Digital Electronics & Computer Engineering (E85)

Lab 7: Floating-Point Addition

I ntroduction

In this lab, you will write a MIPS assembly language function that performs floating-
point addition. You will then run your program using PCSpim (just as you did in Lab
6). For testing, you are provided a program that calls your function to compute the value
of the mathematical constant e. For those with no assembly language experience, this
will be along lab, so plan your time accordingly.

Background

Y ou should be familiar with the IEEE 754 Floating-Point Standard, which is described in
section 4.8 of your book (hopefully you read that section carefully!). Here we will be
dealing only with single precision floating-point values, which are formatted as follows
(thisis aso described on page 276 in your book):

Sign Exponent (8 bits) Significand (23 bits)
31(30[29|28[27|26[25|24[23|22[21|20]19 0

Remember that the exponent is biased by 127, which means that an exponent of zero is
represented by 127 (01111111). (The exponent is thus not encoded using two’'s
complement.)

The significand is always positive, and the sign bit is kept separately. Note that the actual
significand is 24 bits long: the first bit is aways a 1 and thus does not need to be stored
explicitly. Thiswill be important to remember when you write your function!

There are severa details of IEEE 754 that you will not have to worry about in this lab.
For example, the exponents 00000000 and 11111111 are reserved for special purposes
that are described in your book (representing zero, denormalized numbers, and NaN’s).
Y our addition function will only need to handle strictly positive numbers, and thus these
exponents can be ignored. Also, you will not need to handle overflow and underflows.

The program you are given to test your addition function estimates the value of the
mathematical constant e by summing the first several terms in its infinite series, seen in
Figure 1. It is the computation of this sum for which your floating-point addition
function is needed.

Page 1 of 6

?
e’?’) 1519

1219519
nttooctu T2

!
n?0

Figure 1: Infinite Seriesfor e

Fortunately, this series converges quickly, so the program will not have to compute very
many terms. In fact, to compute the value of e to the precision available in IEEE 754
single precision numbers, we need to sum only about the first dozen or so terms.

To implement floating-point addition in assembly language, there are some MIPS
instructions you will need to be familiar with. First, you will need to make use of the
and instruction to extract the exponent and significand out of the floating-point numbers.
This technique is called masking, because it involves the use of a 32-bit number that is
used as a mask over another number to allow only certain bits of the result to be non-
zero. For example, if you want to extract a number that is stored in bits 5-13 of afull 32-
bit word, you could use the code in Figure 2. Observe that the hexadecimal mask
0x00003FEQ is the binary value 0000 0000 0000 0000 0011 1111 1110 0000, a mask
with bits 5 through 13 set to 1. Also, note that the mask label is an address in memory.
The Iw command is necessary to load the mask value from that memory address into a
register before it can be used. A command like and $t1, $t1, nask isillegal
because the mask is not aregister.

.data
mask: 0x00003FEO # mask for bits 5-13

. text

xtract: |lw $t0, nmask
and $t1,$t1,%$t0
srl $t1,%$t1,5

Figure 2: Example code for Masking

Other instructions that you will need to be familiar with are the shift instructions. You
should take careful note of the difference between alogical right shift and an arithmetic
right shift, for example (see page 261 in your book). The logical right shift smply shifts
the bits right by the specified amount, aways shifting in zeros from the left. The
arithmetic right shift, however, keeps bit 31 the same and shifts all the other bits to the
right, copying bit 31 into al of the bits vacated by the shift. This alows negative two's-
complement numbers to be shifted right without changing their sign. There is another
shift instruction available in MIPS that you should find quite useful: the variable shift.
The instruction sr av alows you to perform right shifts by a distance specified by the
valuein aregister. As always, you should refer to the appendix section A.10 in your book
for a complete reference on the MIPS instruction set.

Page 2 of 6

1. Hand Analysis

Before implementing floating point addition, familiarize yourself with the representation
of floating point numbers and with carrying out addition by hand by answering the
following questions. Give your answers in binary and hexadecimal. For example, 1.0 is
written as an |EEE single-precision floating point number as:

1.0 =0 01111111 00000000000000000000000 = 3F80000046

a) Write 2.0 as an |EEE single-precision floating point number.

b) Write 3.5 as an |EEE single-precision floating point number.

c) Write 0 asan |EEE single-precision floating point number.

d) Write 0.3125 as an |EEE single-precision floating point number.

€) Write 65535 as an |EEE single-precision floating point number.

f) Compute 65535 + 0.3125 and express the result in |EEE floating point format.

Page 3 of 6

2. Writing the Code

You can add your floating-point addition function into the flpadd.asm file that is
provided. Thisfile already contains the code for a program that will compute e by calling
your addition function, and can be found in the class Labs\Lab7 directory on
\\Igor\Courses\Eng\E85. Carefully read the comments there, then add your code in the
place indicated. Remember that Spim is case-sensitive; use lower-case letters.
Remember that your code should not modify any $s registers because the program calling
you expects that $s registers will not change across procedure calls. Y ou should be able
to use only $t registersto avoid saving and restoring $s registers on the stack.

