
 1

Objective
The purpose of this lab is to learn to write performance-optimized code in C and assembly
language and to understand the relationship between the two. Specifically, you will design a
microcontroller circuit for an airbag trigger that can respond to a simulated impact as quickly as
possible, and will compare your optimized assembly and C versions to a nonoptimized C
version.

0. Instruction Set
You will do this lab on the NUCLEO board, which contains a Cortex-M0 microprocessor. The
Cortex-M0 runs the ARM v6M version of the Thumb instruction set, which differs from the
ARM v4 version we have emphasized in class. The instruction set is summarized in Table 3.3 of
the Cortex-M0 Technical Reference Manual, available on the class web page. Thumb
instructions are packed into 16 bits to better use the limited program memory on a small
microcontroller. Most instructions only take two operands, with the first being both the
destination and first source. Most instructions only access registers R0-R7. Most instructions
only come in the S variant.

1. Airbag Trigger
An airbag trigger should deploy an airbag as fast as possible for each occupant of a vehicle when
a collision occurs. For the sake of simplicity, let us model the inputs to the trigger as two digital
signals, one indicating that a seat is occupied, and the second indicating that a high-G
deceleration event has occurred. In this lab, we will design a microcontroller-based system to
monitor the two inputs and assert a trigger output when both inputs are TRUE. Assume that the
inputs come on D0 and D1 and the output is connected to D2. Assume that none of the other
pins are configured as outputs.

2. Baseline Code
The following baseline code (on the web page) is logically correct but not as efficient as
possible. The variables are declared volatile to discourage the compiler from optimizing much.
// lab9baseline.c

#include "EasyNucleoIO.h"

void triggerCheck(void) {
 volatile int seat, decel, trigger;

 while (1) {

E85: Digital Design and Computer Architecture

Lab 9: Airbag Trigger

 2

 seat = digitalRead(0);
 decel = digitalRead(1);
 trigger = seat && decel;
 digitalWrite(2, trigger);
 }
}

int main(void) {
 EasyNucleoIOInit();
 pinMode(0, INPUT);
 pinMode(1, INPUT);
 pinMode(2, OUTPUT);

 triggerCheck();
}

Implement this code on your microcontroller. Tie D0 to 1 and apply a pulse on D1 to simulate a
sudden deceleration for an occupied seat. Measure the latency from D1 rising to D2 rising using
two channels of an oscilloscope. Repeat your experiment 10 times and find the average,
maximum, and standard deviation.

2. Interpreting Assembly Language
Look at the assembly language code that the Keil compiler produces for the baseline
triggerCheck() code, as well as the digitalRead and digitalWrite functions it calls. Study it until
you understand how each line relates to the C code.

What is the largest number of instructions that might occur from the time that D1 rises until D2
rises (while the program is in the triggerCheck loop)?

3. Tutorial: Mixing C and Assembly Language
It is not hard to mix C and assembly language programs. For example, the following flash.c and
led.s files are available on the class web page. The C code contains a prototype for the led
function, and the assembly language code implements it. The argument a is passed in R0.
// flash.c
#include "EasyNucleoIO.h"

// prototype for assembly language function
void led(int a);

int main(void) {
 EasyNucleoIOInit();
 pinMode(13, OUTPUT);
 while(1) {
 led(0);
 delayLoop(200);
 led(1);
 delayLoop(200);
 }
}

; led.s
; turn LED on D13 / PB3 on or off
 AREA |.text|, CODE, READONLY ; define this file as code
 EXPORT led ; declare LED to be called externally

GPIOB_ODR EQU 0x48000414 ; define constant address of port

led
 PUSH {R4} ; save R4 on stack before changing it
 LDR R4, =GPIOB_ODR ; put point to GPIOB ODR in R4
 LDR R1, [R4] ; R1 = GPIO_ODR
 MOVS R3, #0x08 ; 1 in 3rd bit (LED is on PB3)

 3

 CMP R0, #0 ; check if we should turn off LED
 BEQ ledoff ; yes: skip to ledoff
ledon
 ORRS R1, R1, R3 ; otherwise set PB3 to 1
 B finish ; and skip
ledoff
 MVNS R3, R3 ; clear PB3 to 0
 ANDS R1, R1, R3
finish
 STR R1, [R4] ; store R1 back in PORTB_ODR
 POP {R4} ; restore R4 from stack
 BX LR ; equivalent to MOV PC, LR, preferred now

 ALIGN ; make sure code ends on word boundary
 END ; bye bye. Have a nice day.

Create a new project and add both files. Compile it and run it on the Nucleo board and verify
that the LED flashes. Single-step through the assembly language code and watch how it works.

4. Assembly Language Implementation
Write your own hand-optimized airbag triggerCheck in assembly language. Comment out the
baseline triggerCheck() function and call your assembly language function instead.

Repeat your count of the largest number of instructions that might occur from D1 to D2 and your
physical measurements of average and standard deviation in latency. How much improvement
did you achieve?

5. Optimized C Implementation
Rewrite the baseline triggerCheck() function as efficiently as you can in C. Look at the
assembly language output by the compiler, and optimize until you are satisfied.

Repeat your count of the largest number of instructions that might occur from D1 to D2 and your
physical measurements of average and standard deviation in latency. How do your results
compare with the baseline and with your assembly language code?

What to Turn In
1. Please indicate how many hours you spent on this lab. This will be helpful for calibrating the

workload for next time the course is taught.
2. Your assembly language implementation.

3. Your optimized C implementation.
4. A table of instruction count and average, max, and standard deviation of latency for each of

the three implementations.
If you have suggestions for further improvements of this lab, you’re welcome to include them at
the end of your lab.

