Lecture 23: I/O
Outline

- Basic I/O Pads
- I/O Channels
 - Transmission Lines
 - Noise and Interference
- High-Speed I/O
 - Transmitters
 - Receivers
- Clock Recovery
 - Source-Synchronous
 - Mesochronous
Input / Output

- Input/Output System functions
 - Communicate between chip and external world
 - Drive large capacitance off chip
 - Operate at compatible voltage levels
 - Provide adequate bandwidth
 - Limit slew rates to control $\frac{di}{dt}$ noise
 - Protect chip against electrostatic discharge
 - Use small number of pins (low cost)
I/O Pad Design

- Pad types
 - V_{DD} / GND
 - Output
 - Input
 - Bidirectional
 - Analog
Output Pads

- Drive large off-chip loads (2 – 50 pF)
 - With suitable rise/fall times
 - Requires chain of successively larger buffers
- Guard rings to protect against latchup
 - Noise below GND injects charge into substrate
 - Large nMOS output transistor
 - p+ inner guard ring
 - n+ outer guard ring
 - In n-well
Input Pads

- Level conversion
 - Higher or lower off-chip V
 - May need thick oxide gates

- Noise filtering
 - Schmitt trigger
 - Hysteresis changes V_{IH}, V_{IL}

- Protection against electrostatic discharge
ESD Protection

- Static electricity builds up on your body
 - Shock delivered to a chip can fry thin gates
 - Must dissipate this energy in protection circuits before it reaches the gates

- ESD protection circuits
 - Current limiting resistor
 - Diode clamps

- ESD testing
 - Human body model
 - Views human as charged capacitor
Bidirectional Pads

- Combine input and output pad
- Need tristate driver on output
 - Use enable signal to set direction
 - Optimized tristate avoids huge series transistors

![Bidirectional Pads Diagram]
Analog Pads

- Pass analog voltages directly in or out of chip
 - No buffering
 - Protection circuits must not distort voltages
MOSIS I/O Pad

- 1.6 μm two-metal process:
 - Protection resistors
 - Protection diodes
 - Guard rings
 - Field oxide clamps
UofU I/O Pad

- 0.6 μm three-metal process
 - Similar I/O drivers
 - Big driver transistors provide ESD protection
 - Guard rings around driver

![Diagram of UofU I/O Pad]
I/O Channels

- I/O Channel: connection between chips
 - Low frequency: ideal equipotential net
 - High frequency: transmission line
- Transmission lines model
 - Finite velocity of signal along wire
 - Characteristic impedance of wire
When is a wire a T-Line?

- When propagation delay along the wire is comparable to the edge rate of the signal propagating.
- Depends on:
 - Length
 - Speed of light in the medium
 - Edge rate
Example

- When must a 10 cm trace on a PCB be treated as a transmission line
 - FR4 epoxy has $k = 4.35$ ($\varepsilon = k\varepsilon_0$)
 - Assume rise/fall times are $\frac{1}{4}$ of cycle time

- Signal propagation velocity
 \[v = \frac{c}{\sqrt{k\varepsilon_0}} = \frac{3 \times 10^8 \ \text{m/s}}{2.086} = 14.4 \ \text{cm/ns} \]

- Wire flight time
 \[t = \frac{10 \ \text{cm}}{14.4 \ \text{cm/ns}} = 0.7 \ \text{ns} \]

- Thus the wire should be treated as a transmission line when signals have a period < 2.8 ns (> 350 MHz)
Characteristic Impedance

- **Z_0:** ratio of voltage to current of a signal along the line
- **Depends on the geometry of the line**

Microstrip: Outer layer of PCB

$$Z_0 = \frac{60}{\sqrt{0.457k + 0.67}} \ln \frac{4h}{0.67(0.8w+t)}$$

Stripline: Inner layer of PCB

$$Z_0 = \frac{60}{\sqrt{k}} \ln \frac{4h}{0.67\pi(0.8w+t)}$$
Example

- A 4-layer PCB contains power and ground planes on the inner layers and signals on the outer layers. The board uses 1 oz copper (1.4 mils thick) and the FR4 dielectric is 8.7 mils thick. How wide should the traces be to achieve $50 \, \Omega$ characteristic impedance?

- This is a microstrip design. Solve for w with

 $t = 1.4$ mils
 $h = 8.7$ mils
 $k = 4.35$
 $Z_0 = 50 \, \Omega$
 $w = 15$ mils

$$Z_0 = \frac{60}{\sqrt{0.457k + 0.67}} \ln \frac{4h}{0.67(0.8w + t)}$$
Reflections

When a wave hits the end of a transmission line, part of the energy will reflect if the load impedance does not match the characteristic impedance.

