E85: Digital Design and Computer Architecture

Lab 2: FPGA Tools and Combinational Logic Design

Objective

The purpose of this lab is to learn to use Field Programmable Gate Array (FPGA) tools to
simulate a SystemVerilog description of combinational logic, then synthesize it onto the FPGA
and download it onto an FPGA board. The lab tutorial will walk you through a full adder and
then you will design an instruction decoder circuit.

1. Tutorial: Altera FPGA Tools

All of the FPGA labs in E85 will be using the Altera/Intel Quartus II FPGA software
(specifically, version 13.0 SP1 Web Edition, the last version to support our Cyclone II chip), and
the Altera DE2 evaluation board with the Cyclone II EP2C35F672C6N' chip. You can
download and install the software on your own Windows PC to do parts of the labs from home,
but will need to go to the E85 lab to use the DE2 boards.

In this tutorial, you will take the full adder that you designed in Lab 1, simulate it in ModelSim,
and implement it on the DE2 board. You will hook up three switches for input and two LEDs for
output and check that the circuit behaves correctly.

Make sure the DE2 board is powered on (with a wall adapter plugged into the DC 9V jack) and
the USB Blaster (J9) port is plugged into the computer you are using. Press the red button to
turn on power and confirm that the POWER LED is glowing blue.

Create a new folder in your Charlie directory for this tutorial, such as lab2 xx, where xx are your
initials. Open Quartus II 13.0.1.232 Web Edition 64-bit. You will be greeted with a getting
started window. Click Create a New Project.

" EP2C indicates the Cyclone II family of chips. The 35 indicates the number of logic array
blocks (2076, a medium-sized chip). F672 indicates that the chip is in a 672-pin ball grid array
package. C indicates commercial temperature grade, and 6 is the slowest speed grade for this
chip.

Getting Started
With Quartus® Il Software

Start Designing Start Learning

Designing with Quartus Il software The audio/video interactive tutorial teaches
requires a project you the basic features of Quartus Il software

c'&:? r‘n’]‘::wg:':)a Open Interactive Tutorial

Open Recent Project:
H:/E85labs/midterm2/datOUT.qpf
H:/E85labs/midterm/midterm.qpf
H:/E85labs/lab2/lab2.qpf
H:/E85labs/lab5/lab5.qpf

[“tirerature Il “Training I Oniine Demos [Support |
®

If the getting started screen is not present you can reach the same wizard by selecting File-
>New-> New Quartus II project.

Change the working location of the project to the folder you created, change name of the project
to something suitable as show below. Set the top-level design entity to fulladder. This assumes
our Charlie drive is mapped to H:.

€4 New Project Wizard -
Directory, Name, Top-Level Entity [page 1 of 5]
Whatis the working directory for this project?
H:\e85\Spring 2017Vab2_ch =)
What is the name of this project?
1ab2_dh =
Whatis the name of the top-evel design entity for this project? This name is case sensitive and must exactly match the entity name in the design fle.
fulladder| =
I
[<Back | [mext>][Fmsh][concel][Hep |

Click next, click ne;t—through the Add Files page [2 of 5] as we have no files to add
The next page will set the specific FPGA we want the tool to target.

e .)
Family & Device Settings [page 3 of 5]

Select the family and device you want to target for compilation.
You can install additional device support with the Install Devices command on the Tools menu.

Device family Show in 'Available devices' list
Family: [Cydone hid v] Package: [Any v]
Devices: |All 2 Pin count: [672 N]
Target device Speed grade: [Any v]
() Auto device selected by the Fitter Name fiter:
@ Specific device selected in 'Available devices' list Show advanced devices HardCopy compatible only
Other: nfa

Available devices:

Name Core Voltage LEs User1/0s Memory Bits Embedded 9-bit PLL Gl ~
Eﬁﬁﬂﬂ&!ﬂllllllEMElﬁﬂllllEﬂﬂﬂllllEIIIIIIIIIIIIIIIHIIIMI
EP2C35F672C7 1.2V 33216 475 483840 4 2
EP2C35F672C8 1.2V 33216 475 483840 70 4 16
EP2C35F67218 1.2V 33216 475 483840 70 4 16
EP2C50F672C6 1.2V 50528 450 594432 172 4 16
EP2C50F672C7 1.2V 50528 450 594432 172 4 16
FRICENFATICR 1 W SNSOR_ 4sn 504477 172 ! a w7
< mn »

Companion device
HardCopy: v

Limit DSP & RAM to HardCopy device resources

[<Back |[mext> J[Finsh |[cancel |[e |

Select Family->Cyclone II, then Pin Count 672; this will greatly reduce the choices. Click
EP2C35F672C6 in available devices and click next. On page 4 change Simulation to ModelSim-
Altera and the Format to SystemVerilog HDL, click next, then Finish.

