �AB � ACin � BCin

S� A ⊕ B ⊕ Cin

4.2 Combinational Logic 177

un1_s_2

un1_s_3

un1_s_4

un1_s_5

y[3:0]

e
d

e
d

e
d

e
d

y[3:0]

s[1:0]
[1:0]

d3[3:0]

d2[3:0]
d1[3:0]

d0[3:0]

[0]

[1]

[1]

[0]

[0]

[1]

[0]

[1]

[3:0]

[3:0]
[3:0]

[3:0]

[3:0]

Figure 4.7 mux4 synthesized

circuit

Check this by filling out the
truth table to convince 
yourself it is correct.
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important that S � P � Cin comes after P � A � B, because state-
ments are executed sequentially. In an HDL, the order does not matter.
Like hardware, HDL assignment statements are evaluated any time the
inputs, signals on the right hand side, change their value, regardless of
the order in which the assignment statements appear in a module.

4 . 2 . 6 Precedence

Notice that we parenthesized the cout computation in HDL Example 4.7
to define the order of operations as Cout � G � (P � Cin), rather than Cout
� (G � P) � Cin. If we had not used parentheses, the default operation order
is defined by the language. HDL Example 4.8 specifies operator precedence
from highest to lowest for each language. The tables include arithmetic,
shift, and comparison operators that will be defined in Chapter 5.
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Figure 4.8 fulladder synthesized circuit

Verilog

In Verilog, wires are used to represent internal variables
whose values are defined by assign statements such as
assign p � a � b; Wires technically have to be declared
only for multibit busses, but it is good practice to include
them for all internal variables; their declaration could have
been omitted in this example.

module fulladder(input a, b, cin,
output s, cout);

wire p, g;

assign p � a � b;
assign g � a & b;

assign s � p � cin;
assign cout � g | (p & cin);

endmodule

VHDL

In VHDL, signals are used to represent internal variables
whose values are defined by concurrent signal assignment
statements such as p �� a xor b;

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity fulladder is
port(a, b, cin: in  STD_LOGIC;

s, cout: out STD_LOGIC);
end;

architecture synth of fulladder is
signal p, g: STD_LOGIC;

begin
p �� a xor b;
g �� a and b;

s �� p xor cin;
cout �� g or (p and cin);

end;

HDL Example 4.7 FULL ADDER

Chapter 04.qxd  1/31/07  8:17 PM  Page 178



4.2 Combinational Logic 179

Verilog VHDL

HDL Example 4.8 OPERATOR PRECEDENCE

Table 4.2 VHDL operator precedence

Op Meaning

not NOT

*, /, mod, rem MUL, DIV, MOD, REM

�, �, PLUS, MINUS, 
& CONCATENATE

rol, ror, Rotate, 
srl, sll, Shift logical,
sra, sla Shift arithmetic 

�, /�, �, Comparison
��, �, ��

and, or, nand, Logical Operations
nor, xor

H
i
g
h
e
s
t

L
o
w
e
s
t

The operator precedence for Verilog is much like you would
expect in other programming languages. In particular, AND
has precedence over OR. We could take advantage of this
precedence to eliminate the parentheses.

assign cout � g | p & cin;

Multiplication has precedence over addition in VHDL, as
you would expect. However, unlike Verilog, all of the logical
operations (and, or, etc.) have equal precedence, unlike what
one might expect in Boolean algebra. Thus, parentheses are
necessary; otherwise cout �� g or p and cin would be
interpreted from left to right as cout �� (g or p) and cin.

4 . 2 .7 Numbers

Numbers can be specified in a variety of bases. Underscores in numbers
are ignored and can be helpful in breaking long numbers into more read-
able chunks. HDL Example 4.9 explains how numbers are written in
each language.

4 . 2 . 8 Z’s and X’s

HDLs use z to indicate a floating value. z is particularly useful for describ-
ing a tristate buffer, whose output floats when the enable is 0. Recall from
Section 2.6 that a bus can be driven by several tristate buffers, exactly one
of which should be enabled. HDL Example 4.10 shows the idiom for a
tristate buffer. If the buffer is enabled, the output is the same as the input.
If the buffer is disabled, the output is assigned a floating value (z).

Table 4.1 Verilog operator precedence

Op Meaning

~ NOT

*, /, % MUL, DIV, MOD

�, � PLUS, MINUS

��, �� Logical Left/Right Shift

���, ��� Arithmetic Left/Right Shift

�, ��, �, �� Relative Comparison

��, !� Equality Comparison

&, ~& AND, NAND

�, ~� XOR, XNOR

|, ~| OR, NOR

?: Conditional

H
i
g
h
e
s
t

L
o
w
e
s
t

Chapter 04.qxd  1/31/07  8:17 PM  Page 179



180 CHAPTER FOUR Hardware Description Languages

Verilog

Verilog numbers can specify their base and size (the number
of bits used to represent them). The format for declaring
constants is N�Bvalue, where N is the size in bits, B is the base,
and value gives the value. For example 9�h25 indicates a 
9-bit number with a value of 2516 � 3710 � 0001001012.
Verilog supports �b for binary (base 2), �o for octal (base 8),
�d for decimal (base 10), and �h for hexadecimal (base 16). If
the base is omitted, the base defaults to decimal.

If the size is not given, the number is assumed to have as
many bits as the expression in which it is being used. Zeros
are automatically padded on the front of the number to
bring it up to full size. For example, if w is a 6-bit bus, assign
w � �b11 gives w the value 000011. It is better practice to
explicitly give the size.

VHDL

In VHDL, STD_LOGIC numbers are written in binary and
enclosed in single quotes: ‘0’ and ‘1’ indicate logic 0 and 1.

STD_LOGIC_VECTOR numbers are written in binary
or hexadecimal and enclosed in double quotation marks. The
base is binary by default and can be explicitly defined with
the prefix X for hexadecimal or B for binary.

HDL Example 4.9 NUMBERS

Table 4.3 Verilog numbers

Numbers Bits Base Val Stored

3�b101 3 2 5 101

�b11 ? 2 3 000 ... 0011

8�b11 8 2 3 00000011

8�b1010_1011 8 2 171 10101011

3�d6 3 10 6 110

6�o42 6 8 34 100010

8�hAB 8 16 171 10101011

42 ? 10 42 00 ... 0101010

Table 4.4 VHDL numbers

Numbers Bits Base Val Stored

“101” 3 2 5 101

B“101” 3 2 5 101

X“AB” 8 16 161 10101011

Verilog

module tristate (input  [3:0] a,
input en,
output [3:0] y);

assign y � en ? a : 4�bz;
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity tristate is
port (a:  in  STD_LOGIC_VECTOR (3 downto 0);

en: in  STD_LOGIC;
y:  out STD_LOGIC_VECTOR (3 downto 0));

end;

architecture synth of tristate is
begin
y �� “ZZZZ” when en � ‘0’ else a;

end;

HDL Example 4.10 TRISTATE BUFFER
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y_1[3:0]

y[3:0]

en

a[3:0]
[3:0][3:0]

Figure 4.9 tristate synthesized circuit

Similarly, HDLs use x to indicate an invalid logic level. If a bus is
simultaneously driven to 0 and 1 by two enabled tristate buffers (or other
gates), the result is x, indicating contention. If all the tristate buffers driv-
ing a bus are simultaneously OFF, the bus will float, indicated by z.

At the start of simulation, state nodes such as flip-flop outputs are
initialized to an unknown state (x in Verilog and u in VHDL). This is
helpful to track errors caused by forgetting to reset a flip-flop before its
output is used.

If a gate receives a floating input, it may produce an x output when
it can’t determine the correct output value. Similarly, if it receives an
illegal or uninitialized input, it may produce an x output. HDL
Example 4.11 shows how Verilog and VHDL combine these different
signal values in logic gates.

Verilog

Verilog signal values are 0, 1, z, and x. Verilog constants
starting with z or x are padded with leading z’s or x’s (instead
of 0’s) to reach their full length when necessary.

Table 4.5 shows a truth table for an AND gate using all
four possible signal values. Note that the gate can sometimes
determine the output despite some inputs being unknown.
For example 0 & z returns 0 because the output of an AND
gate is always 0 if either input is 0. Otherwise, floating or
invalid inputs cause invalid outputs, displayed as x in Verilog.

VHDL

VHDL STD_LOGIC signals are ‘0’, ‘1’, ‘z’, ‘x’, and ‘u’.
Table 4.6 shows a truth table for an AND gate using all

five possible signal values. Notice that the gate can some-
times determine the output despite some inputs being
unknown. For example, ‘0’ and ‘z’ returns ‘0’ because the
output of an AND gate is always ‘0’ if either input is ‘0.’
Otherwise, floating or invalid inputs cause invalid outputs,
displayed as ‘x’ in VHDL. Uninitialized inputs cause unini-
tialized outputs, displayed as ‘u’ in VHDL.

HDL Example 4.11 TRUTH TABLES WITH UNDEFINED AND FLOATING INPUTS

Table 4.5 Verilog AND gate truth table with z and x

& A
0 1 z x

0 0 0 0 0

B 1 0 1 x x

z 0 x x x

x 0 x x x

Table 4.6 VHDL AND gate truth table with z, x, and u

AND A
0 1 z x u

0 0 0 0 0 0

1 0 1 x x u

B z 0 x x x u

x 0 x x x u

u 0 u u u u
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Seeing x or u values in simulation is almost always an indication of a
bug or bad coding practice. In the synthesized circuit, this corresponds
to a floating gate input, uninitialized state, or contention. The x or u
may be interpreted randomly by the circuit as 0 or 1, leading to unpre-
dictable behavior.

4 . 2 . 9 Bit Swizzling

Often it is necessary to operate on a subset of a bus or to concatenate
(join together) signals to form busses. These operations are collectively
known as bit swizzling. In HDL Example 4.12, y is given the 9-bit value
c2c1d0d0d0c0101 using bit swizzling operations.

4 . 2 .1 0 Delays

HDL statements may be associated with delays specified in arbitrary
units. They are helpful during simulation to predict how fast a circuit
will work (if you specify meaningful delays) and also for debugging
purposes to understand cause and effect (deducing the source of a bad
output is tricky if all signals change simultaneously in the simulation
results). These delays are ignored during synthesis; the delay of a gate
produced by the synthesizer depends on its tpd and tcd specifications, not
on numbers in HDL code.

HDL Example 4.13 adds delays to the original function from HDL
Example 4.1, It assumes that inverters have a delay
of 1 ns, three-input AND gates have a delay of 2 ns, and three-input OR
gates have a delay of 4 ns. Figure 4.10 shows the simulation waveforms,
with y lagging 7 ns after the inputs. Note that y is initially unknown at
the beginning of the simulation.

y � abc�abc � abc.

182 CHAPTER FOUR Hardware Description Languages

Verilog

assign y � {c[2:1], {3{d[0]}}, c[0], 3’b101};

The {} operator is used to concatenate busses. {3{d[0]}}
indicates three copies of d[0].

Don’t confuse the 3-bit binary constant 3’b101 with a bus
named b. Note that it was critical to specify the length of 3
bits in the constant; otherwise, it would have had an unknown
number of leading zeros that might appear in the middle of y.

If y were wider than 9 bits, zeros would be placed in the
most significant bits.

VHDL

y �� c(2 downto 1) & d(0) & d(0) & d(0) &
c(0) & “101”;

The & operator is used to concatenate busses. y must be a 
9-bit STD_LOGIC_VECTOR. Do not confuse & with the and opera-
tor in VHDL.

HDL Example 4.12 BIT SWIZZLING
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4.2 Combinational Logic 183

4 . 2 .1 1 VHDL Libraries and Types*

(This section may be skipped by Verilog users.) Unlike Verilog, VHDL
enforces a strict data typing system that can protect the user from some
errors but that is also clumsy at times.

Despite its fundamental importance, the STD_LOGIC type is not built
into VHDL. Instead, it is part of the IEEE.STD_LOGIC_1164 library.
Thus, every file must contain the library statements shown in the previ-
ous examples.

Verilog

‘timescale 1ns/1ps

module example (input a, b, c,
output y);

wire ab, bb, cb, n1, n2, n3;

assign #1 {ab, bb, cb} � ~ {a, b, c};
assign #2 n1 � ab & bb & cb;
assign #2 n2 � a & bb & cb;
assign #2 n3 � a & bb & c;
assign #4 y � n1 | n2 | n3;

endmodule

Verilog files can include a timescale directive that indicates
the value of each time unit. The statement is of the form
‘timescale unit/precision. In this file, each unit is 1 ns, and
the simulation has 1 ps precision. If no timescale directive is
given in the file, a default unit and precision (usually 1 ns for
both) is used. In Verilog, a # symbol is used to indicate the
number of units of delay. It can be placed in assign state-
ments, as well as non-blocking (��) and blocking (�) assign-
ments, which will be discussed in Section 4.5.4.

