I ntroduction to Computer Engineering (E114)

Lab 3: Finite State M achine

I ntroduction

If you owned a personal computer in the early 1980's, you probably have a nostalgic
fondness for text adventure games. |If not, thislab may cause you to acquire one, because
you will design a finite state machine (FSM) that implements an adventure game! You
will then enter the FSM into the Xilinx Schematic Editor, and finally you will be able to
use the Simulator to play the game.

Please read and follow the steps of thislab closdly. Start early and ask questions if parts
are confusing. It is much easer to get your design right the first time around than to
make a mistake and spend large amounts of time hunting down the bug. Asaways, don’t
forget to refer to the “What to Turn In” section at the end of this lab before you begin.
Thereisalso a set of hints of common tool mistakes on the last page of the lab.

Background

Before computers were capable of displaying graphics, text-based adventure games were
popular. Each game consists of several rooms, each with a short description. The player
uses directional commands to move between rooms (i.e. “E” to go east). Objects can be
found is certain rooms, and are manipulated or interacted with using a very limited set of
simple commands. Figure 1 gives a short example.

Page 1 of 12

Dead end

You are at a dead end of a dirt road. The road goes to the east.

In the distance you can see that it will eventually fork off. The
trees here are very tall royal palnms, and they are spaced equidi stant
from each other.

There is a shovel here.

> get shovel

Taken.

> E

E/WDirt road

You are on the continuation of a dirt road. There are nore trees on
both sides of you. The road continues to the east and west.

There is a | arge boul der here.

> E

For k

You are at a fork of two passages, one to the northeast, and one to the
sout heast. The ground here seens very soft. You can al so go back west.
> W

E/WDirt road

There is a | arge boul der here.

> | ook trees

They are palmtrees with a bountiful supply of coconuts in them

> shake trees

You begin to shake a tree, and notice a coconut begin to fall fromthe
air.

As you try to get your hand up to block it, you feel the inpact as it

| ands

on your head.

You are dead.

Figure 1: Sample from the“ Dunnet” Adventure Game'

In this lab you will be implementing an adventure game using an FSM. Y ou should be
familiar with finite state machines from class. Also, you should take alook at Section 6
in Appendix B of your book for more information about FSM’s.

You will design your FSM using the systematic design steps listed in Figure 2. Parts of
these steps will be given, while others will be entirely up to you.

Eal NN

0 N O

State the problem precisdly (i.e. in English).

Draw a State Transition Diagram.

List all inputs and outputs.

Construct a table showing how current state and inputs determine next
state and outputs.

Decide on a binary encoding for each of the inputs, states, and outputs.
Rewrite the table using your binary encoding.

Write Boolean logic equations using the information in your table.
Simplify and implement the equations using digital logic gates.

Figure 2: Systematic FSM Design Steps

! Dunnet is built into the Emacs text editor (M-x dunnet).

Page 2 of 12

1. Design

The adventure game that you will be designing has seven rooms and one object (a
sword). The game begins in the Cave of Cacophony. To win the game, you must first
proceed through the Twisty Tunne and the Rapid River. From there, you will need to
find a Vorpal Sword in the Secret Sword Stash. The sword will allow you to pass
through the Dragon Den safely into Victory Vault (at which point you have won the
game). If you enter the Dragon Den without the Vorpal Sword, you will be devoured by
a dangerous dragon and pass into the Grievous Graveyard (where the game ends with you
dead).

This game can be implemented using two separate state machines that communicate with
each other. One state machine keeps track of which room you are in, while the other
keeps track of whether you currently have the sword.

_LZ

Victory
Vault
(assert WIN)

Cave of
Cacophony

Grievous
Graveyard
(assert D)

Figure 3: Partially Completed State Transition Diagram for Room FSM

The Room FSM is shown in Figure 3. In this state machine, each state corresponds to a
different room. Upon reset (the input “R”) the machine's state goes to the Cave of
Cacophony. The player can move among the different rooms using theinputs N, S, E, or
W. When in the Secret Sword Stash, the “SW” output from the Room FSM indicates to
the Sword FSM that the player is finding the sword. When in the Dragon Den, signal
“V,” asserted by the Sword FSM when the player has the Vorpal Sword, determines
whether the next state will be Victory Vault or Grievous Graveyard; the player not
provide any directional inputs. When in Grievous Graveyard, the machine generates the
“D” (dead) output, and on Victory Vault the machine assertsthe “ WIN” outpuit.

Page 3 of 12

R
Has S\Nor
(assert V)

Figure 4: State Transition Diagram for Sword FSM

In the Sword FSM (Figure 4), the states are “No Sword” and “Has Sword.” Upon reset
(input “R” again), the machine enters the “No Sword” state. Entering the Secret Sword
Room causes the player to pick up a sword, so the transition to the “Has Sword” state is
made when the “SW” input (an output of the Room FSM that indicates the player isin
the Secret Sword Stash) is asserted. Once the “Has Sword” state is reached, the “V”
(vorpal sword) output is asserted and the machine stays in that state until reset.