For this tutorial we will create a full adder. Choose File->New->SystemVerilog HDL. Copy and
paste the HDL for the full adder below into the file.

module fulladder (input logic a, b, cin,
output logic sum, cout);

logic ns, nl, n2, n3, n4;
// sum logic
xor x1(ns, a, b);

xor x2(sum, ns, cin);

// carry logic
and al(nl a, b);

and a2 (n a, cin);

and a3 (n b, c1n),

or 1(n nl, 2);

or (cout, n3 nd) ;
endmodule

Save your file as fulladder.sv in your lab2_xx directory.
1.1 Synthesis

Having completed the code we can now synthesize it into hardware. Quartus II calls this
compilation. Choose Processing->Start Compilation. This is also available in the panel in the
bottom left of the main window. Watch for notes, warnings, and errors in the bottom panel. It is

a good habit to learn which warnings are normal and to track down the root cause of abnormal
warnings that can signal something awry that would otherwise take you hours to debug.

You should get five critical warnings because pins have not been assigned. Now you will need
to assign the proper pins so that the signals in your design connect to switches and LEDs on the
board. Look at the following file that defines the FPGA pin numbers for each function on the
board.

\\charlie.hmc.edu\Courses\Engineering\E85\Labs\DE2 pin_assignments.csv

Now that synthesis has run, Quartus knows what signals are used by your top-level module, so
you can assign them to pins. Let’s assign inputs a, b, and ¢ to SW[0], [1], and [2], respectively.
The pin assignment file shows that SW[0] is PIN_N25 on your FPGA. Choose Assignments —>
Pin Planner and set the location for input a to PIN_N25. Likewise, set b to PIN N26 and c to
PIN P25. Hook s to LEDG[0] (PIN_AE22), and look up the pin assignment for LEDG[1] for
cout. Then close the Pin Planner and synthesize again. You should see two critical warnings
that Synopsys Design Constraints are not assigned because you have specified no timing
requirements for your circuit, but the other critical warnings should go away.

1.2 RTL Viewer

Now we will look at what the synthesizer created using the register transfer level (RTL) viewer.
Tools->Netlist viewer-> RTL Viewer
You should see the following circuit that matches your code.

GD——E)_
=
a2 5

> {—»cout
cin [0 |)
a3

1 ——

X2
>D {»sum

1.3 Simulation

Next, we will simulate our circuit to make sure it performs the intended function. The best way
to do a simulation is with a self-checking testbench written in System Verilog. The testbench
applies inputs and checks that the outputs match expectation. If you find a mistake, you can
correct the design and rerun the simulation to confirm. This reduces the tedium and risk of
introducing errors running simulations and checking the results manually.

Create a new SystemVerilog file and paste the following code into it. Observe that this code is a
very different style of Verilog than you have previously seen; instead of implying physical
hardware, it reads inputs called test vectors from a file, applies them, and checks the result.
SystemVerilog is powerful in that it supports both hardware modeling and testbenches, but you

will have to be careful not to use the kinds of programming language constructs of a testbench
when you intend to imply hardware.

module testbench();
logic clk, reset;
logic a, b, cin, s, cout, sexpected, coutexpected;
logic [31:0] vectornum, errors;
logic [4:0] testvectors[10000:0];

// instantiate device under test
fulladder dut(a, b, cin, s, cout);

// generate clock
always
begin
clk=1; #5; clk=0; #5;
end

// at start of test, load vectors
// and pulse reset

initial
begin
Sreadmemb ("fulladder.tv", testvectors);
vectornum = 0; errors = 0; reset = 1; #27; reset = 0;
end

// apply test vectors on rising edge of clk
always @ (posedge clk)
begin
#1; {a, b, cin, coutexpected, sexpected} = testvectors[vectornum];
end

// check results on falling edge of clk
always @ (negedge clk)

if (~reset) begin // skip during reset
if (s !== sexpected || cout !== coutexpected) begin // check result
Sdisplay ("Error: inputs = %b", {a, b, cin});
Sdisplay (" outputs = %b %b (%b %$b expected)",
s, cout, sexpected, coutexpected);
errors = errors + 1;
end
vectornum = vectornum + 1;
if (testvectors[vectornum] === 5'bx) begin
Sdisplay ("%d tests completed with %d errors", vectornum, errors);
Sstop;
end
end
endmodule

Create another file called fulladder.tv and add the following lines:

// a b c _ cout s
000 _00
001 01
010_01
011_10
100 01
101_10
110_10
111711

We will use ModelSim, a commercial hardware description language (HDL) simulator made by
Mentor Graphics. You can download and install ModelSim PE Student Edition (for from the
web to your own computer if you wish, or use the version already installed in the E85 lab.