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity example is
port (a, b, c: in  STD_LOGIC;

y: out STD_LOGIC);
end;

architecture synth of example is
signal ab, bb, cb, n1, n2, n3: STD_LOGIC;
begin
ab �� not a after 1 ns;
bb �� not b after 1 ns;
cb �� not c after 1 ns;
n1 �� ab and bb and cb after 2 ns;
n2 �� a and bb and cb after 2 ns;
n3 �� a and bb and c after 2 ns;
y �� n1 or n2 or n3 after 4 ns;

end;

In VHDL, the after clause is used to indicate delay. The
units, in this case, are specified as nanoseconds.

HDL Example 4.13 LOGIC GATES WITH DELAYS

Figure 4.10 Example simulation waveforms with delays (from the ModelSim simulator)
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Moreover, IEEE.STD_LOGIC_1164 lacks basic operations such as
addition, comparison, shifts, and conversion to integers for the
STD_LOGIC_VECTOR data. Most CAD vendors have adopted yet more
libraries containing these functions: IEEE.STD_LOGIC_UNSIGNED and
IEEE.STD_LOGIC_SIGNED. See Section 1.4 for a discussion of unsigned
and signed numbers and examples of these operations.

VHDL also has a BOOLEAN type with two values: true and false. 
BOOLEAN values are returned by comparisons (such as the equality com-
parison, s � ‘0’) and are used in conditional statements such as when.
Despite the temptation to believe a BOOLEAN true value should be
equivalent to a STD_LOGIC ‘1’ and BOOLEAN false should mean
STD_LOGIC ‘0’, these types are not interchangeable. Thus, the following
code is illegal:

y �� d1 when s else d0;
q �� (state � S2);

Instead, we must write

y �� d1 when (s � ‘1’) else d0;
q �� ‘1’ when (state � S2) else ‘0’;

Although we do not declare any signals to be BOOLEAN, they are
automatically implied by comparisons and used by conditional statements.

Similarly, VHDL has an INTEGER type that represents both positive
and negative integers. Signals of type INTEGER span at least the values
�231 to 231 � 1. Integer values are used as indices of busses. For exam-
ple, in the statement

y �� a(3) and a(2) and a(1) and a(0);

0, 1, 2, and 3 are integers serving as an index to choose bits of the a
signal. We cannot directly index a bus with a STD_LOGIC or
STD_LOGIC_VECTOR signal. Instead, we must convert the signal to an
INTEGER. This is demonstrated in HDL Example 4.14 for an 8:1 multi-
plexer that selects one bit from a vector using a 3-bit index. The
CONV_INTEGER function is defined in the IEEE.STD_LOGIC_UNSIGNED
library and performs the conversion from STD_LOGIC_VECTOR to
INTEGER for positive (unsigned) values.

VHDL is also strict about out ports being exclusively for output.
For example, the following code for two and three-input AND gates is
illegal VHDL because v is an output and is also used to compute w.

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity and23 is
port(a, b, c: in STD_LOGIC;

v, w: out STD_LOGIC);
end;

184 CHAPTER FOUR Hardware Description Languages
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architecture synth of and23 is
begin
v �� a and b;
w �� v and c;

end;

VHDL defines a special port type, buffer, to solve this problem.
A signal connected to a buffer port behaves as an output but may also
be used within the module. The corrected entity definition follows.
Verilog does not have this limitation and does not require buffer ports.

entity and23 is
port(a, b, c: in STD_LOGIC;

v: buffer STD_LOGIC;
w: out STD_LOGIC);

end;

VHDL supports enumeration types as an abstract way of represent-
ing information without assigning specific binary encodings. For exam-
ple, the divide-by-3 FSM described in Section 3.4.2 uses three states. We
can give the states names using the enumeration type rather than refer-
ring to them by binary values. This is powerful because it allows VHDL
to search for the best state encoding during synthesis, rather than
depending on an arbitrary encoding specified by the user.

type statetype is (S0, S1, S2);
signal state, nextstate: statetype;

4 . 3 STRUCTURAL MODELING

The previous section discussed behavioral modeling, describing a module
in terms of the relationships between inputs and outputs. This section

4.3 Structural Modeling 185

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;

entity mux8 is
port(d: in STD_LOGIC_VECTOR(7 downto 0);

s: in STD_LOGIC_VECTOR(2 downto 0);
y: out STD_LOGIC);

end;

architecture synth of mux8 is
begin
y �� d(CONV_INTEGER(s));

end;

HDL Example 4.14 8:1 MULTIPLEXER WITH TYPE CONVERSION

Figure follows on next page.
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Figure 4.11 mux8 synthesized

circuit
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examines structural modeling, describing a module in terms of how it is
composed of simpler modules.

For example, HDL Example 4.15 shows how to assemble a 4:1
multiplexer from three 2:1 multiplexers. Each copy of the 2:1 multiplexer

4.3 Structural Modeling 187

v w

w

v

c

b
a Figure 4.12 and23 synthesized

circuit

Verilog

module mux4 (input  [3:0] d0, d1, d2, d3,
input  [1:0] s,
output [3:0] y);

wire [3:0] low, high;

mux2 lowmux (d0, d1, s[0], low);
mux2 highmux (d2, d3, s[0], high);
mux2 finalmux (low, high, s[1], y);

endmodule

The three mux2 instances are called lowmux, highmux, and
finalmux. The mux2 module must be defined elsewhere in the
Verilog code.

HDL Example 4.15 STRUCTURAL MODEL OF 4:1 MULTIPLEXER

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity mux4 is
port (d0, d1,

d2, d3: in  STD_LOGIC_VECTOR (3 downto 0);
s: in  STD_LOGIC_VECTOR (1 downto 0);
y: out STD_LOGIC_VECTOR (3 downto 0));

end;

architecture struct of mux4 is
component mux2
port (d0,

d1: in  STD_LOGIC_VECTOR (3 downto 0);
s: in  STD_LOGIC;
y: out STD_LOGIC_VECTOR (3 downto 0));

end component;
signal low, high: STD_LOGIC_VECTOR (3 downto 0);

begin
lowmux: mux2 port map (d0, d1, s(0), low);
highmux: mux2 port map (d2, d3, s(0), high);
finalmux: mux2 port map (low, high, s(1), y);

end;

The architecture must first declare the mux2 ports using the
component declaration statement. This allows VHDL tools to
check that the component you wish to use has the same ports
as the entity that was declared somewhere else in another
entity statement, preventing errors caused by changing the
entity but not the instance. However, component declaration
makes VHDL code rather cumbersome.

Note that this architecture of mux4 was named struct,
whereas architectures of modules with behavioral descrip-
tions from Section 4.2 were named synth. VHDL allows
multiple architectures (implementations) for the same entity;
the architectures are distinguished by name. The names
themselves have no significance to the CAD tools, but struct
and synth are common. Synthesizable VHDL code generally
contains only one architecture for each entity, so we will not
discuss the VHDL syntax to configure which architecture is
used when multiple architectures are defined.
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mux2
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highmux
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Figure 4.13 mux4 synthesized circuit

Verilog

module mux2 (input  [3:0] d0, d1,
input s,
output [3:0] y);

tristate t0 (d0, ~s, y);
tristate t1 (d1, s, y);

endmodule

In Verilog, expressions such as ~s are permitted in the port
list for an instance. Arbitrarily complicated expressions are
legal but discouraged because they make the code difficult to
read.

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity mux2 is
port (d0, d1: in  STD_LOGIC_VECTOR (3 downto 0);

s: in  STD_LOGIC;
y: out STD_LOGIC_VECTOR (3 downto 0));

end;

architecture struct of mux2 is
component tristate
port (a: in  STD_LOGIC_VECTOR (3 downto 0);

en: in  STD_LOGIC;
y: out STD_LOGIC_VECTOR (3 downto 0));

end component;
signal sbar: STD_LOGIC;

begin
sbar �� not s;
t0: tristate port map (d0, sbar, y);
t1: tristate port map (d1, s, y);

end;

In VHDL, expressions such as not s are not permitted in the
port map for an instance. Thus, sbar must be defined as a
separate signal.

HDL Example 4.16 STRUCTURAL MODEL OF 2:1 MULTIPLEXER

is called an instance. Multiple instances of the same module are distin-
guished by distinct names, in this case lowmux, highmux, and finalmux.
This is an example of regularity, in which the 2:1 multiplexer is reused
many times.

HDL Example 4.16 uses structural modeling to construct a 2:1
multiplexer from a pair of tristate buffers.
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4.3 Structural Modeling 189

HDL Example 4.17 shows how modules can access part of a bus. An
8-bit wide 2:1 multiplexer is built using two of the 4-bit 2:1 multiplexers
already defined, operating on the low and high nibbles of the byte.

In general, complex systems are designed hierarchically. The overall
system is described structurally by instantiating its major components.
Each of these components is described structurally from its building
blocks, and so forth recursively until the pieces are simple enough to
describe behaviorally. It is good style to avoid (or at least to minimize)
mixing structural and behavioral descriptions within a single module.

tristate

t0

tristate

t1

y[3:0]s

d1[3:0]

d0[3:0]

en
[3:0]

a[3:0]

[3:0]
y[3:0]

en
[3:0]

a[3:0]

[3:0]
y[3:0]

Figure 4.14 mux2 synthesized circuit

Verilog

module mux2_8 (input [7:0] d0, d1,
input s,
output [7:0] y);

mux2 lsbmux (d0[3:0], d1[3:0], s, y[3:0]);
mux2 msbmux (d0[7:4], d1[7:4], s, y[7:4]);

endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity mux2_8 is
port (d0, d1: in STD_LOGIC_VECTOR (7 downto 0);

s: in STD_LOGIC;
y: out STD_LOGIC_VECTOR (7 downto 0));

end;

architecture struct of mux2_8 is
component mux2
port (d0, d1: in STD_LOGIC_VECTOR(3

downto 0);
s: in STD_LOGIC;
y: out STD_LOGIC_VECTOR (3 downto 0));

end component;
begin

lsbmux: mux2
port map (d0 (3 downto 0), d1 (3 downto 0),

s, y (3 downto 0));
msbhmux: mux2
port map (d0 (7 downto 4), d1 (7 downto 4),

s, y (7 downto 4));
end;

HDL Example 4.17 ACCESSING PARTS OF BUSSES
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4 . 4 SEQUENTIAL LOGIC

HDL synthesizers recognize certain idioms and turn them into specific
sequential circuits. Other coding styles may simulate correctly but syn-
thesize into circuits with blatant or subtle errors. This section presents
the proper idioms to describe registers and latches.

4 . 4 .1 Registers

The vast majority of modern commercial systems are built with registers
using positive edge-triggered D flip-flops. HDL Example 4.18 shows the
idiom for such flip-flops.

In Verilog always statements and VHDL process statements, sig-
nals keep their old value until an event in the sensitivity list takes place
that explicitly causes them to change. Hence, such code, with appropri-
ate sensitivity lists, can be used to describe sequential circuits with mem-
ory. For example, the flip-flop includes only clk in the sensitive list. It
remembers its old value of q until the next rising edge of the clk, even if
d changes in the interim.

In contrast, Verilog continuous assignment statements (assign) and
VHDL concurrent assignment statements (��) are reevaluated anytime
any of the inputs on the right hand side changes. Therefore, such code
necessarily describes combinational logic.

190 CHAPTER FOUR Hardware Description Languages
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Figure 4.15 mux2_8 synthesized circuit
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q[3:0]d[3:0]
clk

[3:0][3:0]
Q[3:0]D[3:0]

Figure 4.16 flop synthesized circuit

Verilog

module flop (input clk,
input [3:0] d,
output reg [3:0] q);

always @ (posedge clk)
q �� d;

endmodule

A Verilog always statement is written in the form

always @ (sensitivity list)
statement;

The statement is executed only when the event specified in
the sensitivity list occurs. In this example, the statement is
q �� d (pronounced “q gets d”). Hence, the flip-flop copies d
to q on the positive edge of the clock and otherwise remem-
bers the old state of q.

�� is called a nonblocking assignment. Think of it as a
regular � sign for now; we’ll return to the more subtle
points in Section 4.5.4. Note that �� is used instead of
assign inside an always statement.

