
Page 1 of 6

1) Enhancing the MIPS Processor
Modify the multi-cycle processor datapath and control FSM to handle the lb instruction.
Diagrams are attached for your convenience.

2) Microprogramming
Ben Bitdiddle is building a multi-cycle MIPS processor. He’s decided to build his cbox
control unit with microprogramming, as described in Section 5.5. The cbox receives
Reset and Op[5:0] (from the top 6 bits of the instruction) and is responsible for producing
all of the control signals to the datapath. The overall architecture is shown below:

Introduction to Computer Engineering (E85)
Harris Spring 2001

Problem Set 8 Due: Friday, April 6

Page 2 of 6

Microprogram counter

Address select logic

Adder

1

Input

Datapath
control
outputs

Microcode
storage

Outputs

Sequencing
control

Op[5:0]

6
4

1
2

4

4

Reset

Plus1[3:0]

Next[3:0]

Sel[1:0]

The microprogram counter is just a 4-bit register with reset. The microcode storage is a
16 word x 18 bit ROM producing 16 bits of control signals for the datapath and 2 bits of
sequencing control used by the Address Select Logic. The Address Select Logic, shown
below, is responsible for computing the next value of the microprogram counter. This
next value may be Seq, Fetch, Dispatch1, or Dispatch2, as listed in Figure 5.46.
Depending on the sequencing control lines Sel[1:0], the next address is chosen from the
old microprogram counter plus 1, zero (to go back to fetch), or the outputs of two PLAs
containing the dispatch logic.

Dispatch1
PLA

Dispatch2
PLA

0000

Plus1[3:0]

Next[3:0]

Op[5:0]

Address MUx
Sel[1:0]

0 1 2 3

Help Ben by designing the ROM and two DISPATCH PLAs.

a) Microcode ROM

Refer to Figures 5.42 and 5.46 to complete the Microcode ROM below. Place a dot on
the entries where the ROM should contain 1’s. The dotted rows have been completed for
you. Since the microcode program is fewer than 16 words long, the last six rows will be
empty. A copy of the ROM is on the last page for your convenience.

Page 3 of 6

Addr[3:0] 0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

ALUO
p[1]

ALUO
p[0]

ALUSrcA

ALUSrcB[1]

ALUSrcB[0]

RegW
rite

RegD
st

M
em
toReg

IorD
M
em
Read

M
em
W
rite

PC
Source[1]

PC
Source[0]

PC
W
rite

PC
W
riteC
ond

IRW
rite

Sel[1]

Sel[0]

Fetch

Mem1

LW2

SW2

Rformat1

BEQ1

JUMP1

Page 4 of 6

b) Dispatch1 PLA

The Dispatch1 PLA uses the 6 bits of the Op field to jump to the appropriate line in the
microcode program. The dispatch could be constructed as a 64 word by 4 bit ROM. The
six bits of Op could choose one word of the ROM containing the 4-bit destination in the
microcode program for that Op. However, this would be wasteful of space because very
few instructions are actually implemented, so most of the words in the ROM would be
blank. A more efficient approach is to use a PLA. The AND plane of the PLA decodes
the instruction. The OR plane produces the microcode address given the instruction.
Since we handle five types of instructions (LW, SW, R-format, BEQ, and JUMP), the
PLA only requires five minterms. Complete the PLA below. The first minterm for LW
(Op =100011) has been done for you; the Dispatch1 table jumps to MEM1 (address
0010) to process LW. A copy of the PLA is on the last page for your convenience.

OP3 OP1 OP0OP2 A3 A2 A1

AND Plane OR Plane

OP5 OP4

c) Dispatch2 PLA

Finally, the Dispatch2 PLA also uses 6 bits of Op to jump to either LW2 or SW2. Again,
it could be constructed as a ROM, but the PLA is more efficient. Sketch a circuit for the
Dispatch2 PLA on a separate sheet of paper.

3) Time
Please indicate how many hours you spent on this problem set. This will not affect your
grade, but will be helpful for calibrating the workload for next semester’s class.

Page 5 of 6

Multicycle Datapath (Problem 1)

Shift
left 2

PC
M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction
[15– 11]

M
u
x

0

1

M
u
x

0

1

4

Instruction
[15– 0]

Sign
extend

3216

Instruction
[25– 21]

Instruction
[20– 16]

Instruction
[15– 0]

Instruction
register

ALU
control

ALU
result

ALU
Zero

Memory
data

register

A

B

IorD

MemRead

MemWrite

MemtoReg

PCWriteCond

PCWrite

IRWrite

ALUOp

ALUSrcB

ALUSrcA

RegDst

PCSource

RegWrite

Control

Outputs

Op
[5– 0]

Instruction
[31-26]

Instruction [5– 0]

M
u
x

0

2

Jump
address [31-0]Instruction [25– 0] 26 28

Shift
left 2

PC [31-28]

1

1 M
u
x

0

3
2

M
u
x

0

1
ALUOut

Memory

MemData

Write
data

Address

Multicycle FSM (Problem 1)

PCWrite
PCSource = 10

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01
PCWriteCond

PCSource = 01

ALUSrcA =1
ALUSrcB = 00
ALUOp= 10

RegDst = 1
RegWrite

MemtoReg = 0
MemWrite
IorD = 1

MemRead
IorD = 1

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

RegDst = 0
RegWrite

MemtoReg =1

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

MemRead
ALUSrcA = 0

IorD = 0
IRWrite

ALUSrcB = 01
ALUOp = 00

PCWrite
PCSource = 00

Instruction fetch
Instruction decode/

register fetch

Jump
completion

Branch
completionExecution

Memory address
computation

Memory
access

Memory
access R-type completion

Write-back step

 (Op = 'LW') or (Op = 'SW') (Op = R-type)

(O
p

= 'B
EQ')

(O
p

=
'J

')

 (Op = 'SW
')

(O
p

=
'L

W
')

4

0
1

9862

753

Start

Page 6 of 6

Microcode ROM

Addr[3:0] 0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

ALUO
p[1]

ALUO
p[0]

ALUSrcA

ALUSrcB[1]

ALUSrcB[0]

RegW
rite

RegD
st

M
em
toReg

IorD
M
em
Read

M
em
W
rite

PC
Source[1]

PC
Source[0]

PC
W
rite

PC
W
riteC
ond

IRW
rite

Sel[1]

Sel[0]

Fetch

Mem1

LW2

SW2

Rformat1

BEQ1

JUMP1

Dispatch1 PLA

OP3 OP1 OP0OP2 A3 A2 A1

AND Plane OR Plane

OP5 OP4

