CMOS VLSI Design
A Circuits and Systems Perspective

Fourth Edition
To Avril, Melissa, Tamara, Nicky, Jocelyn, Makayla, Emily, Danika, Dan and Simon
N. W.

To Jennifer, Samuel, and Abraham
D. M. H.
Contents

Preface xxv

Chapter 1 Introduction

1.1 A Brief History ... 1
1.2 Preview .. 6
1.3 MOS Transistors .. 6
1.4 CMOS Logic .. 9
 1.4.1 The Inverter 9
 1.4.2 The NAND Gate 9
 1.4.3 CMOS Logic Gates 9
 1.4.4 The NOR Gate 11
 1.4.5 Compound Gates 11
 1.4.6 Pass Transistors and Transmission Gates 12
 1.4.7 Tristates 14
 1.4.8 Multiplexers 15
 1.4.9 Sequential Circuits 16
1.5 CMOS Fabrication and Layout 19
 1.5.1 Inverter Cross-Section 19
 1.5.2 Fabrication Process 20
 1.5.3 Layout Design Rules 24
 1.5.4 Gate Layouts 27
 1.5.5 Stick Diagrams 28
1.6 Design Partitioning 29
 1.6.1 Design Abstractions 30
 1.6.2 Structured Design 31
 1.6.3 Behavioral, Structural, and Physical Domains 31
1.7 Example: A Simple MIPS Microprocessor 33
 1.7.1 MIPS Architecture 33
 1.7.2 Multicycle MIPS Microarchitectures 34
1.8 Logic Design ... 38
 1.8.1 Top-Level Interfaces 38
 1.8.2 Block Diagrams 38
 1.8.3 Hierarchy 40
 1.8.4 Hardware Description Languages 40
1.9 Circuit Design .. 42
Contents

1.10 Physical Design ... 45
 1.10.1 Floorplanning 45
 1.10.2 Standard Cells 48
 1.10.3 Pitch Matching 50
 1.10.4 Slice Plans 50
 1.10.5 Arrays 51
 1.10.6 Area Estimation 51

1.11 Design Verification ... 53

1.12 Fabrication, Packaging, and Testing 54

Summary and a Look Ahead 55

Exercises 57

Chapter 2 MOS Transistor Theory

2.1 Introduction ... 61

2.2 Long-Channel I-V Characteristics .. 64

2.3 C-V Characteristics .. 68
 2.3.1 Simple MOS Capacitance Models 68
 2.3.2 Detailed MOS Gate Capacitance Model 70
 2.3.3 Detailed MOS Diffusion Capacitance Model 72

2.4 Nonideal I-V Effects .. 74
 2.4.1 Mobility Degradation and Velocity Saturation 75
 2.4.2 Channel Length Modulation 78
 2.4.3 Threshold Voltage Effects 79
 2.4.4 Leakage 80
 2.4.5 Temperature Dependence 85
 2.4.6 Geometry Dependence 86
 2.4.7 Summary 86

2.5 DC Transfer Characteristics .. 87
 2.5.1 Static CMOS Inverter DC Characteristics 88
 2.5.2 Beta Ratio Effects 90
 2.5.3 Noise Margin 91
 2.5.4 Pass Transistor DC Characteristics 92

