
Page 1 of 9 

Introduction 
In this lab, you will begin developing a schematic model of the MIPS processor.  In the 
next lab, you will assemble the components into a fully functional microprocessor and 
will run programs on the model.  By the end of this lab, you should thoroughly 
understand the internal operation of the MIPS instruction and execution units. 

Please read and follow the instructions in this lab carefully.  You will need the results of 
this lab to complete the next lab, so any errors you make will require correction later.  
Also, in the past, many students have lost points for silly errors like not printing all the 
signals requested. 

The lab will involve several steps.  First, you will design and test basic blocks including a 
multiplexer and sign extension logic.  Then you will complete the instruction unit.  
Before starting this lab, you should be very familiar with the single cycle implementation 
of the MIPS processor described in Section 5.3 of Patterson & Hennessy. 

Our model of the MIPS processor divides the machine into four major units: the 
execution unit (ebox), instruction unit (ibox), data memory unit (dbox), and control unit 
(cbox).  The partition is shown in Figure 1 on the next page.  You have already designed 
the control unit in Lab 2. 

Each unit in turn is constructed from various functional blocks.  For example, as shown 
in the figure, the ebox contains the ALU (that you designed in Lab 5), the register file, the 
sign extension logic, and three multiplexers to select the register to write, the data to 
write, and the input to the second source of the ALU. 

You will use several techniques in your design.  You will draw new cells with the 
schematic editor.  You will add logic to partially completed designs provided for you.  
You will use Xilinx’s LogiBLOX feature to automatically create special structures like 
RAMs, ROMs, and multiplexers.  And in Lab 9, you will import your existing controller 
and ALU as symbols.  
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Figure 1:  MIPS Processor Block Diagram 
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1. Multiplexer 
Your first LogiBLOX design will be a 5-bit multiplexer used to extract the write register 
from either Instruction[20:16] or Instruction[15:11] depending whether the instruction 
uses the R format or I format. 

We have already created a project with some of the blocks for you. Use the File?Copy 
Project command in the Project Manager to copy it to your directory.  With Windows 
Explorer, make sure the \\Igor\Courses directory is mapped to the G drive (or some other 
drive letter if the G drive is already in use).  If not, map it yourself.  Then return to the 
Project Manager and browse to find the source on g:\eng\e85\labs\lab8\lab8base.pdf and 
copy it to your directory under the name lab8_xx (where xx are your initials).  You will 
get some errors about being unable to copy a project with a different name; ignore these.  
Then open your lab8_xx in the Project Manager.  

Create a new schematic.  Then you will use the LogiBLOX feature to create a 2-input 5-
bit multiplexer.  Choose Tools?LogiBLOX Module Generator from the schematic editor 
menu.  In the LogiBLOX Module Selector window, select a Module Type of Multiplexer.  
Specify a data bus width of 5 bits.  Make the Module Name mux2_5.  In the Details 
panel, click Type 2 and be sure Input Busses is 2 to indicate a 2-input 5-bit wide 
multiplexer.  Finally choose OK to generate the mux. 

Now you will simulate your 5-bit multiplexer to make sure it works.  Create a simple 
schematic with your mux, two 5-bit bus inputs A and B, a 5-bit output bus Y, and a select 
SEL. Use the integrity test after each time you draw a schematic to make sure there are 
no errors.  You will get warnings about hierarchy connectors on the top level schematic; 
this is ok.  Click the Simulation button on the Project Manager to simulate the mux.  You 
may get warnings that the LogiBLOX are out of date; you can safely ignore these.  Use 
the Signal?Add Signals command to add the A, B, Y, and SEL signals.  Some of these 
signals are busses, so they will appear as (A4, A0), (B4, B0), etc. 

Connect SEL to the B0 clock and A and B to the following formulae, respectively, as you 
learned in Lab 5: 

F0: [1F]12[00]8  F1: [15]10[0A]10 

Simulate the multiplexer for 20 ns and check that Y matches your expectations.  When 
your design works correctly, print the simulation waveforms. 

Finally, repeat this process to generate a mux2_32 with LogiBLOX.  You need not 
simulate this mux if you are confident you’ve repeated the correct design process. 
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2. Sign Extension 
Your next task is to complete the sign extension functional block, sgnext.  This block 
converts a 16-bit signed 2’s complement number to a 32-bit signed 2’s complement 
number by copying the sign of the 16 bit number into the upper 16 bits of the 32-bit 
number, as described on page 216 of your book. You’ll use sgnext later in the ebox. 