All signals on the left hand side of �� or � in an always
statement must be declared as reg. In this example, q is both
an output and a reg, so it is declared as output reg [3:0] q.
Declaring a signal as reg does not mean the signal is actually
the output of a register! All it means is that the signal
appears on the left hand side of an assignment in an always
statement. We will see later examples of always statements
describing combinational logic in which the output is
declared reg but does not come from a flip-flop.

HDL Example 4.18 REGISTER

4 . 4 . 2 Resettable Registers

When simulation begins or power is first applied to a circuit, the output of
a flop or register is unknown. This is indicated with x in Verilog and ‘u’ in
VHDL. Generally, it is good practice to use resettable registers so that on
powerup you can put your system in a known state. The reset may be

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity flop is
port (clk: in STD_LOGIC;

d: in STD_LOGIC_VECTOR (3 downto 0) ;
q: out STD_LOGIC_VECTOR (3 downto 0)) ;

end;

architecture synth of flop is
begin
process (clk) begin
if clk’event and clk � ‘1’ then
q �� d;

end if;
end process;

end;

A VHDL process is written in the form

process (sensitivity list) begin
statement;

end process;

The statement is executed when any of the variables in the
sensitivity list change. In this example, the if statement is
executed when clk changes, indicated by clk’event. If the
change is a rising edge (clk � ‘1’ after the event), then
q �� d (pronounced “q gets d”). Hence, the flip-flop copies d
to q on the positive edge of the clock and otherwise remem-
bers the old state of q.

An alternative VHDL idiom for a flip-flop is

process (clk) begin
if RISING_EDGE (clk) then
q �� d;

end if;
end process;

RISING_EDGE (clk) is synonymous with clk’event and
clk � 1.
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either asynchronous or synchronous. Recall that asynchronous reset
occurs immediately, whereas synchronous reset clears the output only on
the next rising edge of the clock. HDL Example 4.19 demonstrates the
idioms for flip-flops with asynchronous and synchronous resets. Note that
distinguishing synchronous and asynchronous reset in a schematic can be
difficult. The schematic produced by Synplify Pro places asynchronous
reset at the bottom of a flip-flop and synchronous reset on the left side.

192 CHAPTER FOUR Hardware Description Languages

Verilog

module flopr (input clk,
input reset,
input [3:0] d,
output reg [3:0] q);

// asynchronous reset
always @ (posedge clk, posedge reset)
if (reset) q �� 4’b0;
else q �� d;

endmodule

module flopr (input clk,
input reset,
input [3:0] d,
output reg [3:0] q);

// synchronous reset
always @ (posedge clk)
if (reset) q �� 4’b0;
else q �� d;

endmodule

Multiple signals in an always statement sensitivity list are
separated with a comma or the word or. Notice that posedge
reset is in the sensitivity list on the asynchronously reset-
table flop, but not on the synchronously resettable flop.
Thus, the asynchronously resettable flop immediately
responds to a rising edge on reset, but the synchronously
resettable flop responds to reset only on the rising edge of
the clock.

Because the modules have the same name, flopr, you
may include only one or the other in your design.

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity flopr is
port (clk,

reset: in STD_LOGIC;
d: in STD_LOGIC_VECTOR (3 downto 0);
q: out STD_LOGIC_VECTOR (3 downto 0));

end;

architecture asynchronous of flopr is
begin
process (clk, reset) begin
if reset � ‘1’ then
q �� “0000”;

elsif clk’ event and clk � ‘1’ then
q �� d;

end if;
end process;

end;

architecture synchronous of flopr is
begin
process (clk) begin
if clk’event and clk � ‘1’ then
if reset � ‘1’ then
q �� “0000”;

else q �� d;
end if;

end if;
end process;

end;

Multiple signals in a process sensitivity list are separated with a
comma. Notice that reset is in the sensitivity list on the asyn-
chronously resettable flop, but not on the synchronously reset-
table flop. Thus, the asynchronously resettable flop immediately
responds to a rising edge on reset, but the synchronously reset-
table flop responds to reset only on the rising edge of the clock.

Recall that the state of a flop is initialized to ‘u’ at
startup during VHDL simulation.

As mentioned earlier, the name of the architecture
(asynchronous or synchronous, in this example) is ignored by
the VHDL tools but may be helpful to the human reading the
code. Because both architectures describe the entity flopr,
you may include only one or the other in your design.

HDL Example 4.19 RESETTABLE REGISTER
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4.4 Sequential Logic 193

4 . 4 . 3 Enabled Registers

Enabled registers respond to the clock only when the enable is asserted.
HDL Example 4.20 shows an asynchronously resettable enabled register
that retains its old value if both reset and en are FALSE.

R

q[3:0]d[3:0]

reset

clk
[3:0]

Q[3:0]
[3:0]

D[3:0]

(a)

q[3:0]d[3:0]

reset

clk
[3:0]

Q[3:0]
[3:0]

D[3:0]
R

(b)

Figure 4.17 flopr synthesized circuit (a) asynchronous reset, (b) synchronous reset

Verilog

module flopenr (input clk,
input reset,
input en,
input [3:0] d,
output reg [3:0] q);

// asynchronous reset
always @ (posedge clk, posedge reset)
if (reset) q �� 4’b0;
else if (en) q �� d;

endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity flopenr is
port (clk,

reset,
en: in  STD_LOGIC;
d: in STD_LOGIC_VECTOR (3 downto 0);
q: out STD_LOGIC_VECTOR (3 downto 0));

end;

architecture asynchronous of flopenr is
— — asynchronous reset
begin
process (clk, reset) begin
if reset � ‘1’ then
q �� “0000”;

elsif clk’event and clk � ‘1’ then
if en � ‘1’ then
q �� d;

end if;
end if;

end process;
end;

HDL Example 4.20 RESETTABLE ENABLED REGISTER
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4 . 4 . 4 Multiple Registers

A single always/process statement can be used to describe multiple
pieces of hardware. For example, consider the synchronizer from Section
3.5.5 made of two back-to-back flip-flops, as shown in Figure 4.19.
HDL Example 4.21 describes the synchronizer. On the rising edge of
clk, d is copied to n1. At the same time, n1 is copied to q.

194 CHAPTER FOUR Hardware Description Languages

R

q[3:0]d[3:0]
en

reset

clk
[3:0][3:0]

Q[3:0]D[3:0]
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Figure 4.18 flopenr synthesized circuit

CLK CLK

D
N1

Q

Figure 4.19 Synchronizer circuit

Verilog

module sync (input clk,
input d,
output reg q);

reg n1;

always @ (posedge clk)
begin
n1 �� d;
q �� n1;

end
endmodule

n1 must be declared as a reg because it is an internal signal
used on the left hand side of �� in an always statement.
Also notice that the begin/end construct is necessary because
multiple statements appear in the always statement. This is
analogous to { } in C or Java. The begin/end was not
needed in the flopr example because if/else counts as a
single statement.

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity sync is
port (clk: in  STD_LOGIC;

d: in  STD_LOGIC;
q: out STD_LOGIC);

end;

architecture good of sync is
signal n1: STD_LOGIC;

begin
process (clk) begin
if clk’event and clk � ‘1’ then

n1 �� d;
q �� n1;

end if;
end process;

end;

n1 must be declared as a signal because it is an internal
signal used in the module.

HDL Example 4.21 SYNCHRONIZER

n1 q

qd
clk

QD QD

Figure 4.20 sync synthesized circuit
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4.5 More Combinational Logic 195

4 . 4 . 5 Latches

Recall from Section 3.2.2 that a D latch is transparent when the clock is
HIGH, allowing data to flow from input to output. The latch becomes
opaque when the clock is LOW, retaining its old state. HDL Example
4.22 shows the idiom for a D latch.

Not all synthesis tools support latches well. Unless you know that your
tool does support latches and you have a good reason to use them, avoid
them and use edge-triggered flip-flops instead. Furthermore, take care that
your HDL does not imply any unintended latches, something that is easy to
do if you aren’t attentive. Many synthesis tools warn you when a latch is
created; if you didn’t expect one, track down the bug in your HDL.

4 . 5 MORE COMBINATIONAL LOGIC

In Section 4.2, we used assignment statements to describe combinational
logic behaviorally. Verilog always statements and VHDL process state-
ments are used to describe sequential circuits, because they remember the
old state when no new state is prescribed. However, always/process

lat

q[3:0]

q[3:0]
d[3:0]

clk

[3:0]
D[3:0] [3:0]

Q [3:0]
C

Figure 4.21 latch synthesized circuit

Verilog

module latch (input clk,
input [3:0] d,
output reg [3:0] q);

always @ (clk, d)
if (clk) q �� d;

endmodule

The sensitivity list contains both clk and d, so the always
statement evaluates any time clk or d changes. If clk is
HIGH, d flows through to q.

q must be declared to be a reg because it appears on the
left hand side of �� in an always statement. This does not
always mean that q is the output of a register.

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity latch is
port (clk: in STD_LOGIC;

d: in STD_LOGIC_VECTOR (3 downto 0);
q: out STD_LOGIC_VECTOR (3 downto 0));

end;

architecture synth of latch is
begin
process (clk, d) begin
if clk � ‘1’ then q �� d;
end if;

end process;
end;

The sensitivity list contains both clk and d, so the process
evaluates anytime clk or d changes. If clk is HIGH, d flows
through to q.

HDL Example 4.22 D LATCH
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statements can also be used to describe combinational logic behaviorally
if the sensitivity list is written to respond to changes in all of the inputs
and the body prescribes the output value for every possible input combi-
nation. HDL Example 4.23 uses always/process statements to describe
a bank of four inverters (see Figure 4.3 for the synthesized circuit).

HDLs support blocking and nonblocking assignments in an
always/process statement. A group of blocking assignments are evalu-
ated in the order in which they appear in the code, just as one would
expect in a standard programming language. A group of nonblocking
assignments are evaluated concurrently; all of the statements are evalu-
ated before any of the signals on the left hand sides are updated.

HDL Example 4.24 defines a full adder using intermediate signals
p and g to compute s and cout. It produces the same circuit from
Figure 4.8, but uses always/process statements in place of assignment
statements.

These two examples are poor applications of always/process state-
ments for modeling combinational logic because they require more lines
than the equivalent approach with assignment statements from Section
4.2.1. Moreover, they pose the risk of inadvertently implying sequential
logic if the inputs are left out of the sensitivity list. However, case and
if statements are convenient for modeling more complicated combina-
tional logic. case and if statements must appear within always/process
statements and are examined in the next sections.

196 CHAPTER FOUR Hardware Description Languages

Verilog

module inv (input [3:0] a,
output reg [3:0] y);

always @ (*)
y � ~a;

endmodule

always @ (*) reevaluates the statements inside the always
statement any time any of the signals on the right hand side
of �� or � inside the always statement change. Thus, @ (*)
is a safe way to model combinational logic. In this particular
example, @ (a) would also have sufficed.

The � in the always statement is called a blocking assign-
ment, in contrast to the �� nonblocking assignment. In
Verilog, it is good practice to use blocking assignments for
combinational logic and nonblocking assignments for sequen-
tial logic. This will be discussed further in Section 4.5.4.

Note that y must be declared as reg because it appears
on the left hand side of a �� or � sign in an always state-
ment. Nevertheless, y is the output of combinational logic,
not a register.

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity inv is
port (a: in STD_LOGIC_VECTOR (3 downto 0);

y: out STD_LOGIC_VECTOR (3 downto 0));
end;

architecture proc of inv is
begin
process (a) begin
y �� not a;

end process;
end;

The begin and end process statements are required in VHDL
even though the process contains only one assignment.

HDL Example 4.23 INVERTER USING always/process
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4.5 More Combinational Logic 197

Verilog

In a Verilog always statement, � indicates a blocking assign-
ment and �� indicates a nonblocking assignment (also called
a concurrent assignment).

Do not confuse either type with continuous assignment
using the assign statement. assign statements must be used
outside always statements and are also evaluated concurrently.

VHDL

In a VHDL process statement, : � indicates a blocking
assignment and �� indicates a nonblocking assignment (also
called a concurrent assignment). This is the first section 
where : � is introduced.

Nonblocking assignments are made to outputs and to
signals. Blocking assignments are made to variables, which
are declared in process statements (see HDL Example
4.24).

�� can also appear outside process statements, where it
is also evaluated concurrently.

Verilog

module fulladder (input a, b, cin,
output reg s, cout);

reg p, g;

always @ (*)
begin
p � a � b; // blocking
g � a & b; // blocking

s � p � cin; // blocking
cout � g | (p & cin); // blocking

end
endmodule

In this case, an @ (a, b, cin) would have been equivalent to
@ (*). However, @ (*) is better because it avoids common
mistakes of missing signals in the stimulus list.

