

Page 1 of 5

E85: Digital Design and Computer Engineering
Lab 3: Finite State Machine Design

Objective
The purpose of this lab is to learn to design a finite state machine using structural
SystemVerilog, debug it in simulation with a self-checking testbench, and download
it onto an FPGA board.

1. Thunderbird Turn Signal
Your goal for this lab is to design a finite state machine in SystemVerilog to control
the taillights of a 1965 Ford Thunderbird1. There are three lights on each side that
operate in sequence to indicate the direction of a turn. Figure 1 shows the tail
lights and Figure 2 shows the flashing sequence for (a) left turns and (b) right
turns.

Figure 1. Thunderbird Tail Lights

Figure 2. Flashing Sequence (shaded lights are illuminated)

1 This lab is derived from an example by John Wakerly from the 3rd Edition of Digital Design.

ZOTTFFS
CALIFORNIA

RA RB RCLC LB LA

Copyright © 2000 by Prentice Hall, Inc.
Digital Design Principles and Practices, 3/e

LC(a) LB LA RA(b) RB RC

Copyright © 2000 by Prentice Hall, Inc.
Digital Design Principles and Practices, 3/e

Page 2 of 5

The FSM should have two inputs, left and right, that trigger the flashing sequence
on the cycle after they are asserted. At most one of the inputs will be asserted at
any time. The FSM should have six outputs, LA, LB, LC, RA, RB, and RC. Once the
sequence starts, it should continue even if the input is deasserted. When the
sequence completes, it should go back to all lights off for a cycle before another
sequence may begin. See the Thunderbird test vector file later in this lab for an
example of the expected behavior.
Draw a state transition diagram for your FSM. Be careful to exactly follow the
specification above because you will have to repeat all of the subsequent steps if
your diagram is incorrect. Choose state encodings and write Boolean equations for
the next state and output logic. The difficulty of this task is strongly influenced by
the state encoding you choose. Sketch the circuit.
Write structural Verilog code for your FSM. Your FSM should have the following
module declaration:
module lab3_xx(input logic clk,
 input logic reset,
 input logic left, right,
 output logic la, lb, lc, ra, rb, rc);

where xx are your initials. You may assume that clk runs at the desired speed (e.g.
about 1 Hz).
Simulate your FSM with the following self-checking testbench and vectors. Study
the testbench and observe how it applies inputs and checks the outputs. Debug any
discrepancies. You’ll probably have errors at first. Get used to interpreting the
messages from ModelSim and correct any mistakes. In fact, it’s good if you have
bugs in this lab because it’s easier to learn debugging now than later when you are
working with a larger system!

Page 3 of 5

module testbench();
 logic clk, reset;
 logic left, right, la, lb, lc, ra, rb, rc;
 logic [5:0] expected;
 logic [31:0] vectornum, errors;
 logic [7:0] testvectors[10000:0];

// instantiate device under test
lab3_xx dut(clk, reset, left, right, la, lb, lc, ra, rb, rc);

// generate clock
always
 begin
 clk=1; #5; clk=0; #5;
 end

// at start of test, load vectors
// and pulse reset
initial
 begin
 $readmemb("thunderbird.tv", testvectors);
 vectornum = 0; errors = 0; reset = 1; #22; reset = 0;
 end

// apply test vectors on rising edge of clk
always @(posedge clk)
 begin
 #1; {left, right, expected} = testvectors[vectornum];
 end

// check results on falling edge of clk
always @(negedge clk)
 if (~reset) begin // skip during reset
 if ({la, lb, lc, ra, rb, rc} !== expected) begin // check result
 $display("Error: inputs = %b", {left, right});
 $display(" outputs = %b %b %b %b %b %b (%b expected)",
 la, lb, lc, ra, rb, rc, expected);
 errors = errors + 1;
 end
 vectornum = vectornum + 1;
 if (testvectors[vectornum] === 8'bx) begin
 $display("%d tests completed with %d errors", vectornum,
errors);
 $stop;
 end
 end
endmodule

Page 4 of 5

// thunderbird.tv
// left right _ la lb lc ra rb rc
00_000000
10_000000
10_100000
10_110000
10_111000
10_000000
10_100000
00_110000
01_111000
01_000000
01_000100
00_000110
00_000111
00_000000

Synthesize your FSM. Look at the RTL Viewer. Does it match your expectations?
Assign pins. Use slide switches2 for clk, reset, left, and right, and LEDs for the six
outputs. Resynthesize with the pin assignments.
Look at the compilation report in the Quartus Flow Summary. Find the number of
registers and pins the design uses. Does that match expectations?
Under Analysis & Synthesis, look at the resource utilization summary. Check that the
number of register and I/O pins matches your expectations.
Test your design. Note that the switches sometimes experience a phenomenon
called bounce, in which the mechanical contacts bounce as the switch is opening or
closing, creating multiple rapid rising and falling pulses rather than a single clock
edge. If your lights seem to skip through multiple states at a time, it is probably
because of switch bounce on the clock switch. With a bit of practice, you can learn
to push the switch in a way that bounces less. It is also possible to build a circuit to
“debounce” a switch, but that is beyond the scope of this lab. Fix any other
problems that you observe.

What to Turn In
1. Please indicate how many hours you spent on this lab. This will be helpful for

calibrating the workload for next time the course is taught.
2. State transition diagram
3. State encoding and Boolean equations for next state and output
4. Sketch of circuit
5. Structural Verilog code

2 It is also possible to use the KEY3:0 pushbutton, but beware that these are 1 when not pressed and 0 when pressed.

Page 5 of 5

6. Simulation waveforms showing the FSM inputs and outputs. Did it pass the
self-checking testbench?

7. RTL Viewer schematics. Do they match your expectations?
8. Did the tail lights function correctly on the DE2 Board?

If you have suggestions for further improvements of this lab, you’re welcome to
include them at the end of your lab.