The state of each of these FSM’s is stored using D-type flip-flops. Since flip-flops have a
clock input, this means that there is also must be a CLOCK input to each FSM, which
determines when the state transitions will occur.

So far, we have given an English description and a State Transition Diagram for each of
the two FSM’s. This corresponds to the first and second steps, respectively, in the
systematic design process given in Figure 2.

Y ou may have noticed, however, that the diagram in Figure 3 isincomplete. Some of the
trangition arcs are labeled, while others are left blank. Complete the State Transition
Diagram for the Room FSM now by labeling all arcs so that the FSM operates as
described.

The next step (step 3) in the design is to enumerate the inputs and outputs for each FSM.
Figure 5 shows the inputs (on the left) and outputs (on the right) of the Room FSM and
Figure 6 does this for the Sword FSM. Note that for navigational purposes the Room
FSM should output S1-S7, indicating which of the seven rooms our heroisin. Thisisthe
last step of the design that will be given to you.

Figure5: Symbol for Room FSM, showing its I nputs and Outputs

Page 4 of 12

1 CLK V[
71 R
-1 SW

Figure 6: Symbal for Sword FSM, showing its I nputs and Outputs

Next, draw atable for each FSM showing how the current state and inputs determine next
state and outputs. The left side of the tables should have a column for the current state,
and separate columns for each of the inputs. The right side should have a column for the
next state, and separate columns for each of the outputs. These tables are a way of
completely representing the FSM’s that is an alternative to the diagrams in Figure 3 and
Figure 4.

On the left side of the table for the Room FSM, you do not need to fill in every possible
combination of values for all inputs (that would make for a rather large number of rows
in your table!). Instead, for each state you only need to show the combinations of inputs
for which there is an arc leaving that state in the state transition diagram. For example,
when the input N is asserted and the current state is Twisty Tunnel, the behavior of the
FSM is unspecified and thus does not need to be included in the table> Also, you do not
need to show rows in the table for what happens when more than one of the directional
inputs is specified at once. You can assume that it isillegal for more than one of the N,
S, E, and W inputs to be asserted ssimultaneously. Therefore, you can smplify your logic
by making all the other directional inputs of arow “don’t care” when one legal direction
IS asserted.

By making careful use of “don’t cares,” your table need not contain more than a dozen
rows.

The next step in FSM design is the determine how to encode the states. By this, we mean
that each state needs to be assigned a unique combination of zeros and ones. Common
choices include binary numeric encoding, one-hot encoding, or Gray encoding. A one-
hot encoding is recommended for the Room FSM (i.e. Cave of Cacophony=0000001) and
makes it trivial to output your current state S1...S7, but you are free to choose whichever
encoding you think isbest. Make a separate list of your state encodings for each FSM.

Now rewrite the table using the encoding that you chose. The only different will be that
the states will be listed as binary numbers instead of by name.

Y ou are now approaching the heart of the FSM design. Using your tables, you should be
able to write down a separate Boolean logic equation for each output and for each bit of
the next state (do this separately for each FSM). In your equations, you can represent the
different bits of the state encoding using subscripts: S;, S, etc. Depending on which state
encoding you chose, a different number of bits will be required to represent the state of
the FSM, and thus you will have a different number of equations. Simplify your
equations where possible.

2 Since the behavior of the FSM is unspecified in cases like this, the actual behavior of the FSM that you
build in these casesisup toyou. In area system, it would be wise to do something reasonable when the
user givesillega inputs. Inthisgame, wedon't care if the machine catches on fire when given bad inputs.

Page 5 of 12

As you know, you can trandate these equations into logic gates to implement your FSM’s
directly in hardware. That iswhat you will do in the next section.

Page 6 of 12

2. Schematics

For this lab, open the Xilinx Project Manager with a new project named “lab3 xx”
(where xx are your initials).

By now, you are familiar with the Schematic Editor. In thislab, however, you will learn
how to create hierarchical schematic designs. In the same way that you can add symbols
such as AND and OR gates to your schematic, you can add sub-components that are
themselves specified by schematics. This creates a hierarchy of schematics.

You will use a hierarchical design for your adventure game by doing the following:
1. First draw the Sword or Room FSM as a schematic.

2. With the completed schematic opened in the Schematic Editor, create a
symbol from it by choosing ‘Hierarchy- Create Macro Symbol from Current
Sheet’ from the menu. When you create symbolsin this way, they are entered
into a special symbol library that is associated with the current project, and are
then available for use in other schematics.

3. Once you have drawn schematics and created the symbols for both FSM’s,
you can edit the symbols themselves so that their pin placement makes sense
(asin Figure5 and Figure 6). This step described in detail below.