For reasons that will be discussed in Section 4.5.4, it is
best to use blocking assignments for combinational logic.
This example uses blocking assignments, first computing
p, then g, then s, and finally cout.

Because p and g appear on the left hand side of an
assignment in an always statement, they must be declared to
be reg.

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity fulladder is
port (a, b, cin: in STD_LOGIC;

s, cout: out STD_LOGIC);
end;

architecture synth of fulladder is
begin
process (a, b, cin)
variable p, g: STD_LOGIC;

begin
p :� a xor b; — — blocking
g :� a and b; — — blocking

s �� p xor cin;
cout �� g or (p and cin);

end process;
end;

The process sensitivity list must include a, b, and cin because
combinational logic should respond to changes of any input.

For reasons that will be discussed in Section 4.5.4, it is
best to use blocking assignments for intermediate variables in
combinational logic. This example uses blocking assignments
for p and g so that they get their new values before being
used to compute s and cout that depend on them.

Because p and g appear on the left hand side of a
blocking assignment (:�) in a process statement, they must
be declared to be variable rather than signal. The variable
declaration appears before the begin in the process where
the variable is used.

HDL Example 4.24 FULL ADDER USING always/process
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4 . 5 .1 Case Statements

A better application of using the always/process statement for combina-
tional logic is a seven-segment display decoder that takes advantage of the
case statement that must appear inside an always/process statement.

As you might have noticed in Example 2.10, the design process for
large blocks of combinational logic is tedious and prone to error. HDLs
offer a great improvement, allowing you to specify the function at a
higher level of abstraction, and then automatically synthesize the func-
tion into gates. HDL Example 4.25 uses case statements to describe a
seven-segment display decoder based on its truth table. (See Example
2.10 for a description of the seven-segment display decoder.) The case

198 CHAPTER FOUR Hardware Description Languages

Verilog

module sevenseg (input [3:0] data,
output reg [6:0] segments);

always @ (*)
case (data)
// abc_defg
0: segments � 7’b111_1110;
1: segments � 7’b011_0000;
2: segments � 7’b110_1101;
3: segments � 7’b111_1001;
4: segments � 7’b011_0011;
5: segments � 7’b101_1011;
6: segments � 7’b101_1111;
7: segments � 7’b111_0000;
8: segments � 7’b111_1111;
9: segments � 7’b111_1011;
default: segments � 7’b000_0000;

endcase
endmodule

The case statement checks the value of data. When data is 0,
the statement performs the action after the colon, setting
segments to 1111110. The case statement similarly checks
other data values up to 9 (note the use of the default base,
base 10).

The default clause is a convenient way to define the
output for all cases not explicitly listed, guaranteeing combi-
national logic.

In Verilog, case statements must appear inside always
statements.

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity seven_seg_decoder is
port (data: in STD_LOGIC_VECTOR (3 downto 0);

segments: out STD_LOGIC_VECTOR (6 downto 0));
end;

architecture synth of seven_seg_decoder is
begin
process (data) begin
case data is
— — abcdefg
when X“0” �� segments �� “1111110”;
when X“1” �� segments �� “0110000”;
when X“2” �� segments �� “1101101”;
when X“3” �� segments �� “1111001”;
when X“4” �� segments �� “0110011”;
when X“5” �� segments �� “1011011”;
when X“6” �� segments �� “1011111”;
when X“7” �� segments �� “1110000”;
when X“8” �� segments �� “1111111”;
when X“9” �� segments �� “1111011”;
when others �� segments �� “0000000”;

end case;
end process;

end;

The case statement checks the value of data. When data is 0,
the statement performs the action after the ��, setting
segments to 1111110. The case statement similarly checks
other data values up to 9 (note the use of X for hexadecimal
numbers). The others clause is a convenient way to define
the output for all cases not explicitly listed, guaranteeing
combinational logic.

Unlike Verilog, VHDL supports selected signal assign-
ment statements (see HDL Example 4.6), which are much like
case statements but can appear outside processes. Thus, there
is less reason to use processes to describe combinational logic.

HDL Example 4.25 SEVEN-SEGMENT DISPLAY DECODER
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4.5 More Combinational Logic 199

statement performs different actions depending on the value of its
input. A case statement implies combinational logic if all possible input
combinations are defined; otherwise it implies sequential logic, because
the output will keep its old value in the undefined cases.

Synplify Pro synthesizes the seven-segment display decoder into a
read-only memory (ROM) containing the 7 outputs for each of the 16
possible inputs. ROMs are discussed further in Section 5.5.6.

If the default or others clause were left out of the case statement,
the decoder would have remembered its previous output anytime data
were in the range of 10–15. This is strange behavior for hardware.

Ordinary decoders are also commonly written with case statements.
HDL Example 4.26 describes a 3:8 decoder.

4 . 5 . 2 If Statements

always/process statements may also contain if statements. The if
statement may be followed by an else statement. If all possible input

rom

segments_1[6:0]

segments[6:0]data[3:0]
[6:0]

DOUT[6:0]
[3:0]

A[3:0]

Figure 4.22 sevenseg synthesized circuit

Verilog

module decoder3_8 (input [2:0] a,
output reg [7:0] y);

always @ (*)
case (a)
3’b000: y � 8’b00000001;
3’b001: y � 8’b00000010;
3’b010: y � 8’b00000100;
3’b011: y � 8’b00001000;
3’b100: y � 8’b00010000;
3’b101: y � 8’b00100000;
3’b110: y � 8’b01000000;
3’b111: y � 8’b10000000;

endcase
endmodule

No default statement is needed because all cases are covered.

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity decoder3_8 is
port (a: in STD_LOGIC_VECTOR (2 downto 0);

y: out STD_LOGIC_VECTOR (7 downto 0));
end;

architecture synth of decoder3_8 is
begin
process (a) begin
case a is
when “000” �� y �� “00000001”;
when “001” �� y �� “00000010”;
when “010” �� y �� “00000100”;
when “011” �� y �� “00001000”;
when “100” �� y �� “00010000”;
when “101” �� y �� “00100000”;
when “110” �� y �� “01000000”;
when “111” �� y �� “10000000”;

end case;
end process;

end;

No others clause is needed because all cases are covered.

HDL Example 4.26 3:8 DECODER
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Figure 4.23 decoder3_8 synthesized circuit
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combinations are handled, the statement implies combinational logic;
otherwise, it produces sequential logic (like the latch in Section 4.4.5).

HDL Example 4.27 uses if statements to describe a priority circuit,
defined in Section 2.4. Recall that an N-input priority circuit sets the
output TRUE that corresponds to the most significant input that is
TRUE.

4 . 5 . 3 Verilog casez*

(This section may be skipped by VHDL users.) Verilog also provides the
casez statement to describe truth tables with don’t cares (indicated with
? in the casez statement). HDL Example 4.28 shows how to describe a
priority circuit with casez.

Synplify Pro synthesizes a slightly different circuit for this module,
shown in Figure 4.25, than it did for the priority circuit in Figure 4.24.
However, the circuits are logically equivalent.

4 . 5 . 4 Blocking and Nonblocking Assignments

The guidelines on page 203 explain when and how to use each type of
assignment. If these guidelines are not followed, it is possible to write

Verilog

module priority (input [3:0] a,
output reg [3:0] y);

always @ (*)
if (a[3]) y � 4’b1000;
else if (a[2]) y � 4’b0100;
else if (a[1]) y � 4’b0010;
else if (a[0]) y � 4’b0001;
else y � 4’b0000;

endmodule

In Verilog, if statements must appear inside of always
statements.

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity priority is
port (a: in STD_LOGIC_VECTOR (3 downto 0);

y: out STD_LOGIC_VECTOR (3 downto 0));
end;

architecture synth of priority is
begin
process (a) begin
if a(3) � ‘1’ then y �� “1000”;
elsif a(2) � ‘1’ then y �� “0100”;
elsif a(1) � ‘1’ then y �� “0010”;
elsif a(0) � ‘1’ then y �� “0001”;
else y �� “0000”;
end if;

end process;
end;

Unlike Verilog, VHDL supports conditional signal assign-
ment statements (see HDL Example 4.6), which are much
like if statements but can appear outside processes. Thus,
there is less reason to use processes to describe combina-
tional logic. (Figure follows on next page.)

HDL Example 4.27 PRIORITY CIRCUIT
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code that appears to work in simulation but synthesizes to incorrect
hardware. The optional remainder of this section explains the principles
behind the guidelines.

Combinational Logic*

The full adder from HDL Example 4.24 is correctly modeled using
blocking assignments. This section explores how it operates and how it
would differ if nonblocking assignments had been used.

Imagine that a, b, and cin are all initially 0. p, g, s, and cout are
thus 0 as well. At some time, a changes to 1, triggering the
always/process statement. The four blocking assignments evaluate in

202 CHAPTER FOUR Hardware Description Languages

module priority_casez(input [3:0] a,
output reg [3:0] y);

always @ (*)
casez (a)
4’b1???: y � 4’b1000;
4’b01??: y � 4’b0100;
4’b001?: y � 4’b0010;
4’b0001: y � 4’b0001;
default: y � 4’b0000;

endcase
endmodule

HDL Example 4.28 PRIORITY CIRCUIT USING casez

y_1[2]

un13_y

un21_y

y_1[1]

y_1[0]

y[3:0]

a[3:0]
[3:0]

[3]

[2:0]

[2]
[2]

[3]

[2]

[3]

[1]

[2]

[3]

[1]
[1]

[0]
[0]

Figure 4.24 priority
synthesized circuit

(See figure 4.25.)
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Figure 4.25 priority_casez
synthesized circuit

Verilog

1. Use always @ (posedge clk) and nonblocking assignments
to model synchronous sequential logic.

always @ (posedge clk)
begin
nl �� d; // nonblocking
q �� nl; // nonblocking

end

2. Use continuous assignments to model simple combina-
tional logic.

assign y � s ? d1 : d0;

3. Use always @ (*) and blocking assignments to model
more complicated combinational logic where the always
statement is helpful.

always @ (*)
begin
p � a � b; // blocking
g � a & b; // blocking
s � p � cin;
cout � g | (p & cin);

end

4. Do not make assignments to the same signal in more
than one always statement or continuous assignment
statement.

VHDL

1. Use process (clk) and nonblocking assignments to model
synchronous sequential logic.

process (clk) begin
if clk’event and clk � ‘1’ then
nl �� d; — — nonblocking
q �� nl; — — nonblocking

end if;
end process;

2. Use concurrent assignments outside process statements to
model simple combinational logic.

y �� d0 when s � ‘0’ else d1;

3. Use process (in1, in2, ... ) to model more complicated
combinational logic where the process is helpful. Use
blocking assignments for internal variables.

process (a, b, cin)
variable p, g: STD_LOGIC;

begin
p :� a xor b; —— blocking
g :� a and b; —— blocking
s �� p xor cin;
cout �� g or (p and cin);

end process;

4. Do not make assignments to the same variable in more
than one process or concurrent assignment statement.

BLOCKING AND NONBLOCKING ASSIGNMENT GUIDELINES
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the order shown here. (In the VHDL code, s and cout are assigned con-
currently.) Note that p and g get their new values before s and cout are
computed because of the blocking assignments. This is important because
we want to compute s and cout using the new values of p and g.

1. p 1 � 0 � 1

2. g 1 • 0 � 0

3. s 1 � 0 � 1

4. cout 0 � 1 • 0 � 0

In contrast, HDL Example 4.29 illustrates the use of nonblocking
assignments.

Now consider the same case of a rising from 0 to 1 while b and cin
are 0. The four nonblocking assignments evaluate concurrently:

p 1 � 0�1  g 1• 0 �0  s 0 � 0� 0  cout 0�0 • 0 � 0

Observe that s is computed concurrently with p and hence uses the
old value of p, not the new value. Therefore, s remains 0 rather than

;;;;

;

;

;

;

204 CHAPTER FOUR Hardware Description Languages

Verilog

// nonblocking assignments (not recommended)
module fulladder (input a, b, cin,

output reg s, cout);
reg p, g;

always @ (*)
begin
p �� a � b; // nonblocking
g �� a & b; // nonblocking

s �� p � cin;
cout �� g | (p & cin);

end
endmodule

Because p and g appear on the left hand side of an assignment
in an always statement, they must be declared to be reg.