Create another new schematic.  Place a 16-bit input bus D and a 32-bit output bus EXT.  
You cannot connect inputs directly to outputs, so you may find buffers useful.  Then 
simulate the sign extension cell with the following stimulus for D: 

[DADE]10[9999]10[FEDD]10[1234]10 

When your module works properly, print the simulation waveforms showing the correct 
output.  Also print your schematic containing your sgnext.  Finally, create a macro for 
sgnext, as you did with the fulladder and ALU_1 in Lab 5, by selecting Hierarchy?Create 
Macro Symbol from Current Sheet.  You will use sgnext in the ebox in Lab 9. 
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3. Instruction Box 
The Instruction Box contains all of the Program Counter (PC) logic and the Instruction 
memory. After each instruction, it either increments the PC by 4 or adds the branch offset 
when a branch should be taken.   

In the project manager, choose Project?Add Source Files and add ibox.sch, a partially 
completed schematic of the ibox.  Look at the ibox schematic.  It is missing the branch 
selection logic and the instruction memory.  There is some funny syntax used to combine 
bits of busses.  For example, the branch offset needs to be computed as the 32-bit 
constant ConstExtended shifted left by 2.  This is done with the ConstExtended[31:0] bus 
on the left and the Gnd terminal in the middle.  The input bus to the branch adder is 
named ConstExtended[29:0],Gnd,Gnd, which represents a 32-bit number consisting of 
the lower 30 bits of ConstExtended followed by two 0’s, as a left shift by 2 would 
produce.  This is done correctly for you in the schematic; observe how the signals are 
connected by name and that you should not connect the busses with a line yourself. 

The instruction memory (imem) will be constructed as a LogiBLOX ROM holding the 
program to execute. Bring up the LogiBLOX Module Selector dialog and create a module 
type Memories.  Set the module name to imem (for Instruction Memory), the Data Bus 
Width to 32, the Memory Depth to 16 and the type to ROM.  This will produce a 16 word 
by 32-bit ROM.  Enter imem.mem as the name of the memory file and click Edit.   

 
This will bring up a window in which you can enter data stored in the ROM.  
Immediately after the line DATA, enter the following hexadecimal numbers which 
represent the Fibonacci program from Lab 5: 
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20080008 
2009ffff 
200A0001 
11000005 
012a5820 
21490000 
216a0000 
2108ffff 
1000fffa 
1000ffff 
 
This .mem file corresponds to the following program: 
# fib, by Travis Furrer, January 1999 
# 
# t0: loop index (n) 
# t1: fib(n-2) (starts with -1) 
# t2: fib(n-1) (starts with 1) 
# t3: fib(n) (will contain result after execution) 
      # Address Machine Instruction 
fib:  addi $t0,$0,8  # 00   20080008 
  addi $t1,$0,-1  # 04  2009ffff 
  addi $t2,$0,1  # 08   200A0001 
loop: beq  $t0,$0,done  # 0C  11000005 
  add  $t3,$t1,$t2  # 10  012a5820 
  addi $t1,$t2,0  # 14  21490000 
  addi $t2,$t3,0  # 18  216a0000 
  addi $t0,$t0,-1  # 1C  2108ffff 
  beq  $0,$0,loop  # 20  1000fffa 
done: beq  $0,$0,done  # 24  1000ffff 
 

Save and close the .mem file, then click OK on the Module Selector to create the 
instruction memory ROM.  You should obtain a message that the LogiBLOX symbol 
imem was successfully place in the library.   

Add the imem to the schematic.  Connect the address input to the program counter 
register output and the data output to the instruction output of the schematic.  Then 
complete the logic to compute the next program counter from Branch, Zero, PC + 4 (i.e. 
PCPLUSFOUR), and PC + 4 + the branch offset (i.e. PCPP), as is shown in Figure 1.  
Double-click on the multiplexer select signal to name it PCSrc, as it is named in the block 
diagram.  Hint:  you will probably need your mux2_32 from part 1 of this lab.  When you 
integrity test, you will also get warnings that ConstExtended31 and 30 are loadless nets.  
This is ok; we didn’t intend to connect anything to those signals. 