2.6 Pitfalls and Fallacies .. 93

Summary 94

Exercises 95

Chapter 3 CMOS Processing Technology

3.1 Introduction ... 99

3.2 CMOS Technologies .. 100
 3.2.1 Wafer Formation 100
 3.2.2 Photolithography 101
Chapter 7 Robustness

7.1 Introduction ... 241
7.2 Variability ... 241
 7.2.1 Supply Voltage 242
 7.2.2 Temperature 242
 7.2.3 Process Variation 243
 7.2.4 Design Corners 244
7.3 Reliability ... 246
 7.3.1 Reliability Terminology 246
 7.3.2 Oxide Wearout 247
 7.3.3 Interconnect Wearout 249
 7.3.4 Soft Errors 251
 7.3.5 Overvoltage Failure 252
 7.3.6 Latchup 253
7.4 Scaling ... 254
 7.4.1 Transistor Scaling 255
 7.4.2 Interconnect Scaling 257
 7.4.3 International Technology Roadmap for Semiconductors 258
 7.4.4 Impacts on Design 259
7.5 Statistical Analysis of Variability 263
 7.5.1 Properties of Random Variables 263
 7.5.2 Variation Sources 266
 7.5.3 Variation Impacts 269
7.6 Variation-Tolerant Design .. 274
 7.6.1 Adaptive Control 275
 7.6.2 Fault Tolerance 275
7.7 Pitfalls and Fallacies ... 277
7.8 Historical Perspective .. 278
Summary 284
Exercises 284

Chapter 8 Circuit Simulation

8.1 Introduction ... 287
8.2 A SPICE Tutorial .. 288
 8.2.1 Sources and Passive Components 288
 8.2.2 Transistor DC Analysis 292
 8.2.3 Inverter Transient Analysis 292
 8.2.4 Subcircuits and Measurement 294
 8.2.5 Optimization 296
 8.2.6 Other HSPICE Commands 298
8.3 Device Models .. 298
 8.3.1 Level 1 Models 299
 8.3.2 Level 2 and 3 Models 300
 8.3.3 BSIM Models 300
 8.3.4 Diffusion Capacitance Models 300
 8.3.5 Design Corners 302
8.4 Device Characterization ... 303
 8.4.1 I-V Characteristics 303
 8.4.2 Threshold Voltage 306
 8.4.3 Gate Capacitance 308
 8.4.4 Parasitic Capacitance 308
 8.4.5 Effective Resistance 310
 8.4.6 Comparison of Processes 311
 8.4.7 Process and Environmental Sensitivity 313
8.5 Circuit Characterization ... 313
 8.5.1 Path Simulations 313
 8.5.2 DC Transfer Characteristics 315
 8.5.3 Logical Effort 315
 8.5.4 Power and Energy 318
 8.5.5 Simulating Mismatches 319
 8.5.6 Monte Carlo Simulation 319
8.6 Interconnect Simulation ... 319
8.7 Pitfalls and Fallacies .. 322
Summary 324
Exercises 324

Chapter 9 Combinational Circuit Design
9.1 Introduction ... 327
9.2 Circuit Families .. 328
 9.2.1 Static CMOS 329
 9.2.2 Ratioed Circuits 334
 9.2.3 Cascode Voltage Switch Logic 339
 9.2.4 Dynamic Circuits 339
 9.2.5 Pass-Transistor Circuits 349
9.3 Circuit Pitfalls .. 354
 9.3.1 Threshold Drops 355
 9.3.2 Ratio Failures 355
 9.3.3 Leakage 356
 9.3.4 Charge Sharing 356
 9.3.5 Power Supply Noise 356
 9.3.6 Hot Spots 357
Chapter 11 Datapath Subsystems

11.1 Introduction .. 429

11.2 Addition/Subtraction .. 429
 11.2.1 Single-Bit Addition 430
 11.2.2 Carry-Propagate Addition 434
 11.2.3 Subtraction 458
 11.2.4 Multiple-Input Addition 458
 11.2.5 Flagged Prefix Adders 459

11.3 One/Zero Detectors ... 461

11.4 Comparators .. 462
 11.4.1 Magnitude Comparator 462
 11.4.2 Equality Comparator 462
 11.4.3 $K = A + B$ Comparator 463

11.5 Counters ... 463
 11.5.1 Binary Counters 464
 11.5.2 Fast Binary Counters 465
 11.5.3 Ring and Johnson Counters 466
 11.5.4 Linear-Feedback Shift Registers 466

11.6 Boolean Logical Operations 468

11.7 Coding ... 468
 11.7.1 Parity 468
 11.7.2 Error-Correcting Codes 468
 11.7.3 Gray Codes 470
 11.7.4 XOR/XNOR Circuit Forms 471
Chapter 13 Special-Purpose Subsystems