VHDL

— — nonblocking assignments (not recommended)
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity fulladder is
port (a, b, cin: in  STD_LOGIC;

s, cout:   out STD_LOGIC);
end;

architecture nonblocking of fulladder is
signal p, g: STD_LOGIC;

begin
process (a, b, cin, p, g) begin
p �� a xor b; — — nonblocking
g �� a and b; — — nonblocking

s �� p xor cin;
cout �� g or (p and cin);

end process;
end;

Because p and g appear on the left hand side of a nonblock-
ing assignment in a process statement, they must be declared
to be signal rather than variable. The signal declaration
appears before the begin in the architecture, not the
process.

HDL Example 4.29 FULL ADDER USING NONBLOCKING ASSIGNMENTS
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4.5 More Combinational Logic 205

becoming 1. However, p does change from 0 to 1. This change triggers
the always/process statement to evaluate a second time, as follows:

p 1� 0 �1  g 1• 0 � 0  s 1 � 0 �1  cout 0 �1• 0 � 0

This time, p is already 1, so s correctly changes to 1. The nonblocking
assignments eventually reach the right answer, but the always/process
statement had to evaluate twice. This makes simulation slower, though it
synthesizes to the same hardware.

Another drawback of nonblocking assignments in modeling combi-
national logic is that the HDL will produce the wrong result if you
forget to include the intermediate variables in the sensitivity list.

;;;;

Worse yet, some synthesis tools will synthesize the correct hardware
even when a faulty sensitivity list causes incorrect simulation. This leads
to a mismatch between the simulation results and what the hardware
actually does.

Sequential Logic*

The synchronizer from HDL Example 4.21 is correctly modeled using non-
blocking assignments. On the rising edge of the clock, d is copied to n1 at
the same time that n1 is copied to q, so the code properly describes two
registers. For example, suppose initially that d � 0, n1 � 1, and q � 0.
On the rising edge of the clock, the following two assignments occur
concurrently, so that after the clock edge, n1 � 0 and q � 1.

nl d � 0 q n1 � 1

HDL Example 4.30 tries to describe the same module using blocking
assignments. On the rising edge of clk, d is copied to n1. Then this new
value of n1 is copied to q, resulting in d improperly appearing at both n1
and q. The assignments occur one after the other so that after the clock
edge, q � n1 � 0.

1. n1 d � 0

2. q n1 � 0;

;

;;

Verilog

If the sensitivity list of the always statement in HDL Example
4.29 were written as always @ (a, b, cin) rather than always
@ (*), then the statement would not reevaluate when p or g
changes. In the previous example, s would be incorrectly left
at 0, not 1.

VHDL

If the sensitivity list of the process statement in HDL
Example 4.29 were written as process (a, b, cin) rather
than process (a, b, cin, p, g), then the statement would not
reevaluate when p or g changes. In the previous example,
s would be incorrectly left at 0, not 1.
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Because n1 is invisible to the outside world and does not influence
the behavior of q, the synthesizer optimizes it away entirely, as shown in
Figure 4.26.

The moral of this illustration is to exclusively use nonblocking
assignment in always statements when modeling sequential logic. With
sufficient cleverness, such as reversing the orders of the assignments, you
could make blocking assignments work correctly, but blocking assign-
ments offer no advantages and only introduce the risk of unintended
behavior. Certain sequential circuits will not work with blocking assign-
ments no matter what the order.

4 . 6 FINITE STATE MACHINES

Recall that a finite state machine (FSM) consists of a state register and two
blocks of combinational logic to compute the next state and the output
given the current state and the input, as was shown in Figure 3.22. HDL
descriptions of state machines are correspondingly divided into three parts
to model the state register, the next state logic, and the output logic.

206 CHAPTER FOUR Hardware Description Languages

Verilog

// Bad implementation using blocking assignments

module syncbad (input clk,
input d,
output reg q);

reg n1;

always @ (posedge clk)
begin

n1 � d; // blocking
q � n1; // blocking

end
endmodule

VHDL

— — Bad implementation using blocking assignment

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity syncbad is
port (clk: in  STD_LOGIC;

d: in STD_LOGIC;
q: out STD_LOGIC);

end;

architecture bad of syncbad is
begin
process (clk)
variable n1: STD_LOGIC;

begin
if clk’event and clk � ‘1’ then
n1 :� d; — — blocking
q �� n1;

end if;
end process;

end;

HDL Example 4.30 BAD SYNCHRONIZER WITH BLOCKING ASSIGNMENTS

q

qd
clk

QD

Figure 4.26 syncbad synthesized circuit
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4.6 Finite State Machines 207

HDL Example 4.31 describes the divide-by-3 FSM from Section
3.4.2. It provides an asynchronous reset to initialize the FSM. The state
register uses the ordinary idiom for flip-flops. The next state and output
logic blocks are combinational.

The Synplify Pro Synthesis tool just produces a block diagram and
state transition diagram for state machines; it does not show the logic
gates or the inputs and outputs on the arcs and states. Therefore, be
careful that you have specified the FSM correctly in your HDL code. The
state transition diagram in Figure 4.27 for the divide-by-3 FSM is analo-
gous to the diagram in Figure 3.28(b). The double circle indicates that

Verilog

module divideby3FSM (input  clk,
input  reset,
output y);

reg [1:0] state, nextstate;

parameter S0 � 2�b00;
parameter S1 � 2�b01;
parameter S2 � 2�b10;

// state register
always @ (posedge clk, posedge reset)
if (reset) state �� S0;
else state �� nextstate;

// next state logic
always @ (*)
case (state)
S0: nextstate � S1;
S1: nextstate � S2;
S2: nextstate � S0;
default: nextstate � S0;

endcase

// output logic
assign y � (state �� S0);

endmodule

The parameter statement is used to define constants within a
module. Naming the states with parameters is not required,
but it makes changing state encodings much easier and
makes the code more readable.

Notice how a case statement is used to define the state
transition table. Because the next state logic should be com-
binational, a default is necessary even though the state 2�b11
should never arise.

The output, y, is 1 when the state is S0. The equality
comparison a �� b evaluates to 1 if a equals b and 0 oth-
erwise. The inequality comparison a !� b does the inverse,
evaluating to 1 if a does not equal b.

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity divideby3FSM is
port (clk, reset: in  STD_LOGIC;

y: out STD_LOGIC);
end;

architecture synth of divideby3FSM is
type statetype is (S0, S1, S2);
signal state, nextstate: statetype;

begin
— — state register
process (clk, reset) begin
if reset � ‘1’ then state �� S0;
elsif clk’event and clk � ‘1’ then
state �� nextstate;

end if;
end process;

— — next state logic
nextstate �� S1 when state � S0 else

S2 when state � S1 else
S0;

— — output logic
y �� ‘1’ when state � S0 else ‘0’;

end;

This example defines a new enumeration data type,
statetype, with three possibilities: S0, S1, and S2. state and
nextstate are statetype signals. By using an enumeration
instead of choosing the state encoding, VHDL frees the
synthesizer to explore various state encodings to choose the
best one.

The output, y, is 1 when the state is S0. The inequality-
comparison uses /�. To produce an output of 1 when the state
is anything but S0, change the comparison to state /� S0.

HDL Example 4.31 DIVIDE-BY-3 FINITE STATE MACHINE

Notice that the synthesis tool
uses a 3-bit encoding (Q[2:0])
instead of the 2-bit encoding
suggested in the Verilog code.
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S0 is the reset state. Gate-level implementations of the divide-by-3 FSM
were shown in Section 3.4.2.

If, for some reason, we had wanted the output to be HIGH in states
S0 and S1, the output logic would be modified as follows.

The next two examples describe the snail pattern recognizer FSM
from Section 3.4.3. The code shows how to use case and if state-
ments to handle next state and output logic that depend on the inputs
as well as the current state. We show both Moore and Mealy mod-
ules. In the Moore machine (HDL Example 4.32), the output depends
only on the current state, whereas in the Mealy machine (HDL
Example 4.33), the output logic depends on both the current state
and inputs.

208 CHAPTER FOUR Hardware Description Languages

S0

S1

S2

statemachine

state[2:0]

y[0]

reset
clk C

[2:0]
Q[2:0]R

Figure 4.27 divideby3fsm
synthesized circuit

Verilog

// Output Logic
assign y � (state �� S0 | state �� S1);

VHDL

— — output logic
y �� ‘1’ when (state � S0 or state � S1) else ‘0’;
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Verilog

module patternMoore (input  clk,
input  reset,
input  a,
output y);

reg [2:0] state, nextstate;

parameter S0 � 3�b000;
parameter S1 � 3�b001;
parameter S2 � 3�b010;
parameter S3 � 3�b011;
parameter S4 � 3�b100;

// state register
always @ (posedge clk, posedge reset)
if (reset) state �� S0;
else state �� nextstate;

// next state logic
always @ (*)
case (state)
S0: if (a) nextstate � S1;

else   nextstate � S0;
S1: if (a) nextstate � S2;

else   nextstate � S0;
S2: if (a) nextstate � S2;

else   nextstate � S3;
S3: if (a) nextstate � S4;

else   nextstate � S0;
S4: if (a) nextstate � S2;

else   nextstate � S0;
default: nextstate � S0;

endcase

// output logic
assign y � (state �� S4);

endmodule

Note how nonblocking assignments (��) are used in the
state register to describe sequential logic, whereas blocking
assignments (�) are used in the next state logic to describe
combinational logic.

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity patternMoore is
port (clk, reset: in STD_LOGIC;

a: in STD_LOGIC;
y: out STD_LOGIC);

end;

architecture synth of patternMoore is
type statetype is (S0, S1, S2, S3, S4);
signal state, nextstate: statetype;

begin
— — state register
process (clk, reset) begin
if reset � ‘1’ then state �� S0;
elsif clk’event and clk � ‘1’ then
state �� nextstate;

end if;
end process;

— — next state logic
process (state, a) begin
case state is
when S0 �� if a � ‘1’ then

nextstate �� S1;
else nextstate �� S0;
end if;

when S1 �� if a � ‘1’ then
nextstate �� S2;

else nextstate �� S0;
end if;

when S2 �� if a � ‘1’ then
nextstate �� S2;

else nextstate �� S3;
end if;

when S3 �� if a � ‘1’ then
nextstate �� S4;

else nextstate �� S0;
end if;

when S4 �� if a � ‘1’ then
nextstate �� S2;

else nextstate �� S0;
end if;

when others �� nextstate �� S0;
end case;

end process;

— — output logic
y �� ‘1’ when state � S4 else ‘0’;

end;

HDL Example 4.32 PATTERN RECOGNIZER MOORE FSM
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S4

statemachine

state[4:0]

y
[4]a

reset
clk

I[0]

[4:0]
Q[4:0]C

R

Figure 4.28 patternMoore synthesized circuit
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Figure 4.29 patternMealy synthesized circuit

Verilog

module patternMealy (input clk,
input reset,
input a,
output y);

reg [1:0] state, nextstate;

parameter S0 � 2�b00;
parameter S1 � 2�b01;
parameter S2 � 2�b10;
parameter S3 � 2�b11;

// state register
always @ (posedge clk, posedge reset)
if (reset) state �� S0;
else state �� nextstate;

// next state logic
always @ (*)
case (state)
S0: if (a) nextstate � S1;

else nextstate � S0;
S1: if (a) nextstate � S2;

else nextstate � S0;
S2: if (a) nextstate � S2;

else nextstate � S3;
S3: if (a) nextstate � S1;

else nextstate � S0;
default: nextstate � S0;

endcase

// output logic
assign y � (a & state �� S3);

endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity patternMealy is
port (clk, reset: in STD_LOGIC;

a: in STD_LOGIC;
y: out STD_LOGIC);

end;

architecture synth of patternMealy is
type statetype is (S0, S1, S2, S3);
signal state, nextstate: statetype;

begin
— — state register
process (clk, reset) begin
if reset � ‘1’ then state �� S0;
elsif clk’event and clk � ‘1’ then
state �� nextstate;

end if;
end process;

— — next state logic
process(state, a) begin
case state is
when S0 �� if a � ‘1’ then

nextstate �� S1;
else nextstate �� S0;

end if;
when S1 �� if a � ‘1’ then

nextstate �� S2;
else nextstate �� S0;

end if;
when S2 �� if a � ‘1’ then

nextstate �� S2;
else nextstate �� S3;

end if;
when S3 �� if a � ‘1’ then

nextstate �� S1;
else nextstate �� S0;

end if;
when others ��   nextstate �� S0;

end case;
end process;

— — output logic
y �� ‘1’ when (a � ‘1’ and state � S3) else ‘0’;

end;

HDL Example 4.33 PATTERN RECOGNIZER MEALY FSM
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4.7 Parameterized Modules 211

Verilog

module mux2
# (parameter width � 8)
(input [width�1:0] d0, d1,
input s,
output [width�1:0] y);

assign y � s ? d1 : d0;
endmodule

Verilog allows a # (parameter ... ) statement before the
inputs and outputs to define parameters. The parameter
statement includes a default value (8) of the parameter,
width. The number of bits in the inputs and outputs can
depend on this parameter.

module mux4_8 (input  [7:0] d0, d1, d2, d3,
input  [1:0] s,
output [7:0] y);

wire [7:0] low, hi;

mux2 lowmux (d0, d1, s[0], low);
mux2 himux (d2, d3, s[1], hi);
mux2 outmux (low, hi, s[1], y);

endmodule

The 8-bit 4:1 multiplexer instantiates three 2:1 multiplexers
using their default widths.

