Introduction to Computer Engineering (E85)

Harris
Spring 2001

Problem Set 7
Due: Friday, March 30

1) Procedure Calls

Ben Bitdiddle is trying to compute $\mathrm{f}(\mathrm{a}, \mathrm{b})=2 * \mathrm{a}+2 * \mathrm{~b}$ (for nonnegative b). He goes overboard in the use of procedure calls and recursion and produces the following code.

```
int f(int a, int b)
{
    int j;
}
```

 \(j=a ; \quad k=2\);
 return \(j+a+f 2(b) ; \quad\) if \((x==0)\) return \(0 ;\)
    ```
int f2(int x)
{
    int k;
    else return k + f2(x-1);
```

Ben then translates the two procedures into assembly language, using the following register assignments:

Page 1 of 3

| 0x04000044 | ? | lw \$s0, 0 (${ }^{\text {spp }}$) | \# restore \$s0 |
| :---: | :---: | :---: | :---: |
| 0x04000048 | | addi \$sp, \$sp, 16 | \# restore stack pointer |
| 0x0400004c | | jr \$ra | \# and return |
| 0x04000050 | ?£2: | addi \$sp, \$sp, -12 | \# make room for \$s0, \$a0, and \$ra |
| 0x04000054 | ? | sw \$s0, 0 (\$sp) | \# save \$s0 |
| 0x04000058 | ? | sw \$ra, 4 (\$sp) | \# save return address |
| 0x0400005c | ? | sw \$a0, 8(\$sp) | \# save x |
| 0x04000060 | | addi \$s0, \$0, 2 | \# k = 2 |
| 0x04000064 | | bne \$a0, \$0, else | \# $\mathrm{x}=0$? |
| 0x04000068 | | addi \$v0, \$0, 0 | \# yes: return value should be 0 |
| 0x0400006c | | j done | \# and clean up |
| 0x04000070 | else: | addi \$a0, \$a0, -1 | \# x-1 |
| 0x04000074 | | jal f2 | \# call f2 (x-1) |
| 0x04000078 | ? | lw \$a0, $8(\$ \mathrm{sp})$ | \# restore x |
| 0x0400007c | | add \$v0, \$v0, \$s0 | \# k + f2 ($\mathrm{x}-1$) |
| 0x04000080 | ?done: | lw \$ra, 4 (\$sp) | \# restore return address |
| 0x04000084 | ? | lw \$s0, 0 (\$sp) | \# restore \$s0 |
| 0x04000088 | ? | addi \$sp, \$sp, 12 | \# restore stack pointer |
| 0x0400008c | | jr \$ra | \# and return |

Notice that the code saves and restores a bunch of registers on the stack on the lines annotated with Greek characters. In this problem, we will explore why these saves and restores are necessary for procedure calls and the consequences of omitting them.
a) If we run the code starting at test, what value is in $\$ v 0$ when the program gets to loop? Does his program correctly compute $2 * a+2 *$?
b) Suppose Ben deletes the lines marked with ? that save and restore \$ra. When we begin f, $\$$ ra points to 0×0400000 c, the instruction after jal f. When function f does the jump and link to f 2 , $\$$ ra points to 0×04000030, the instruction after jal $f 2$. When $f 2$ returns, we eventually get to the jr \$ra at the end of f . $(0 \times 0400004 \mathrm{c})$. Because f 2 fails to restore \$ra, we jump back to 0×04000030 rather than 0×0400000 c. Thus, we get into an infinite loop from 0×04000030 to 0×0400004 c. On each iteration of the loop, the stack pointer moves up 16 bytes. Eventually, it will point to an illegal memory address and the program will crash.
Now suppose Ben instead deleted the lines marked with? that saves and restores $\$ \mathrm{a} 0$. Will the program (i) enter an infinite loop but not crash; (ii) crash; (iii) produce an incorrect value in $\$ v 0$ when the program returns to loop (if so, what value?), or (iv) run correctly despite the deleted lines.
c) Repeat part b for each of deleting the lines marked with ? $?$ mmm?m? .

2) Enhancing the MIPS Processor (from E114 Midterm 2, Spring 1999)

The MIPS hardware we have constructed in class does not support bne. Modify the single-cycle processor datapath shown on the next page to handle bne. Also, complete the truth table for the controller. If you need to add a control signal, do so in the blank column.

3) Time

Please indicate how many hours you spent on this problem set. This will not affect your grade, but will be helpful for calibrating the workload for next semester's class.

Controller

Page 3 of 3