13.1 Introduction ... 549
13.2 Packaging and Cooling .. 549
 13.2.1 Package Options 549
 13.2.2 Chip-to-Package Connections 551
 13.2.3 Package Parasitics 552
 13.2.4 Heat Dissipation 552
 13.2.5 Temperature Sensors 553
13.3 Power Distribution ... 555
 13.3.1 On-Chip Power Distribution Network 556
 13.3.2 IR Drops 557
 13.3.3 L di/dt Noise 558
 13.3.4 On-Chip Bypass Capacitance 559
 13.3.5 Power Network Modeling 560
 13.3.6 Power Supply Filtering 564
 13.3.7 Charge Pumps 564
 13.3.8 Substrate Noise 565
 13.3.9 Energy Scavenging 565
13.4 Clocks .. 566
 13.4.1 Definitions 566
 13.4.2 Clock System Architecture 568
 13.4.3 Global Clock Generation 569
 13.4.4 Global Clock Distribution 571
 13.4.5 Local Clock Gaters 575
 13.4.6 Clock Skew Budgets 577
 13.4.7 Adaptive Deskewing 579
13.5 PLLs and DLLs ... 580
 13.5.1 PLLs 580
 13.5.2 DLLs 587
 13.5.3 Pitfalls 589
13.6 I/O ... 590
 13.6.1 Basic I/O Pad Circuits 591
 13.6.2 Electrostatic Discharge Protection 593
 13.6.3 Example: MOSIS I/O Pads 594
 13.6.4 Mixed-Voltage I/O 596
Chapter 14 Design Methodology and Tools

14.1 Introduction .. 615

14.2 Structured Design Strategies 617
 14.2.1 A Software Radio—A System Example 618
 14.2.2 Hierarchy 620
 14.2.3 Regularity 623
 14.2.4 Modularity 625
 14.2.5 Locality 626
 14.2.6 Summary 627

14.3 Design Methods ... 627
 14.3.1 Microprocessor/DSP 627
 14.3.2 Programmable Logic 628
 14.3.3 Gate Array and Sea of Gates Design 631
 14.3.4 Cell-Based Design 632
 14.3.5 Full Custom Design 634
 14.3.6 Platform-Based Design—System on a Chip 635
 14.3.7 Summary 636

14.4 Design Flows ... 636
 14.4.1 Behavioral Synthesis Design Flow (ASIC Design Flow) 637
 14.4.2 Automated Layout Generation 641
 14.4.3 Mixed-Signal or Custom-Design Flow 645

14.5 Design Economics 646
 14.5.1 Non-Recurring Engineering Costs (NREs) 647
 14.5.2 Recurring Costs 649
 14.5.3 Fixed Costs 650
 14.5.4 Schedule 651
 14.5.5 Personpower 653
 14.5.6 Project Management 653
 14.5.7 Design Reuse 654
14.6 Data Sheets and Documentation ... 655
 14.6.1 The Summary 655
 14.6.2 Pinout 655
 14.6.3 Description of Operation 655
 14.6.4 DC Specifications 655
 14.6.5 AC Specifications 656
 14.6.6 Package Diagram 656
 14.6.7 Principles of Operation Manual 656
 14.6.8 User Manual 656
14.7 CMOS Physical Design Styles ... 656
14.8 Pitfalls and Fallacies .. 657
Exercises 657

Chapter 15 Testing, Debugging, and Verification
15.1 Introduction ... 659
 15.1.1 Logic Verification 660
 15.1.2 Debugging 662
 15.1.3 Manufacturing Tests 664
15.2 Testers, Test Fixtures, and Test Programs 666
 15.2.1 Testers and Test Fixtures 666
 15.2.2 Test Programs 668
 15.2.3 Handlers 669
15.3 Logic Verification Principles ... 670
 15.3.1 Test Vectors 670
 15.3.2 Testbenches and Harnesses 671
 15.3.3 Regression Testing 671
 15.3.4 Version Control 672
 15.3.5 Bug Tracking 673
15.4 Silicon Debug Principles ... 673
15.5 Manufacturing Test Principles .. 676
 15.5.1 Fault Models 677
 15.5.2 Observability 679
 15.5.3 Controllability 679
 15.5.4 Repeatability 679
 15.5.5 Survivability 679
 15.5.6 Fault Coverage 680
 15.5.7 Automatic Test Pattern Generation (ATPG) 680
 15.5.8 Delay Fault Testing 680
15.6 Design for Testability .. 681
 15.6.1 Ad Hoc Testing 681
 15.6.2 Scan Design 682
 15.6.3 Built-In Self-Test (BIST) 684
 15.6.4 IDDQ Testing 687
 15.6.5 Design for Manufacturability 687
Appendix A Hardware Description Languages