In contrast, a 12-bit 4:1 multiplexer, mux4_12, would
need to override the default width using #() before the
instance name, as shown below.

module mux4_12 (input  [11:0] d0, d1, d2, d3,
input  [1:0] s,
output [11:0] y);

wire [11:0] low, hi;

mux2 #(12) lowmux(d0, d1, s[0], low);
mux2 #(12) himux(d2, d3, s[1], hi);
mux2 #(12) outmux(low, hi, s[1], y);

endmodule

Do not confuse the use of the # sign indicating delays with
the use of # ( ... ) in defining and overriding parameters.

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity mux2 is
generic(width: integer :� 8);
port (d0,

d1: in  STD_LOGIC_VECTOR (width�1 downto 0);
s:  in STD_LOGIC;
y:  out STD_LOGIC_VECTOR (width�1 downto 0));

end;

architecture synth of mux2 is
begin
y �� d0 when s � ‘0’ else d1;

end;

The generic statement includes a default value (8) of width.
The value is an integer.
entity mux4_8 is
port (d0, d1, d2,

d3: in  STD_LOGIC_VECTOR (7 downto 0);
s:  in STD_LOGIC_VECTOR (1 downto 0);
y:  out STD_LOGIC_VECTOR (7 downto 0));

end;

architecture struct of mux4_8 is
component mux2
generic (width: integer);

port (d0,
d1: in  STD_LOGIC_VECTOR (width�1 downto 0) ;
s:  in STD_LOGIC;
y:  out STD_LOGIC_VECTOR (width�1 downto 0));

end component;
signal low, hi: STD_LOGIC_VECTOR(7 downto 0);

begin
lowmux: mux2 port map(d0, d1, s(0), low);
himux: mux2 port map(d2, d3, s(0), hi);
outmux: mux2 port map(low, hi, s(1), y);

end;

The 8-bit 4:1 multiplexer, mux4_8, instantiates three 2:1
multiplexers using their default widths.

In contrast, a 12-bit 4:1 multiplexer, mux4_12, would
need to override the default width using generic map, as
shown below.
lowmux: mux2 generic map (12)

port map (d0, d1, s(0), low);
himux:  mux2 generic map (12)

port map (d2, d3, s(0), hi);
outmux: mux2 generic map (12)

port map (low, hi, s(1), y);

HDL Example 4.34 PARAMETERIZED N-BIT MULTIPLEXERS

4 .7 PARAMETERIZED MODULES*

So far all of our modules have had fixed-width inputs and outputs. For
example, we had to define separate modules for 4- and 8-bit wide 2:1 mul-
tiplexers. HDLs permit variable bit widths using parameterized modules.
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HDL Example 4.34 declares a parameterized 2:1 multiplexer with a default
width of 8, then uses it to create 8- and 12-bit 4:1 multiplexers.

HDL Example 4.35 shows a decoder, which is an even better applica-
tion of parameterized modules. A large N:2N decoder is cumbersome to

212 CHAPTER FOUR Hardware Description Languages
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Figure 4.30 mux4_12 synthesized circuit

Verilog

module decoder # (parameter N � 3)
(input [N�1:0] a,
output reg [2**N�1:0] y);

always @ (*)
begin
y � 0;
y[a] � 1;

end
endmodule

2**N indicates 2N.

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;
use IEEE.STD_LOGIC_ARITH.all;

entity decoder is
generic (N: integer :� 3);
port (a: in STD_LOGIC_VECTOR (N�1 downto 0);

y: out STD_LOGIC_VECTOR (2**N�1 downto 0));
end;

architecture synth of decoder is
begin
process (a)
variable tmp: STD_LOGIC_VECTOR (2**N�1 downto 0);

begin
tmp :� CONV_STD_LOGIC_VECTOR(0, 2**N);
tmp (CONV_INTEGER(a)) :� ‘1’;
y �� tmp;

end process;
end;

2**N indicates 2N.
CONV_STD_LOGIC_VECTOR(0, 2**N) produce s a

STD_LOGIC_VECTOR of length 2N containing all 0’s. It requires
the STD_LOGIC_ARITH library. The function is useful in other
parameterized functions, such as resettable flip-flops that
need to be able to produce constants with a parameterized
number of bits. The bit index in VHDL must be an integer,
so the CONV_INTEGER function is used to convert a from a
STD_LOGIC_VECTOR to an integer.

HDL Example 4.35 PARAMETERIZED N:2N DECODER
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4.7 Parameterized Modules 213

specify with case statements, but easy using parameterized code that sim-
ply sets the appropriate output bit to 1. Specifically, the decoder uses
blocking assignments to set all the bits to 0, then changes the appropriate
bit to 1.

HDLs also provide generate statements to produce a variable
amount of hardware depending on the value of a parameter. generate
supports for loops and if statements to determine how many of what
types of hardware to produce. HDL Example 4.36 demonstrates how to
use generate statements to produce an N-input AND function from a
cascade of two-input AND gates.

Use generate statements with caution; it is easy to produce a large
amount of hardware unintentionally!

Verilog

module andN
# (parameter width � 8)
(input [width�1:0] a,
output y);

genvar i;
wire [width�1:1] x;

generate
for (i�1; i�width; i�i�1) begin:forloop
if (i �� 1)
assign x[1] � a[0] & a[1];

else
assign x[i] � a[i] & x[i�1];

end
endgenerate
assign y � x[width�1];

endmodule

The for statement loops through i � 1, 2, . . . , width�1 to
produce many consecutive AND gates. The begin in a
generate for loop must be followed by a : and an arbitrary
label (forloop, in this case).

Of course, writing assign y � &a would be much
easier!

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity andN is
generic (width: integer :� 8);
port (a: in STD_LOGIC_VECTOR (width�1 downto 0);

y: out STD_LOGIC);
end;

architecture synth of andN is
signal i: integer;
signal x: STD_LOGIC_VECTOR (width�1 downto 1);

begin
AllBits: for i in 1 to width�1 generate
LowBit: if i � 1 generate
A1: x(1) �� a(0) and a(1);

end generate;
OtherBits: if i /� 1 generate
Ai: x(i) �� a(i) and x(i�1);

end generate;
end generate;
y �� x(width�1);

end;

HDL Example 4.36 PARAMETERIZED N-INPUT AND GATE
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Figure 4.31 andN synthesized circuit
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4 . 8 TESTBENCHES

A testbench is an HDL module that is used to test another module, called
the device under test (DUT). The testbench contains statements to apply
inputs to the DUT and, ideally, to check that the correct outputs are pro-
duced. The input and desired output patterns are called test vectors.

Consider testing the sillyfunction module from Section 4.1.1 that
computes . This is a simple module, so we can
perform exhaustive testing by applying all eight possible test vectors.

HDL Example 4.37 demonstrates a simple testbench. It instantiates
the DUT, then applies the inputs. Blocking assignments and delays are
used to apply the inputs in the appropriate order. The user must view the
results of the simulation and verify by inspection that the correct outputs
are produced. Testbenches are simulated the same as other HDL modules.
However, they are not synthesizeable.

y� a b c � ab c� abc

214 CHAPTER FOUR Hardware Description Languages

Verilog

module testbench1 ();
reg a, b, c;
wire y;

// instantiate device under test
sillyfunction dut (a, b, c, y);

// apply inputs one at a time
initial begin
a � 0; b � 0; c � 0; #10;
c � 1; #10;
b � 1; c � 0; #10;
c � 1; #10;
a � 1; b � 0; c � 0; #10;
c � 1; #10;
b � 1; c � 0; #10;
c � 1; #10;

end
endmodule

The initial statement executes the statements in its body at
the start of simulation. In this case, it first applies the input
pattern 000 and waits for 10 time units. It then applies 001
and waits 10 more units, and so forth until all eight possible
inputs have been applied. initial statements should be used
only in testbenches for simulation, not in modules intended
to be synthesized into actual hardware. Hardware has no
way of magically executing a sequence of special steps when
it is first turned on.

Like signals in always statements, signals in initial
statements must be declared to be reg.

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity testbench1 is — — no inputs or outputs
end;

architecture sim of testbench1 is
component sillyfunction
port (a, b, c: in  STD_LOGIC;

y: out STD_LOGIC);
end component;
signal a, b, c, y: STD_LOGIC;

begin
— — instantiate device under test
dut: sillyfunction port map (a, b, c, y);

— — apply inputs one at a time
process begin
a �� ‘0’; b �� ‘0’; c �� ‘0’; wait for 10 ns;
c �� ‘1’; wait for 10 ns;
b �� ‘1’; c �� ‘0’; wait for 10 ns;
c �� ‘1’; wait for 10 ns;
a �� ‘1’; b �� ‘0’; c �� ‘0’; wait for 10 ns;
c �� ‘1’; wait for 10 ns;
b �� ‘1’; c �� ‘0’; wait for 10 ns;
c �� ‘1’; wait for 10 ns;
wait; — — wait forever

end process;
end;

The process statement first applies the input pattern 000 and
waits for 10 ns. It then applies 001 and waits 10 more ns,
and so forth until all eight possible inputs have been applied.

At the end, the process waits indefinitely; otherwise, the
process would begin again, repeatedly applying the pattern
of test vectors.

HDL Example 4.37 TESTBENCH

Some tools also call the
module to be tested the unit
under test (UUT).
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4.8 Testbenches 215

Checking for correct outputs is tedious and error-prone. Moreover,
determining the correct outputs is much easier when the design is fresh in
your mind; if you make minor changes and need to retest weeks later,
determining the correct outputs becomes a hassle. A much better approach
is to write a self-checking testbench, shown in HDL Example 4.38.

Writing code for each test vector also becomes tedious, especially for
modules that require a large number of vectors. An even better approach
is to place the test vectors in a separate file. The testbench simply reads
the test vectors from the file, applies the input test vector to the DUT,
waits, checks that the output values from the DUT match the output
vector, and repeats until reaching the end of the test vectors file.

Verilog

module testbench2 ();
reg a, b, c;
wire y;

// instantiate device under test
sillyfunction dut (a, b, c, y);

// apply inputs one at a time
// checking results
initial begin
a � 0; b � 0; c � 0; #10;
if (y !�� 1) $display(“000 failed.”);
c � 1; #10;
if (y !�� 0) $display(“001 failed.”);
b � 1; c � 0; #10;
if (y !�� 0) $display(“010 failed.”);
c � 1; #10;
if (y !�� 0) $display(“011 failed.”);
a � 1; b � 0; c � 0; #10;
if (y !�� 1) $display(“100 failed.”);
c � 1; #10;
if (y !�� 1) $display(“101 failed.”);
b � 1; c � 0; #10;
if (y !�� 0) $display(“110 failed.”);
c � 1; #10;
if (y !�� 0) $display(“111 failed.”);

end
endmodule

This module checks y against expectations after each input
test vector is applied. In Verilog, comparison using �� or !�

is effective between signals that do not take on the values of
x and z. Testbenches use the ��� and !�� operators for
comparisons of equality and inequality, respectively, because
these operators work correctly with operands that could be x
or z. It uses the $display system task to print a message on
the simulator console if an error occurs. $display is meaning-
ful only in simulation, not synthesis.