4. Finaly, draw athird schematic to connect the FSM’s to each other to form the
completed adventure game. You access the symbols that you created for the
FSM’s in the same way that you would draw the symbol for a logic gate (you
symbol names should appear when you open the Symbols Window in the
Schematic Editor). The inputs and outputs of your top level schematic will
determine which signals will be available in the ssmulator when you play the
game, so you should make sureto include at least CLOCK, R, N, S, E, and W,
as inputs and the current room as an output. Labd the V and SW wires by
double-clicking on them and typing in the name.

If you realize that you need to edit the schematic for a symbol that you have already
created, you can choose File-Open Macro in the Schematic Editor to make the
appropriate changes. However, if you change a symbol after using it in a higher leve
schematic, you will need to update the higher level schematic by opening it in the
Schematic Editor and choosing File- Update Libraries.

Here are some more guidelines for drawing the schematics for each of your FSM’s (do
them one at atime):

= Work with a B-sized landscape orientation schematic page so you have
enough room. Don’'t place your gates too close together or you'll have
difficulty finding room for the wires.

» First add the input and output terminals

= Next, draw the flip-flops that will store the state. The symbol name for a D
flip-flop is“FD.” If you used a one-hot encoding, there will be one flip-flop

Page 7 of 12

per state. (With other encodings there may be a different number of flip-
flops.)

= Finaly, add and connect the logic gates that implement the Boolean equations
from your design. Keep in mind that the “current state’ corresponds to the
values at the output of the flop-flops, while the “ next state” corresponds to the
values at the inputs of the flip-flops (generated by your combinational logic).

When drawing the schematics for your FSM’s you may end up with two different outputs
that are always equal, and indeed are connected to the same place. However, the
Schematic Editor will not let you connect two output terminals with different names to
the same wire (it inssts that everything connected to the same wire have the same name,
for fear that otherwise you are accidentally shorting two different signals together).
Instead, you can connect one of the output terminals to the wire, and connect the other
output terminal to the wire through a buffer, as shown in Figure 7.

o> ouTPUTH

\—I>—D OUTFUTZ
BUF

Figure 7: Generating two differ ently-named outputs from the same sour ce requir es a buffer.

As mentioned above (in step 3), you will need to edit the pin placements of your symbols
to get them to look like the ones in Figure 5 and Figure 6. By default, the inputs and
outputs may appear somewhat randomly placed, which is not very convenient when
drawing wiresin your higher level schematic that uses the symbols.

To edit a symbol itself, you first need to open the Library Manager. You can do so by
double clicking on the project symboal library (which has the same name as your project -

something like “lab3 xx") in the upper left panel of the Project Manager. This should
open the Library Manager with your project’s symbol library. You should see the names
of the two symbols that you created for your FSM’s, asin Figure 8.

_'7 Library Manager !Elm

File Lirary Ohject Yiew Help

x| E s = sk a2 = RlE)w]

\ # Libraries Objectsl

Logical Narme (+) |Physic:a| MNarme lCDmment !Objeu:tType IAﬂributes Likrany I
TROOM_FESM ROOKM_FShi MNET+3CH+SYM 00000000 LAB3ISAMP
T SWORD_FSh4 SWORD_FEM NET+SCH+EYM Q0o0oonon LABISAMP

PResdy. JEebea® | | |

Figure8: Library Manager Window

By double-clicking again on the name of a symbol, you can edit it in the Symbol Editor.
Y ou will want to do this for every symbol that you create. All you need to doisclick and
drag the input and output pins to move them where you want them. Once you have the
layout of the symbol the way you like it, save it and close the Symbol Editor. After
editing all your symbols, you will be ready to use them in your high level schematic.

Page 8 of 12

After reading this part of the lab thoroughly, you should be ready to complete all three
schematics needed for your adventure game (sword FSM, room FSM, high leve
connections). The only thing |&ft to do isto play the gamein the ssmulator!

Page 9 of 12

3. Simulation

Once you have completed all your schematics for the adventure game, open the Simulator
(from the Project Manager, as you have done before). Choose Signal - Add Signals from
the Simulator menu and place check marks on al the inputs and outputs of your game
(again, just like you have done before). Note that you click and drag the signal namesin
the simulator window to rearrange the order that they appear. Be sure to watch V and
SW in your simulation. If they do not show up in the list while adding signals, you
probably forgot to label the wiresin your top-level (third) schematic.

In this lab, your simulation can make use of more complex stimulus than we have used
before to specify the values of input signals. You will learn how to bind an input signa
to a key on the keyboard, so that pressing the key in the simulator window will cause the
value of the corresponding input signal to toggle. This will come in handy for the
directional inputs when you are playing the game.