A.1 Introduction .. 699
- A.1.1 Modules 700
- A.1.2 Simulation and Synthesis 701

A.2 Combinational Logic ... 702
- A.2.1 Bitwise Operators 702
- A.2.2 Comments and White Space 703
- A.2.3 Reduction Operators 703
- A.2.4 Conditional Assignment 704
- A.2.5 Internal Variables 706
- A.2.6 Precedence and Other Operators 708
- A.2.7 Numbers 708
- A.2.8 Zs and Xs 709
- A.2.9 Bit Swizzling 711
- A.2.10 Delays 712

A.3 Structural Modeling .. 713

A.4 Sequential Logic .. 717
- A.4.1 Registers 717
- A.4.2 Resettable Registers 718
- A.4.3 Enabled Registers 719
- A.4.4 Multiple Registers 720
- A.4.5 Latches 721
- A.4.6 Counters 722
- A.4.7 Shift Registers 724

A.5 Combinational Logic with Always / Process Statements 724
- A.5.1 Case Statements 726
- A.5.2 If Statements 729
- A.5.3 SystemVerilog Casez 731
- A.5.4 Blocking and Nonblocking Assignments 731

A.6 Finite State Machines ... 735
- A.6.1 FSM Example 735
- A.6.2 State Enumeration 736
- A.6.3 FSM with Inputs 738

A.7 Type Idiosyncracies ... 740
A.8 Parameterized Modules .. 742
A.9 Memory ... 745
 A.9.1 RAM 745
 A.9.2 Multiported Register Files 747
 A.9.3 ROM 748
A.10 Testbenches .. 749
A.11 SystemVerilog Netlists ... 754
A.12 Example: MIPS Processor ... 755
 A.12.1 Testbench 756
 A.12.2 SystemVerilog 757
 A.12.3 VHDL 766

Exercises 776

References 785

Index 817

Credits 838
In the two-and-a-half decades since the first edition of this book was published, CMOS technology has claimed the preeminent position in modern electrical system design. It has enabled the widespread use of wireless communication, the Internet, and personal computers. No other human invention has seen such rapid growth for such a sustained period. The transistor counts and clock frequencies of state-of-the-art chips have grown by orders of magnitude.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>1985</td>
<td>1993</td>
<td>2004</td>
<td>2010</td>
</tr>
<tr>
<td>Transistor Counts</td>
<td>10^5–10^6</td>
<td>10^6–10^7</td>
<td>10^8–10^9</td>
<td>10^9–10^10</td>
</tr>
<tr>
<td>Clock Frequencies</td>
<td>10^7</td>
<td>10^8</td>
<td>10^9</td>
<td>10^9</td>
</tr>
<tr>
<td>Worldwide Market</td>
<td>$25B</td>
<td>$60B</td>
<td>$170B</td>
<td>$250B</td>
</tr>
</tbody>
</table>

This edition has been heavily revised to reflect the rapid changes in integrated circuit design over the past six years. While the basic principles are largely the same, power consumption and variability have become primary factors for chip design. The book has been reorganized to emphasize the key factors: delay, power, interconnect, and robustness. Other chapters have been reordered to reflect the order in which we teach the material.