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity testbench2 is — — no inputs or outputs
end;

architecture sim of testbench2 is
component sillyfunction
port (a, b, c: in  STD_LOGIC;

y: out STD_LOGIC);
end component;
signal a, b, c, y: STD_LOGIC;

begin
— — instantiate device under test
dut: sillyfunction port map (a, b, c, y);

— — apply inputs one at a time
— — checking results
process begin
a �� ‘0’; b �� ‘0’; c �� ‘0’; wait for 10 ns;
assert y � ‘1’ report “000 failed.”;

c �� ‘1’; wait for 10 ns;
assert y � ‘0’ report “001 failed.”;

b �� ‘1’; c �� ‘0’; wait for 10 ns;
assert y � ‘0’ report “010 failed.”;

c �� ‘1’; wait for 10 ns;
assert y � ‘0’ report “011 failed.”;

a �� ‘1’; b �� ‘0’; c �� ‘0’; wait for 10 ns;
assert y � ‘1’ report “100 failed.”;

c �� ‘1’; wait for 10 ns;
assert y � ‘1’ report “101 failed.”;

b �� ‘1’; c �� ‘0’; wait for 10 ns;
assert y � ‘0’ report “110 failed.”;

c �� ‘1’; wait for 10 ns;
assert y � ‘0’ report “111 failed.”;

wait; — — wait forever
end process;

end;

The assert statement checks a condition and prints the message
given in the report clause if the condition is not satisfied. assert
is meaningful only in simulation, not in synthesis.

HDL Example 4.38 SELF-CHECKING TESTBENCH
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HDL Example 4.39 demonstrates such a testbench. The testbench gen-
erates a clock using an always/process statement with no stimulus list,
so that it is continuously reevaluated. At the beginning of the simulation, it
reads the test vectors from a text file and pulses reset for two cycles.
example.tv is a text file containing the inputs and expected output written
in binary:

000_1
001_0
010_0
011_0
100_1
101_1
110_0
111_0

216 CHAPTER FOUR Hardware Description Languages

Verilog

module testbench3 ();
reg clk, reset;
reg a, b, c, yexpected;
wire y;
reg [31:0] vectornum, errors;
reg [3:0] testvectors [10000:0];

// instantiate device under test
sillyfunction dut (a, b, c, y);

// generate clock
always
begin
clk � 1; #5; clk � 0; #5;

end

// at start of test, load vectors
// and pulse reset
initial
begin
$readmemb (“example.tv”, testvectors);
vectornum � 0; errors � 0;
reset � 1; #27; reset � 0;

end

// apply test vectors on rising edge of clk
always @ (posedge clk)
begin
#1; {a, b, c, yexpected} �

testvectors[vectornum];
end

// check results on falling edge of clk
always @ (negedge clk)
if (~reset) begin // skip during reset
if (y !�� yexpected) begin

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;
use STD.TEXTIO.all;

entity testbench3 is — — no inputs or outputs
end;

architecture sim of testbench3 is
component sillyfunction
port (a, b, c: in STD_LOGIC;

y: out STD_LOGIC);
end component;
signal a, b, c, y: STD_LOGIC;
signal clk, reset: STD_LOGIC;
signal yexpected:  STD_LOGIC;
constant MEMSIZE: integer :� 10000;
type tvarray is array (MEMSIZE downto 0) of
STD_LOGIC_VECTOR (3 downto 0);

signal testvectors: tvarray;
shared variable vectornum, errors: integer;

begin
— — instantiate device under test
dut: sillyfunction port map (a, b, c, y);

— — generate clock
process begin
clk �� ‘1’; wait for 5 ns;
clk �� ‘0’; wait for 5 ns;

end process;

— — at start of test, load vectors
— — and pulse reset
process is
file tv: TEXT;
variable i, j: integer;
variable L: line;
variable ch: character;

HDL Example 4.39 TESTBENCH WITH TEST VECTOR FILE
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4.8 Testbenches 217

$display (“Error: inputs � %b”, {a, b, c});
$display (“ outputs � %b (%b expected)”,

y, yexpected);
errors � errors � 1;

end
vectornum � vectornum � 1;
if (testvectors[vectornum] ��� 4’bx) begin
$display (“%d tests completed with %d errors”,

vectornum, errors);
$finish;

end
end

endmodule

$readmemb reads a file of binary numbers into the testvectors
array. $readmemh is similar but reads a file of hexadecimal
numbers.

The next block of code waits one time unit after the
rising edge of the clock (to avoid any confusion if clock and
data change simultaneously), then sets the three inputs and
the expected output based on the four bits in the current test
vector. The next block of code checks the output of the DUT
at the negative edge of the clock, after the inputs have had
time to propagate through the DUT to produce the output, y.
The testbench compares the generated output, y, with the
expected output, yexpected, and prints an error if they don’t
match. %b and %d indicate to print the values in binary and
decimal, respectively. For example, $display (“%b %b”, y,
yexpected); prints the two values, y and yexpected, in
binary. %h prints a value in hexadecimal.

This process repeats until there are no more valid test
vectors in the testvectors array. $finish terminates the
simulation.

Note that even though the Verilog module supports up
to 10,001 test vectors, it will terminate the simulation after
executing the eight vectors in the file.

begin
— — read file of test vectors
i :� 0;
FILE_OPEN (tv, “example.tv”, READ_MODE);
while not endfile (tv) loop
readline (tv, L);
for j in 0 to 3 loop
read (L, ch);
if (ch � ‘_’) then read (L, ch);
end if;
if (ch � ‘0’) then
testvectors (i) (j) �� ‘0’;

else testvectors (i) (j) �� ‘1’;
end if;

end loop;
i :� i � 1;

end loop;

vectornum :� 0; errors :� 0;
reset �� ‘1’; wait for 27 ns; reset �� ‘0’;
wait;

end process;

— — apply test vectors on rising edge of clk
process (clk) begin
if (clk’event and clk � ‘1’) then

a �� testvectors (vectornum) (0) after 1 ns;
b �� testvectors (vectornum) (1) after 1 ns;
c �� testvectors (vectornum) (2) after 1 ns;
yexpected �� testvectors (vectornum) (3)
after 1 ns;

end if;
end process;

— — check results on falling edge of clk
process (clk) begin
if (clk’event and clk � ‘0’ and reset � ‘0’) then
assert y � yexpected
report “Error: y � ” & STD_LOGIC’image(y);

if (y /� yexpected) then
errors :� errors � 1;

end if;
vectornum :� vectornum � 1;
if (is_x (testvectors(vectornum))) then
if (errors � 0) then
report “Just kidding — —” &

integer’image (vectornum) &
“tests completed successfully.”
severity failure;

else
report integer’image (vectornum) &

“tests completed, errors � ” &
integer’image (errors)
severity failure;

end if;
end if;

end if;
end process;

end;

The VHDL code is rather ungainly and uses file reading com-
mands beyond the scope of this chapter, but it gives the sense
of what a self-checking testbench looks like.
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218 CHAPTER FOUR Hardware Description Languages

New inputs are applied on the rising edge of the clock, and the output
is checked on the falling edge of the clock. This clock (and reset) would
also be provided to the DUT if sequential logic were being tested. Errors
are reported as they occur. At the end of the simulation, the testbench
prints the total number of test vectors applied and the number of errors
detected.

The testbench in HDL Example 4.39 is overkill for such a simple
circuit. However, it can easily be modified to test more complex circuits
by changing the example.tv file, instantiating the new DUT, and chang-
ing a few lines of code to set the inputs and check the outputs.

4 . 9 SUMMARY

Hardware description languages (HDLs) are extremely important tools
for modern digital designers. Once you have learned Verilog or VHDL,
you will be able to specify digital systems much faster than if you had to
draw the complete schematics. The debug cycle is also often much faster,
because modifications require code changes instead of tedious schematic
rewiring. However, the debug cycle can be much longer using HDLs if
you don’t have a good idea of the hardware your code implies.

HDLs are used for both simulation and synthesis. Logic simulation
is a powerful way to test a system on a computer before it is turned into
hardware. Simulators let you check the values of signals inside your sys-
tem that might be impossible to measure on a physical piece of hard-
ware. Logic synthesis converts the HDL code into digital logic circuits.

The most important thing to remember when you are writing HDL
code is that you are describing real hardware, not writing a computer
program. The most common beginner’s mistake is to write HDL code
without thinking about the hardware you intend to produce. If you
don’t know what hardware you are implying, you are almost certain not
to get what you want. Instead, begin by sketching a block diagram of
your system, identifying which portions are combinational logic, which
portions are sequential circuits or finite state machines, and so forth.
Then write HDL code for each portion, using the correct idioms to
imply the kind of hardware you need.
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Exercises

The following exercises may be done using your favorite HDL. If you have a simu-
lator available, test your design. Print the waveforms and explain how they prove
that it works. If you have a synthesizer available, synthesize your code. Print the
generated circuit diagram, and explain why it matches your expectations.

Exercise 4.1 Sketch a schematic of the circuit described by the following HDL
code. Simplify the schematic so that it shows a minimum number of gates.

Exercise 4.2 Sketch a schematic of the circuit described by the following HDL
code. Simplify the schematic so that it shows a minimum number of gates.

Exercise 4.3 Write an HDL module that computes a four-input XOR function.
The input is a3:0, and the output is y.

Verilog

module exercise1 (input a, b, c,
output y, z);

assign y � a & b & c | a & b & ~c | a & ~b & c;
assign z � a & b | ~a & ~b;

endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity exercise1 is
port (a, b, c: in STD_LOGIC;

y, z: out STD_LOGIC);
end;

architecture synth of exercisel is
begin
y �� (a and b and c) or (a and b and (not c)) or

(a and (not b) and c);
z �� (a and b) or ((not a) and (not b));

end;

Verilog

module exercise2 (input [3:0] a,
output reg [1:0] y);

always @ (*)
if (a[0]) y � 2’b11;
else if (a[1]) y � 2’b10;
else if (a[2]) y � 2’b01;
else if (a[3]) y � 2’b00;
else y � a[1:0];

endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity exercise2 is
port (a: in STD_LOGIC_VECTOR (3 downto 0);

y: out STD_LOGIC_VECTOR (1 downto 0));
end;

architecture synth of exercise2 is
begin
process (a) begin
if a(0) � ‘1’ then y �� “11”;
elsif a(1) � ‘1’ then y �� “10”;
elsif a(2) � ‘1’ then y �� “01”;
elsif a(3) � ‘1’ then y �� “00”;
else y �� a(1 downto 0);
end if;

end process;
end;
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Exercise 4.4 Write a self-checking testbench for Exercise 4.3. Create a test vector
file containing all 16 test cases. Simulate the circuit and show that it works. Intro-
duce an error in the test vector file and show that the testbench reports a mismatch.

Exercise 4.5 Write an HDL module called minority. It receives three inputs,
a, b, and c. It produces one output, y, that is TRUE if at least two of the inputs
are FALSE.

Exercise 4.6 Write an HDL module for a hexadecimal seven-segment display
decoder. The decoder should handle the digits A, B, C, D, E, and F as well as 0–9.

Exercise 4.7 Write a self-checking testbench for Exercise 4.6. Create a test vector file
containing all 16 test cases. Simulate the circuit and show that it works. Introduce an
error in the test vector file and show that the testbench reports a mismatch.

Exercise 4.8 Write an 8:1 multiplexer module called mux8 with inputs s2:0, d0,
d1, d2, d3, d4, d5, d6, d7, and output y.

Exercise 4.9 Write a structural module to compute the logic function,
, using multiplexer logic. Use the 8:1 multiplexer from

Exercise 4.8.

Exercise 4.10 Repeat Exercise 4.9 using a 4:1 multiplexer and as many NOT
gates as you need.

Exercise 4.11 Section 4.5.4 pointed out that a synchronizer could be correctly
described with blocking assignments if the assignments were given in the proper
order. Think of a simple sequential circuit that cannot be correctly described
with blocking assignments, regardless of order.

Exercise 4.12 Write an HDL module for an eight-input priority circuit.

Exercise 4.13 Write an HDL module for a 2:4 decoder.

Exercise 4.14 Write an HDL module for a 6:64 decoder using three instances of
the 2:4 decoders from Exercise 4.13 and a bunch of three-input AND gates.

Exercise 4.15 Write HDL modules that implement the Boolean equations from
Exercise 2.7.

Exercise 4.16 Write an HDL module that implements the circuit from
Exercise 2.18.

Exercise 4.17 Write an HDL module that implements the logic function from
Exercise 2.19. Pay careful attention to how you handle don’t cares.

y� ab�b c�a bc
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Exercise 4.18 Write an HDL module that implements the functions from
Exercise 2.24.

Exercise 4.19 Write an HDL module that implements the priority encoder from
Exercise 2.25.

Exercise 4.20 Write an HDL module that implements the binary-to-thermometer
code converter from Exercise 2.27.

Exercise 4.21 Write an HDL module implementing the days-in-month function
from Question 2.2.

Exercise 4.22 Sketch the state transition diagram for the FSM described by the
following HDL code.