Choose File -> New Project and create a project named lab2 xx in your Charlie directory. Click
Add Existing File and browse to add your lab2 xx.sv and testbench.sv files. Choose Compile->
Compile All. You should see a message “2 compiles, 0 failed with no errors.” If you do get
errors, click on the red errors message to bring up the errors, and correct the bad file, then
compile again.

Choose Simulate -> Start Simulation... Expand the + symbol next to the work library, then click
on your testbench module. Uncheck Enable optimization so that ModelSim does not optimize
away important signals. Choose OK to simulate it. In the Objects pane, select all of the signals,
then choose Add -> To Wave -> Selected Signals so that all of your inputs and outputs show up
in a waveform viewer.

Type run 200 in the Transcript pane to run the simulation for 200 time units. You should see a
message “8 tests completed with 0 errors.” If you see a warning that Modelsim can’t find your
fulladder.tv file, move it to the same directory that you chose for your ModelSim project. Then
type restart —f in the Transcript pane to restart your simulation without losing all your waveforms
and run 200 to rerun. If you ever need to stop a runaway simulation, you can use the Simulate ->
Break menu.

1.4 Hardware Programming

Synthesis generates a bitfile indicating how each logic block and interconnection on the FPGA
should be configured. We can now program the DE2 board with the bitfile to place your design
on the chip.

Tools->Programmer

5
W - Hy/E8SnewLabs/lab3 ial - ial - [Chainl.cdfl* SRR X
File Edit View Processing g Tools Window Help & Search altera.co @
Mode: [JTAG v] Progress: 100% (Successful)
Enable real-time ISP to alo und programming (for MAX 11 and MAX V devices)
. File Device Checksum Usercode Program/ Verify Blank- Examine
»l Start Configure Check
i St output_files/lab3tutorial.sof EP2C35F672 002F3A38 002F8A38 V|
34 Auto Detect
| (% AddFik...

(2% Add Device....
v

TOI

EP2C35F672
D0

If it does not say USB-Blaster next to Hardware Setup, then use the button to set it to USB-
Blaster. Click Add File... and browse to the “output files” folder of your project. Select the
.SOF file. Click the Start button. It should program the FPGA and run to 100% successful.

Now you can move the toggle switches SW[2:0] on the DE2 board and look at the green LEDs.
Check that your adder adds properly.

2. DE2 Board

If you like to know what is happing under the hood, you may wish to familiarize yourself with
your Altera DE2 board, which has many nifty capabilities. Skim through the DE2 User Manual
on the class website.

3. ALU Decoder

Now it is your turn to design a combinational logic circuit and build it on your FPGA board.

Table 7.3 from the textbook describes the function of a circuit with six inputs (ALUOp and
Funct4:0) and four outputs (ALUControll:0 and FlagW1:0). We will use this circuit in the
second part of the semester to control an arithmetic/logic unit (ALU) in a microprocessor. For
the purposes of this lab, you can assume that your circuit only has to correctly handle the inputs
in the table, and that the output for all other cases are don’t cares.

Write Boolean equations for the four outputs and sketch a schematic of a circuit that implements
your equations. Write structural Verilog code implementing your schematic. Build a self-
checking test-bench that applies all the interesting inputs and checks the output. Simulate your
code in your testbench and check that it performs the function you intended; debug any
discrepancies. Assign pins for your FPGA, using SW5 through SWO0 to provide inputs and
LEDGS3 through LEDGO to display the outputs. Synthesize your Verilog code and examine it in
the RTL Viewer and check that it matches your expectations. Write a self-checking testbench
with appropriate test vectors, simulate your design, and debug any errors. Download it onto the
DE?2 board and apply the inputs with the switches and check that the outputs match expectations.

Table 7.3 ALU Decoder truth table

Functyq Funct,

ALUOp (cmd) (S) Type ALUControlyy FlagWi.o
0 X X Not DP 00 (Add) 00
1 0100 0 ADD 00 (Add) 00

1 11
0010 0 SUB 01 (Sub) 00
1 11
0000 0 AND 10 (And) 00
1 10
1100 0 ORR 11 (Or) 00
1 10

What to Turn In

1. Please indicate how many hours you spent on this lab. This will be helpful for calibrating the
workload for next time the course is taught.

Boolean equations for your ALU Decoder

Gate-level schematic of your ALU Decoder

Structural Verilog code for your ALU Decoder

RTL Viewer schematics of your synthesized ALU Decoder

Self-checking test bench for your ALU Decoder with a test vector file

Simulation waveforms showing the ALU Decoder simulation. Did it work correctly?

Did the ALU Decoder function correctly on the DE2 Board?

© Ny R WD

If you have suggestions for further improvements of this lab, you’re welcome to include them at
the end of your lab.