Reflection coefficient: \[\Gamma = \frac{Z_L - Z_0}{Z_L + Z_0} \]

A wave with an amplitude of \(V_{\text{reflected}} = \Gamma V_{\text{incident}} \) returns along the line.
A strong driver with a Thevenin equivalent resistance of \(10 \, \Omega\) drives an unterminated transmission line with \(Z_0 = 50 \, \Omega\) and flight time \(T\). Plot the voltage at the 1/3 point and end of the line.

Reflection coefficients:

\[
\Gamma_S = \frac{10 - 50}{10 + 50} = -\frac{2}{3}; \quad \Gamma_L = \frac{\infty - 50}{\infty + 50} = 1
\]

Initial wave: \(50/(10+50) = 5/6\)

Observe ringing at load
Intersymbol Interference

- Must wait until reflections damp out before sending next bit
- Otherwise, *intersymbol interference* will occur
- With an unterminated transmission line, minimum bit time is equal to several round trips along the line
Example: Load Termination

- Redo the previous example if the load is terminated with a 50 Ω resistor.
- Reflection coefficients:
 \[\Gamma_s = \frac{10 - 50}{10 + 50} = -\frac{2}{3}; \quad \Gamma_L = \frac{50 - 50}{50 + 50} = 0 \]
- Initial wave: 50/(10+50) = 5/6
- No ringing
- Power dissipation in load resistor
Example: Source Termination

- Redo the previous example if the source is terminated with an extra 40 \(\Omega \) resistor.
- Reflection coefficients:
 \[
 \Gamma_s = \frac{50 - 50}{50 + 50} = 0; \quad \Gamma_L = \frac{\infty - 50}{\infty + 50} = 1
 \]
- Initial wave: \(\frac{50}{50+50} = 1/2 \)
- No ringing
- No power dissipation in load
- Taps along T-line momentarily see invalid levels
Termination Summary

- For point-to-point links, source terminate to save power.

- For multidrop busses, load terminate to ensure valid logic levels.

- For busses with multiple receivers and drivers, terminate at both ends of the line to prevent reflections from either end.
Noise and Interference

- Other sources of intersymbol interference:
 - Dispersion
 - Caused by nonzero line resistance
 - Crosstalk
 - Capacitive or inductive coupling between channels
 - Ground Bounce
 - Nonzero return path impedance
 - Simultaneous Switching Noise
High-Speed I/O

- Transmit data faster than the flight time along the line
- Transmitters must generate very short pulses
- Receivers must be accurately synchronized to detect the pulses
High Speed Transmitters

- How to handle termination?
 - High impedance current-mode driver + load term?
 - Or low-impedance driver + source termination

- Single-ended vs. differential
 - Single-ended uses half the wires
 - Differential is Immune to common mode noise

- Pull-only vs. Push-Pull
 - Pull-only has half the transistors
 - Push-pull uses less power for the same swing
High-Speed Transmitters

<table>
<thead>
<tr>
<th></th>
<th>Pull-Only</th>
<th>Push-Pull</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-Ended</td>
<td>Gunning Transceiver Logic (GTL)</td>
<td>![Gunning Transceiver Logic (GTL)]</td>
</tr>
<tr>
<td>Differential</td>
<td>![Current Mode Logic (CML)]</td>
<td>![Low-Voltage Differential Signalling (LVDS)]</td>
</tr>
<tr>
<td></td>
<td>![Current Mode Logic (CML)]</td>
<td>![Low-Voltage Differential Signalling (LVDS)]</td>
</tr>
</tbody>
</table>

- **Current Mode Logic (CML)**
- **Low-Voltage Differential Signalling (LVDS)**
High-Speed Receivers

- Sample data in the middle of the bit interval
- How do we know when?
Source-Synchronous Clocking

- Send clock with the data
- Flight times roughly match each other
 - Transmit on falling edge of tclk
 - Receive on rising edge of rclk
Single vs. Double Data Rate

- In ordinary single data rate (SDR) system, clock switches twice as often as the data.

- If the system can handle this speed clock, the data is running at half the available bandwidth.

- In double-data-rate (DDR) transmit and receive on both edges of the clock.
Phase Alignment

- If the DDR clock is aligned to the transmitted clock, it must be shifted by 90° before sampling
- Use PLL
Mesochronous Clocking

- As speeds increase, it is difficult to keep clock and data aligned
 - Mismatches in trace lengths
 - Mismatches in propagation speeds
 - Different in clock vs. data drivers
- Mesochronous: clock and data have same frequency but unknown phase
 - Use PLL/DLL to realign clock to each data channel
Phase Calibration Loop

- Special phase detector compares clock & data phase

Diagram:

- clk
- rclk
- D
- PD
- Phase Error
- Loop Filter
- Phase Control
- Q