
 1

Objective
The purpose of this lab is to learn to design a finite state machine using structural
SystemVerilog, debug it in simulation with a self-checking testbench, and download it onto an
FPGA board.

1. Thunderbird Turn Signal
Your goal for this lab is to design a finite state machine in SystemVerilog to control the taillights
of a 1965 Ford Thunderbird1. There are three lights on each side that operate in sequence to
indicate the direction of a turn. Figure 1 shows the tail lights and Figure 2 shows the flashing
sequence for (a) left turns and (b) right turns.

ZOTTFFS
CALIFORNIA

RA RB RCLC LB LA

Copyright © 2000 by Prentice Hall, Inc.
Digital Design Principles and Practices, 3/e

Figure 1. Thunderbird Tail Lights

1 This lab is derived from an example by John Wakerly from the 3rd Edition of Digital Design.

E85: Digital Design and Computer Architecture

Lab 3: Finite State Machine Design

 2

LC(a) LB LA RA(b) RB RC

Copyright © 2000 by Prentice Hall, Inc.
Digital Design Principles and Practices, 3/e

Figure 2. Flashing Sequence (shaded lights are illuminated)

The FSM should have two inputs, left and right, that trigger the flashing sequence on the cycle
after they are asserted. At most one of the inputs will be asserted at any time. The FSM should
have six outputs, LA, LB, LC, RA, RB, and RC. Once the sequence starts, it should continue
even if the input is deasserted. When the sequence completes, it should go back to all lights off
for a cycle before another sequence may begin. See the Thunderbird test vector file later in this
lab for an example of the expected behavior.
Draw a state transition diagram for your FSM. Be careful to exactly follow the specification
above because you will have to repeat all of the subsequent steps if your diagram is incorrect.
Choose state encodings and write Boolean equations for the next state and output logic. The
difficulty of this task is strongly influenced by the state encoding you choose. Sketch the circuit.
Write structural Verilog code for your FSM. Your FSM should have the following module
declaration:
module lab3_xx(input logic clk,
 input logic reset,
 input logic left, right,
 output logic la, lb, lc, ra, rb, rc);

where xx are your initials. You may assume that clk runs at the desired speed (e.g. about 1
Hz).

Simulate your FSM with the following self-checking testbench and vectors. Study the testbench
and observe how it applies inputs and checks the outputs. Debug any discrepancies. You’ll
probably have errors at first. Get used to interpreting the messages from ModelSim and correct
any mistakes. In fact, it’s good if you have bugs in this lab because it’s easier to learn debugging
now than later when you are working with a larger system!
module testbench();
 logic clk, reset;
 logic left, right, la, lb, lc, ra, rb, rc;
 logic [5:0] expected;
 logic [31:0] vectornum, errors;
 logic [4:0] testvectors[10000:0];

// instantiate device under test
lab3_xx dut(clk, reset, left, right, la, lb, lc, ra, rb, rc);

// generate clock
always

 3

 begin
 clk=1; #5; clk=0; #5;
 end

// at start of test, load vectors
// and pulse reset
initial
 begin
 $readmemb("thunderbird.tv", testvectors);
 vectornum = 0; errors = 0; reset = 1; #27; reset = 0;
 end

// apply test vectors on rising edge of clk
always @(posedge clk)
 begin
 #1; {left, right, expected} = testvectors[vectornum];
 end

// check results on falling edge of clk
always @(negedge clk)
 if (~reset) begin // skip during reset
 if ({la, lb, lc, ra, rb, rc} !== expected) begin // check result
 $display("Error: inputs = %b", {left, right});
 $display(" outputs = %b %b %b %b %b %b (%b expected)",
 la, lb, lc, ra, rb, rc, expected);
 errors = errors + 1;
 end
 vectornum = vectornum + 1;
 if (testvectors[vectornum] === 8'bx) begin
 $display("%d tests completed with %d errors", vectornum, errors);
 $stop;
 end
 end
endmodule

// thunderbird.tv
// left right _ la lb lc ra rb rc
00_000000
10_000000
10_100000
10_110000
10_111000
10_000000
10_100000
00_110000
01_111000
01_000000
01_000100
00_000110
00_000111
00_000000

Synthesize your FSM. Look at the RTL Viewer. Does it match your expectations?

Assign pins. Use DIP switches2 for clk, reset, left, and right, and LEDs for the six outputs.
Resynthesize with the pin assignments.

Look at the compilation report in the Quartus Flow Summary. Find the number of registers and
pins the design uses. Does that match expectations?

Under Analysis & Synthesis, look at the resource utilization summary. Check that the number of
register and I/O pins matches your expectations.

2 It is also possible to use the KEY3:0 pushbutton, but beware that these are 1 when not pressed
and 0 when pressed, and that at least the KEY0 on E85 board #7 appears to be damaged.

 4

Test your design. Note that the switches sometimes experience a phenomenon called bounce, in
which the mechanical contacts bounce as the switch is opening or closing, creating multiple
rapid rising and falling pulses rather than a single clock edge. If your lights seem to skip through
multiple states at a time, it is probably because of switch bounce on the clock switch. With a bit
of practice, you can learn to push the switch in a way that bounces less. It is also possible to
build a circuit to “debounce” a switch, but that is beyond the scope of this lab. Fix any other
problems that you observe.

What to Turn In
1. Please indicate how many hours you spent on this lab. This will be helpful for calibrating the

workload for next time the course is taught.

2. State transition diagram
3. State encoding and Boolean equations for next state and output

4. Sketch of circuit
5. Structural Verilog code

6. Simulation waveforms showing the FSM inputs and outputs. Did it pass the self-checking
testbench?

7. RTL Viewer schematics. Do they match your expectations?
8. Did the tail lights function correctly on the DE2 Board?
If you have suggestions for further improvements of this lab, you’re welcome to include them at
the end of your lab.