To bind a keyboard key to an input signal, choose Signal - Add Stimulators from the menu
and click and drag the key onto the signal name. You should see the letter of the key in
red text to the right of the signal name now. Do thisfor theN, S, E, W, and R inputs, so
that you can use the keyboard to reset and play the game.

While you have the Stimulator Selection window open, drag the least significant bit of
the counter onto the clock input. Thiswill supply your FSM’swith a clock cycle of 10ns,
so you will also want to set the smulation step time to 10ns, so that you can make one
move at atime while playing the game.

Note that if you want to specify a single constant value for an input signal, you can do so
by pressing the “Logical States’ button.

| HIGH Lok

Thiswill open the window shown in Figure 9, where you can click and drag a value such
as“low” or “ high” onto asgnal name.

: Stimulator State Selection E

Low || High }|Unkn X} High 2

]) Gl)) RS
Del Bus | Bus State

==

Closej More | Help |

Figure 9: Stimulator State Selection Window

You are now ready to play your adventure game! Press your “R” key until the R input is
high, and then proceed forward one ssimulation step. Y ou should notice the state of your
room FSM entering the state corresponding to the Cave of Cacophony. PressR, N, S, E,
and W until all inputs are low. Now press E and proceed forward one smulation step to
go east into the Twisty Tunnd. Continue playing the game, and remember that at every
step, only one of the directional inputs should be high. Otherwise, the behavior of your

Page 10 of 12

game is unspecified, as it is when you attempt to go in a direction that is not listed in the
trangtion tablein Figure 3.

Make sure that your game always enters the correct state while you are playing. For
example, check that the V output of the Sword FSM is high after entering the Secret
Sword Stash. Also, make sure that you have tested every valid transition between states
in the diagrams from Figure 3 and Figure 4. Fix any bugs that you find in your game.

If you find an error and need to change your schematics, you can save your input
waveforms by using the File- Save Waveform command in the simulator. Quit the
simulator, edit your schematic, restart the simulator, and use File- Load Waveform to
reload the inputs and stimulators you had chosen. Use Device: Power On/Reset if you
ever need to restart the smulation time at O.

When you are confident that your game is working, play it twice (once winning, once
losing) to generate printouts of your smulation waveforms to turn in. Note that you can
clear the waveforms (i.e. when you want to restart the game) by selecting
Waveform- Delete- All Waveforms from the menu.

What toTurn In
Please provide a hard copy of each of the following:

1. Please indicate how many hours you spent on this lab. This will not affect your
grade, but will be helpful for calibrating the workload for next semester’s labs.

2. A completed State Transition Diagram for the “Room” FSM.

3. Your tables listing next state and outputs in terms of current state and inputs (one for
each FSM).

4. A list (onefor each FSM) of your binary encoding for each state.
5. Therevised copy of your tables, using your binary encoding.

6. Your Boolean logic equations for the outputs and each bit of the next state in terms of
the previous state and inputs.

7. A printout of your schematics for both the “Room’ and “Sword” FSM’s.
8. A printout of your schematic for the game (built by connecting both FSM’s).

9. Two printouts of your ssimulation waveforms: one that shows you playing the game
and winning (entering “Victory Vault”), and another that shows an example of losing
the game (entering the “Grievous Graveyard’). Please select “Landscape’” under
Print Setup before printing these so that they fit better on the page.

10. EXTRA CREDIT: It is a little known fact that the Twisty Tunnd is located beneath
Pitzer and that by heading north one can reach the Harvey Mudd dormitories. Extend
your adventure game with more interesting rooms or objects. There will be a prize
for the most interesting working enhancement!

Page 11 of 12

When Everything Else Doesn’'t Work...

If you’ ve been pounding your head from some time and your design till doesn’t work,
here are some hints of common and subtle problems encountered by past students:

1.

If there's a dark blue dot at the end of a wire, the wire is not connected to anything.
Sometimes it may look like the wire is attached to the input of a logic gate, but the
dark blue dot is the giveaway that there is no connection. Delete the wire and try
redrawing it. Often this bug and the next one will manifest themselves as gray boxes
somewhere in your ssimulation indicating floating outputs.

If you place two gates nearby so that the output of one touches the input of another,
the gates will not be connected even though they look connected. You can drag gates
around to seeif they are really connected.

When you see warning messages in the Project Manager window, pay heed to them,
especially when your circuit isn’t working. Understand what warnings are normal
and what ones indicate a problem.

Don't labdl nodes with the same name as an input or output. The tools will short the
wireto the input or output and get horribly confused.

If you make a change in your schematic, the smulator will not know about it. The
best thing to do is quit the smulator and restart it. You can save your waveforms if
you are sick of constantly adding them again.

If everything seems right and the tools are still acting up, try quitting and restarting
Foundation.

“People who read through the whole lab do better than those who don’t.” — former
E114 |lab assistant.

Page 12 of 12