The algorithm that you need to implement in your code is given in Figure 4.44 of your
book. However, this algorithm can be smplified since your addition function need only
handle strictly positive numbers, and need not detect overflow or underflow. Also, you
need not perform rounding (step 4 in the figure) since it would be complicated and
because truncation is also a valid option (although less accurate). This leaves only steps
1-3 inthe boxes at the top of the figure for you to implement.

With careful thought, you will aso realize that in step 3 your code will never actually
need to perform a left shift, because of the restriction that it only needs to handle strictly
positive numbers. Convince yourself that this is true before writing your code (think
about the properties of the significands that get added in step 2, and the properties that
follow for the resulting sum).

Again, it isimportant to note that the most significant bit of the significand is an implied
1. After extracting the significands by using masking, your code can use an or
instruction to place the 1 back into the proper bit of the significands before performing
addition on them. Having this implied 1 bit in place in the significands will make the
normalization step more straightforward. Later, when your code reassembles a single
floating-point value for its final result from a separate significand and exponent, you will
need to remove thisimplied 1 bit fromin front of the significand again.

Since your code will add only strictly positive numbers, the sign bits in the numbers
being summed can be ignored. The sign bit of the resulting sum should be set to zero.

In summary, your algorithm will need to do the following:

1) mask and shift down the two exponents

2) mask the two significands and append leading 1's

3) compare the exponents, subtract the smaller from the larger

4) set the exponent of the result to be the larger of the addend exponents

5) right shift the significand of the smaller number by the difference between
exponents to align the two significands

6) sum the significands

7) if the sum overflows[1, 2), right shift by 1 and increment the exponent by 1

8) strip theleading 1 off the sum significand

9) merge the sum significand and exponent

As aguideline: you should be able to implement the floating-point addition algorithm in
under 50 lines of code; the solution uses 31 lines.

Page 4 of 6

3. Testing the Code
Before running your code, make sure that your PCSpim settings are as given from Lab 6.

In testing your code, you may want to use it to simply add two predetermined numbers
instead of to compute e. The comments in the code explain that you can do this by un-
commenting the short segment of code that calls your addition function, and commenting
out the program that computes e. Y ou can try adding simple numbers like 1+1 to debug
your code first this way.

As you step through the code when you are running the program that computes e,
compare the values that your procedure returns in $v0 with the values shown in bold in
Table 1. Having these values as a reference should help you verify that your addition
function works correctly. You can also see from this table how quickly the series
converges.

Sum of first i termsin series

I deal

Decimal

Value
0 [1.0000000 | 3F800000 [O 01111111 00000000000000000000000
1| 2.0000000 | 40000000 | O 10000000 00000000000000000000000
2 | 2.5000000 | 40200000 | O 10000000 01000000000000000000000
3| 2.6666666 | 402AAAAA | 0 10000000 01010101010101010101010
4] 2.7083333 | 402D5554 | 0 10000000 01011010101010101010100
5| 2.7166666 | 402DDDDC | 0 10000000 01011011101110111011100
6 | 2.7180555 | 402DF49D | 0 10000000 01011011111010010011101
7 | 2.7182539 | 402DF7DD | 0 10000000 01011011111011111011101
8 | 2.7182787 | 402DF845 | 0 10000000 01011011111100001000101
9| 2.7182815 | 402DF850 | 0 10000000 01011011111100001010000
10 | 2.7182818 | 402DF851 | 0 10000000 01011011111100001010001

Table 1: Thecorrect return valuesfor your program

An explanation to eliminate confusion: Although your code should not make use of the
floating point registers, the provided code uses them to compute e. While stepping
through this code be sure to examine the floating point single-precision registers, not the
double-precision registers.

If your code is not working, don’t panic! 'Y ou now have the opportunity to learn to debug
assembly language code. Step through the code one line at a time (using the F10 single

Page 5 of 6

step command in PCSpim). Check that after each step, the results are what you expect
they should be. If you don’t know what the result should be, take the time to figure it
out; in the long run, it will save you debugging time. When the results differ, you have
found your bug. Correct your code, open it again with PCSpim, and single step again
until you verify that the correct answer is now produced.

What to Turn In
Please provide a hard copy of each of the following items:

1

Please indicate how many hours you spent on this lab. This will not affect your
grade, but will be helpful for calibrating the workload for next semester’ s labs.

2. Your answers to the hand analysis questions.

3. The code that you inserted into flpadd.asm, including your complete function that

performs floating-point addition.

A table of the 11 values returned in $v0 by your procedure after each call while
calculating e. If your program works, the values should match Table 1. If your code
doesn’'t work, explain what you believe the problem is. You'll need to single-step
through the entire program or set breakpoints at an appropriate place to view these
values after each floating point addition.

EXTRA CREDIT: Add support for negative numbers to your function. This requires
the following significant modifications, which could take approximately another 30
lines of code:

&% Extracting the sign bits from the arguments and handling them appropriately
%5 Negating the significands for negative numbers before adding them.

%5 Adding support for doing the proper number of left shifts (which will now be
needed) in the normalization step

%5 Setting sign bit of result properly and negating significand of result when
needed

If you do the extra credit, turnin alist of difficult cases that you tested and show that
the algorithm produced the correct result. Choose the cases that are most likely to
stress the algorithm. Y our score on this extra credit assignment can substitute for one
entire problem set grade.

Page 6 of 6