Verilog

module fsm2 (input  clk, reset,
input  a, b,
output y);

reg [1:0] state, nextstate;

parameter S0 � 2’b00;
parameter S1 � 2’b01;
parameter S2 � 2’b10;
parameter S3 � 2’b11;

always @ (posedge clk, posedge reset)
if (reset) state �� S0;
else state �� nextstate;

always @ (*)
case (state)
S0: if (a � b) nextstate � S1;

else nextstate � S0;
S1: if (a & b) nextstate � S2;

else nextstate � S0;
S2: if (a | b) nextstate � S3;

else nextstate � S0;
S3: if (a | b) nextstate � S3;

else nextstate � S0;
endcase

assign y � (state �� S1) | (state �� S2);
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity fsm2 is
port (clk, reset: in  STD_LOGIC;

a, b: in  STD_LOGIC;
y: out STD_LOGIC);

end;

architecture synth of fsm2 is
type statetype is (S0, S1, S2, S3);
signal state, nextstate: statetype;

begin
process (clk, reset) begin
if reset � ‘1’ then state �� S0;
elsif clk’event and clk � ‘1’ then
state �� nextstate;

end if;
end process;

process (state, a, b) begin
case state is
when S0 �� if (a xor b) � ‘1’ then

nextstate �� S1;
else nextstate �� S0;
end if;

when S1 �� if (a and b) � ‘1’ then
nextstate �� S2;

else nextstate �� S0;
end if;

when S2 �� if (a or b) � ‘1’ then
nextstate �� S3;

else nextstate �� S0;
end if;

when S3 �� if (a or b) � ‘1’ then
nextstate �� S3;

else nextstate �� S0;
end if;

end case;
end process;

y �� ‘1’ when ((state � S1) or (state � S2))
else ‘0’;

end;
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Exercise 4.23 Sketch the state transition diagram for the FSM described by the
following HDL code. An FSM of this nature is used in a branch predictor on
some microprocessors.

Verilog

module fsm1 (input clk, reset,
input taken, back,
output predicttaken);

reg [4:0] state, nextstate;

parameter S0 � 5’b00001;
parameter S1 � 5’b00010;
parameter S2 � 5’b00100;
parameter S3 � 5’b01000;
parameter S4 � 5’b10000;

always @ (posedge clk, posedge reset)
if (reset) state �� S2;
else state �� nextstate;

always @ (*)
case (state)
S0: if (taken) nextstate � S1;

else nextstate � S0;
S1: if (taken) nextstate � S2;

else nextstate � S0;
S2: if (taken) nextstate � S3;

else nextstate � S1;
S3: if (taken) nextstate � S4;

else nextstate � S2;
S4: if (taken) nextstate � S4;

else nextstate � S3;
default: nextstate � S2;

endcase

assign predicttaken � (state �� S4) | |
(state �� S3) | |
(state �� S2 && back);

endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity fsm1 is
port (clk, reset: in STD_LOGIC;

taken, back: in STD_LOGIC;
predicttaken: out STD_LOGIC);

end;

architecture synth of fsm1 is
type statetype is (S0, S1, S2, S3, S4);
signal state, nextstate: statetype;

begin
process (clk, reset) begin
if reset � ‘1’ then state �� S2;
elsif clk’event and clk � ‘1’ then
state �� nextstate;

end if;
end process;

process (state, taken) begin
case state is
when S0 �� if taken � ‘1’ then

nextstate �� S1;
else nextstate �� S0;
end if;

when S1 �� if taken � ‘1’ then
nextstate �� S2;

else nextstate �� S0;
end if;

when S2 �� if taken � ‘1’ then
nextstate �� S3;

else nextstate �� S1;
end if;

when S3 �� if taken � ‘1’ then
nextstate �� S4;

else nextstate �� S2;
end if;

when S4 �� if taken � ‘1’ then
nextstate �� S4;

else nextstate �� S3;
end if;

when others �� nextstate �� S2;
end case;

end process;

— — output logic
predicttaken �� ‘1’ when

((state � S4) or (state � S3) or
(state � S2 and back � ‘1’))

else ‘0’;
end;
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Exercise 4.24 Write an HDL module for an SR latch.

Exercise 4.25 Write an HDL module for a JK flip-flop. The flip-flop has inputs,
clk, J, and K, and output Q. On the rising edge of the clock, Q keeps its old
value if J � K � 0. It sets Q to 1 if J � 1, resets Q to 0 if K � 1, and inverts Q if
J � K � 1.

Exercise 4.26 Write an HDL module for the latch from Figure 3.18. Use one
assignment statement for each gate. Specify delays of 1 unit or 1 ns to each gate.
Simulate the latch and show that it operates correctly. Then increase the inverter
delay. How long does the delay have to be before a race condition causes the
latch to malfunction?

Exercise 4.27 Write an HDL module for the traffic light controller from
Section 3.4.1.

Exercise 4.28 Write three HDL modules for the factored parade mode traffic
light controller from Example 3.8. The modules should be called controller,
mode, and lights, and they should have the inputs and outputs shown in
Figure 3.33(b).

Exercise 4.29 Write an HDL module describing the circuit in Figure 3.40.

Exercise 4.30 Write an HDL module for the FSM with the state transition
diagram given in Figure 3.65 from Exercise 3.19.

Exercise 4.31 Write an HDL module for the FSM with the state transition
diagram given in Figure 3.66 from Exercise 3.20.

Exercise 4.32 Write an HDL module for the improved traffic light controller
from Exercise 3.21.

Exercise 4.33 Write an HDL module for the daughter snail from Exercise 3.22.

Exercise 4.34 Write an HDL module for the soda machine dispenser from
Exercise 3.23.

Exercise 4.35 Write an HDL module for the Gray code counter from
Exercise 3.24.

Exercise 4.36 Write an HDL module for the UP/DOWN Gray code counter
from Exercise 3.25.

Exercise 4.37 Write an HDL module for the FSM from Exercise 3.26.
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Exercise 4.38 Write an HDL module for the FSM from Exercise 3.27.

Exercise 4.39 Write an HDL module for the serial two’s complementer from
Question 3.2.

Exercise 4.40 Write an HDL module for the circuit in Exercise 3.28.

Exercise 4.41 Write an HDL module for the circuit in Exercise 3.29.

Exercise 4.42 Write an HDL module for the circuit in Exercise 3.30.

Exercise 4.43 Write an HDL module for the circuit in Exercise 3.31. You may
use the full adder from Section 4.2.5.

Verilog Exercises

The following exercises are specific to Verilog.

Exercise 4.44 What does it mean for a signal to be declared reg in Verilog?

Exercise 4.45 Rewrite the syncbad module from HDL Example 4.30. Use 
nonblocking assignments, but change the code to produce a correct 
synchronizer with two flip-flops.

Exercise 4.46 Consider the following two Verilog modules. Do they have the
same function? Sketch the hardware each one implies.

module code1 (input clk, a, b, c,
output reg y);

reg x;

always @ (posedge clk) begin
x �� a & b;
y �� x | c;

end
endmodule

module code2 (input a, b, c, clk,
output reg y);

reg x;

always @ (posedge clk) begin
y �� x | c;
x �� a & b;

end
endmodule

Exercise 4.47 Repeat Exercise 4.46 if the �� is replaced by � in every assignment.
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Exercise 4.48 The following Verilog modules show errors that the authors have
seen students make in the laboratory. Explain the error in each module and show
how to fix it.

(a) module latch (input clk,
input [3:0] d,
output reg [3:0] q);

always @ (clk)
if (clk) q �� d;

endmodule

(b) module gates (input [3:0] a, b,
output reg [3:0] y1, y2, y3, y4, y5);

always @ (a)
begin

y1 � a & b;
y2 � a | b;
y3 � a � b;
y4 � ~(a & b);
y5 � ~(a | b);

end
endmodule

(c) module mux2 (input [3:0] d0, d1,
input s,
output reg [3:0] y);

always @ (posedge s)
if (s) y �� d1;
else y �� d0;

endmodule

(d) module twoflops (input clk,
input d0, d1,
output reg q0, q1);

always @ (posedge clk)
q1 � d1;
q0 � d0;

endmodule
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(e) module FSM (input clk,
input a,
output reg out1, out2);

reg state;

// next state logic and register (sequential)
always @ (posedge clk)

if (state �� 0) begin
if (a)  state �� 1;

end else begin
if (~a) state �� 0;

end

always @ (*) // output logic (combinational)
if (state �� 0) out1 � 1;
else out2 � 1;

endmodule

(f) module priority (input [3:0] a,
output reg [3:0] y);

always @ (*)
if (a[3]) y � 4’b1000;
else if (a[2]) y � 4’b0100;
else if (a[1]) y � 4�b0010;
else if (a[0]) y � 4�b0001;

endmodule

(g) module divideby3FSM (input clk,
input reset,
output out);

reg [1:0] state, nextstate;

parameter S0 � 2�b00;
parameter S1 � 2�b01;
parameter S2 � 2�b10;

// State Register
always @ (posedge clk, posedge reset)

if (reset) state �� S0;
else state �� nextstate;

// Next State Logic
always @ (state)

case (state)
S0: nextstate � S1;
S1: nextstate � S2;
2: nextstate � S0;

endcase

// Output Logic
assign out � (state �� S2);

endmodule
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(h) module mux2tri (input  [3:0] d0, d1,
input s,
output [3:0] y);

tristate t0 (d0, s, y);
tristate t1 (d1, s, y);

endmodule

(i) module floprsen (input clk,
input reset,
input set,
input [3:0] d,
output reg [3:0] q);

always @ (posedge clk, posedge reset)
if (reset) q �� 0;
else q �� d;

always @ (set)
if (set) q �� 1;

endmodule

(j) module and3 (input a, b, c,
output reg y);

reg tmp;

always @ (a, b, c)
begin

tmp �� a & b;
y �� tmp & c;

end
endmodule

VHDL Exercises

The following exercises are specific to VHDL.

Exercise 4.49 In VHDL, why is it necessary to write

q �� ‘1’ when state � S0 else ‘0’;

rather than simply

q �� (state � S0);
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Exercise 4.50 Each of the following VHDL modules contains an error. For
brevity, only the architecture is shown; assume that the library use clause and
entity declaration are correct. Explain the error and show how to fix it.

(a) architecture synth of latch is
begin

process (clk) begin
if clk � ‘1’ then q �� d;
end if;

end process;
end;

(b) architecture proc of gates is
begin

process (a) begin
y1 �� a and b;
y2 �� a or b;
y3 �� a xor b;
y4 �� a nand b;
y5 �� a nor b;

end process;
end;

(c) architecture synth of flop is
begin

process (clk)
if clk’event and clk � ‘1’ then

q �� d;
end;

(d) architecture synth of priority is
begin

process (a) begin
if a (3)� ‘1’ then y �� “1000”;
elsif a (2) � ‘1’ then y �� “0100”;
elsif a (1) � ‘1’ then y �� “0010”;
elsif a (0) � ‘1’ then y �� “0001”;
end if;

end process;
end;

(e) architecture synth of divideby3FSM is
type statetype is (S0, S1, S2);
signal state, nextstate: statetype;

begin
process (clk, reset) begin

if reset � ‘1’ then state �� S0;
elsif clk’event and clk � ‘1’ then
state �� nextstate;

end if;
end process;
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process (state) begin
case state is

when S0 �� nextstate �� S1;
when S1 �� nextstate �� S2;
when S2 �� nextstate �� S0;

end case;
end process;

q �� ‘1’ when state � S0 else ‘0’;
end;

(f) architecture struct of mux2 is
component tristate

port (a:  in STD_LOGIC_VECTOR (3 downto 0);
en: in  STD_LOGIC;
y:  out STD_LOGIC_VECTOR (3 downto 0));

end component;
begin
t0: tristate port map (d0, s, y);
t1: tristate port map (d1, s, y);

end;

(g) architecture asynchronous of flopr is
begin

process (clk, reset) begin
if reset � ‘1’ then
q �� ‘0’;

elsif clk’event and clk � ‘1’ then
q �� d;

end if;
end process;

process (set) begin
if set � ‘1’ then
q �� ‘1’;

end if;
end process;

end;

(h) architecture synth of mux3 is
begin

y �� d2 when s(1) else
d1 when s(0) else d0;

end;
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Interview Questions

The following exercises present questions that have been asked at interviews for
digital design jobs.

Question 4.1 Write a line of HDL code that gates a 32-bit bus called data
with another signal called sel to produce a 32-bit result. If sel is TRUE,
result � data. Otherwise, result should be all 0’s.

Question 4.2 Explain the difference between blocking and nonblocking
assignments in Verilog. Give examples.

Question 4.3 What does the following Verilog statement do?

result � | (data[15:0] & 16�hC820);
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