How to Use This Book

This book intentionally covers more breadth and depth than any course would cover in a semester. It is accessible for a first undergraduate course in VLSI, yet detailed enough for advanced graduate courses and is useful as a reference to the practicing engineer. You are encouraged to pick and choose topics according to your interest. Chapter 1 previews the entire field, while subsequent chapters elaborate on specific topics. Sections are marked with the “Optional” icon (shown here in the margin) if they are not needed to understand subsequent sections. You may skip them on a first reading and return when they are relevant to you.

We have endeavored to include figures whenever possible (“a picture is worth a thousand words”) to trigger your thinking. As you encounter examples throughout the text, we urge you to think about them before reading the solutions. We have also provided extensive references for those who need to delve deeper into topics introduced in this text. We
have emphasized the best practices that are used in industry and warned of pitfalls and fallacies. Our judgments about the merits of circuits may become incorrect as technology and applications change, but we believe it is the responsibility of a writer to attempt to call out the most relevant information.

Supplements

Numerous supplements are available on the Companion Web site for the book, www.cmosvlsi.com. Supplements to help students with the course include:

- A lab manual with laboratory exercises involving the design of an 8-bit microprocessor covered in Chapter 1.
- A collection of links to VLSI resources including open-source CAD tools and process parameters.
- A student solutions manual that includes answers to odd-numbered problems.
- Certain sections of the book moved online to shorten the page count. These sections are indicated by the “Web Enhanced” icon (shown here in the margin).

Supplements to help instructors with the course include:

- A sample syllabus.
- Lecture slides for an introductory VLSI course.
- An instructor’s manual with solutions.

These materials have been prepared exclusively for professors using the book in a course. Please send email to computing@aw.com for information on how to access them.

Acknowledgments

We are indebted to many people for their reviews, suggestions, and technical discussions. These people include: Bharadwaj “Birdy” Amrutur, Mark Anders, Adnan Aziz, Jacob Baker, Kaustav Banerjee, Steve Bibyk, David Blaauw, Erik Bruunvand, Neil Burgess, Wayne Burleson, Robert Drost, Jo Ebergen, Sarah Harris, Jacob Herbold, Ron Ho, David Hopkins, Mark Horowitz, Steven Hsu, Tanay Karnik, Omid Kaveh, Matthew Keeter, Ben Keller, Ali Keshavarzi, Brucek Khailany, Jaeha Kim, Volkan Kursun, Simon Knowles, Ram Krishnamurthy, Austin Lee, Ana Sonia Leon, Shih-Lien Lu, Sanu Mathew, Aleksandar Milenkovic, Sam Naffziger, Braden Phillips, Stefan Rusu, Justin Schauer, James Stine, Jason Stinson, Aaron Stratton, Ivan Sutherland, Jim Tschanz, Alice Wang, Gu-Yeon Wei, and Peiyi Zhao. We apologize in advance to anyone we overlooked.

MOSIS and IBM kindly provided permission to use nanometer SPICE models for many examples. Nathaniel Pinckney spent a summer revising the laboratory exercises and updating simulations. Jaeha Kim contributed new sections on phase-locked loops and high-speed I/O for Chapter 13. David would like to thank Bharadwaj Amrutur of the Indian Institute of Science and Braden Phillips of the University of Adelaide for hosting him during two productive summers of writing.
Addison-Wesley has done an admirable job with the grueling editorial and production process. We would particularly like to thank our editor, Matt Goldstein, and our compositor, Gillian Hall.

Sally Harris has been editing family books since David was an infant on her lap. She read the page proofs with amazing attention to detail and unearthed hundreds of errors.

This book would not have existed without the support of our families. David would particularly like to thank his wife Jennifer and sons Abraham and Samuel for enduring two summers of absence while writing, and to our extended family for their tremendous assistance.

We have become painfully aware of the ease with which mistakes creep into a book. Scores of 3rd edition readers have reported bugs that are now corrected. Despite our best efforts at validation, we are confident that we have introduced a similar number of new errors. Please check the errata sheet at www.cmosvlsi.com/errata.pdf to see if the bug has already been reported. Send your reports to bugs@cmosvlsi.com.

N. W.
D. M. H.
January 2010