We will simulate the ibox as if it were running the Fibonacci program by providing 
appropriate inputs and observing the PC and Instruction outputs.  Watching the internal 
signals such as PCPlusFour may also be helpful when debugging.  To understand our 
expected outputs and determine if the ibox is operating correctly, we must think through 
the sequence of signals we should expect as we run the program.  On the first cycle, we 
will reset the machine to clear the program counter to zero.  On subsequent cycles, the 
program counter will either advance by 4 or be changed by a jump.   
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The ibox requires Reset, Branch, Zero, and ConstExtended inputs.  We will reset the ibox 
for the first cycle to initialize the PC to 0.  The ConstExtended input is a 32 bit sign-
extended version of the 16 least significant bits of the instruction.  Branch is asserted by 
the cbox, which you designed in Lab 2 whenever the instruction is a branch.  To 
determine the Zero input value, we must imagine running the program and computing the 
output of the ALU.  As you designed in Lab 5, Zero is true whenever the ALUResult 
signal is all zeros.  Remember that beq causes the ALU to subtract the two operands.  
Complete the Table 1 at the end of the lab showing the first twelve cycles of operation of 
the machine to help understand the values you should expect to see on each cycle.  If you 
use PCSpim to help you with the assembly language to machine language translation, 
recall that it has a bug that produces branch offsets one greater than they really should be.  
It is important to complete Table 1 before proceeding so you can match simulation 
against expectations! 

Now, add the following stimulus to the ibox inputs to simulate the first twelve cycles: 

CLK:     B0 

Reset:    F0 = [1]10[0]1000 

Branch:   F1 = [0]36[1]10[0]40[1]20[0]20 

Zero:    F2 = [0]46[1]10[0]10[1]10[0]10[1]10[0]20[1]10 

ConstExtended  F3 = [00000008]16[FFFFFFFF]10[00000001]10[00000005]10 
[00005820]10[00000000]20[FFFFFFFF]10[FFFFFFFA]10 
[00000005]10[00005820]10[00000000]10 

Simulate the ibox for 125 ns.  Check that the PC and Instruction and PCSrc values match 
your expectations from Table 1 on each cycle.  If they do not match, debug your design; 
you will need it in the next lab.  Turn in a printout of your waveforms showing all of 
these inputs and outputs.  Also turn in a printout of your completed ibox schematic.   
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4. Controller and ALU 
In the next lab when you complete the single-cycle processor, you will need your 
controller and ALU from labs 2 and 5, respectively.  At this point, you should check that 
you completed these labs correctly.  If you did not turn in the lab or had errors in your 
lab, correct them now.  You may refer to the solutions, but may not copy files from other 
people.  Be sure to simulate the labs; in the past, many students have not and have spent 
many more hours than necessary trying to find the bugs when they put all the pieces 
together in the next lab.  If your schematics are fully functional, congratulations:  this is a 
short lab. 

What to Turn In 
Please turn in each of the following items: 

1. Please indicate how many hours you spent on this lab.  This will not affect your 
grade, but will be helpful for calibrating the workload for next semester’s labs. 

2. A printout of your schematics from: 

? ? sgnext 

? ? ibox  

3. Simulation waveforms of: 

? ? mux2_5 

? ? sgnext 

? ? ibox 

Be sure the waveforms match your expectations.  Check that the waveforms are 
zoomed out enough that the grader can read your bus values.  Use several pages as 
necessary. 

4. A completed version of Table 1. 

5. Don’t turn in Labs 2 or 5, but be sure they are functional.  The next lab is long 
enough that you will not want to redo those labs before completing Lab 9. 
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Cycle Reset PC Instruction Branch ALUResult Zero PCSrc 
1 1 00 addi $t0,$0,8 

20080008 
0 8 0 0 

2 0 04 addi $t1,$0,-1 
2009ffff 

0 -1 0 0 

3 0 08 addi $t2,$0,1 
200A0001 

 1 0 0 

4  0C  
 

1   0 

5    
 

 0 1 0 

6    
 

    

7    
 

    

8    
 

    

9    
 

    

10  0C beq $t0, $0, done 
11000005 

    

11    
 

    

12    
 

    

Table 1: First twelve cycles of executing Fib. 

 


