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Introduction 
In this lab, you will write a MIPS assembly language function that performs floating-
point addition.  You will then run your program using PCSpim (just as you did in Lab 
6).  For testing, you are provided a program that calls your function to compute the value 
of the mathematical constant e.  For those with no assembly language experience, this 
will be a long lab, so plan your time accordingly. 

Background 
You should be familiar with the IEEE 754 Floating-Point Standard, which is described in 
section 4.8 of your book (hopefully you read that section carefully!).  Here we will be 
dealing only with single precision floating-point values, which are formatted as follows 
(this is also described on page 276 in your book): 

Sign Exponent (8 bits) Significand (23 bits) 

31 30 29 28 27 26 25 24 23 22 21 20 19 . . . 0 

 

Remember that the exponent is biased by 127, which means that an exponent of zero is 
represented by 127 (01111111).  (The exponent is thus not encoded using two’s 
complement.) 

The significand is always positive, and the sign bit is kept separately.  Note that the actual 
significand is 24 bits long: the first bit is always a 1 and thus does not need to be stored 
explicitly.  This will be important to remember when you write your function! 

There are several details of IEEE 754 that you will not have to worry about in this lab.  
For example, the exponents 00000000 and 11111111 are reserved for special purposes 
that are described in your book (representing zero, denormalized numbers, and NaN’s).  
Your addition function will only need to handle strictly positive numbers, and thus these 
exponents can be ignored. Also, you will not need to handle overflow and underflows. 

The program you are given to test your addition function estimates the value of the 
mathematical constant e by summing the first several terms in its infinite series, seen in 
Figure 1.  It is the computation of this sum for which your floating-point addition 
function is needed. 
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Figure 1: Infinite Series for e 

Fortunately, this series converges quickly, so the program will not have to compute very 
many terms.  In fact, to compute the value of e to the precision available in IEEE 754 
single precision numbers, we need to sum only about the first dozen or so terms. 

To implement floating-point addition in assembly language, there are some MIPS 
instructions you will need to be familiar with.  First, you will need to make use of the 
and instruction to extract the exponent and significand out of the floating-point numbers.  
This technique is called masking, because it involves the use of a 32-bit number that is 
used as a mask over another number to allow only certain bits of the result to be non-
zero.  For example, if you want to extract a number that is stored in bits 5-13 of a full 32-
bit word, you could use the code in Figure 2.  Observe that the hexadecimal mask 
0x00003FE0 is the binary value 0000 0000 0000 0000 0011 1111 1110 0000, a mask 
with bits 5 through 13 set to 1.  Also, note that the mask label is an address in memory.  
The lw command is necessary to load the mask value from that memory address into a 
register before it can be used.  A command like and $t1, $t1, mask is illegal 
because the mask is not a register. 

        .data 

mask:   0x00003FE0 # mask for bits 5-13 

        .text 

        . . . 

xtract: lw $t0, mask 

        and $t1,$t1,$t0 

        srl $t1,$t1,5 

        . . . 

Figure 2: Example code for Masking 

 

Other instructions that you will need to be familiar with are the shift instructions.  You 
should take careful note of the difference between a logical right shift and an arithmetic 
right shift, for example (see page 261 in your book).  The logical right shift simply shifts 
the bits right by the specified amount, always shifting in zeros from the left.  The 
arithmetic right shift, however, keeps bit 31 the same and shifts all the other bits to the 
right, copying bit 31 into all of the bits vacated by the shift.  This allows negative two’s-
complement numbers to be shifted right without changing their sign. There is another 
shift instruction available in MIPS that you should find quite useful: the variable shift.  
The instruction srav allows you to perform right shifts by a distance specified by the 
value in a register. As always, you should refer to the appendix section A.10 in your book 
for a complete reference on the MIPS instruction set. 
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1. Hand Analysis 
Before implementing floating point addition, familiarize yourself with the representation 
of floating point numbers and with carrying out addition by hand by answering the 
following questions.  Give your answers in binary and hexadecimal.  For example, 1.0 is 
written as an IEEE single-precision floating point number as: 

 

1.0 = 0 01111111 00000000000000000000000 = 3F80000016 

 

a) Write 2.0 as an IEEE single-precision floating point number. 

b) Write 3.5 as an IEEE single-precision floating point number. 

c) Write 0 as an IEEE single-precision floating point number. 

d) Write 0.3125 as an IEEE single-precision floating point number. 

e) Write 65535 as an IEEE single-precision floating point number. 

f) Compute 65535 + 0.3125 and express the result in IEEE floating point format. 
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2. Writing the Code 
You can add your floating-point addition function into the flpadd.asm file that is 
provided.  This file already contains the code for a program that will compute e by calling 
your addition function, and can be found in the class Labs\Lab7 directory on 
\\Igor\Courses\Eng\E85.  Carefully read the comments there, then add your code in the 
place indicated.  Remember that Spim is case-sensitive; use lower-case letters.  
Remember that your code should not modify any $s registers because the program calling 
you expects that $s registers will not change across procedure calls.  You should be able 
to use only $t registers to avoid saving and restoring $s registers on the stack. 

The algorithm that you need to implement in your code is given in Figure 4.44 of your 
book.  However, this algorithm can be simplified since your addition function need only 
handle strictly positive numbers, and need not detect overflow or underflow.  Also, you 
need not perform rounding (step 4 in the figure) since it would be complicated and 
because truncation is also a valid option (although less accurate).  This leaves only steps 
1-3 in the boxes at the top of the figure for you to implement. 

With careful thought, you will also realize that in step 3 your code will never actually 
need to perform a left shift, because of the restriction that it only needs to handle strictly 
positive numbers.  Convince yourself that this is true before writing your code (think 
about the properties of the significands that get added in step 2, and the properties that 
follow for the resulting sum). 

Again, it is important to note that the most significant bit of the significand is an implied 
1.  After extracting the significands by using masking, your code can use an or 
instruction to place the 1 back into the proper bit of the significands before performing 
addition on them.  Having this implied 1 bit in place in the significands will make the 
normalization step more straightforward.  Later, when your code reassembles a single 
floating-point value for its final result from a separate significand and exponent, you will 
need to remove this implied 1 bit from in front of the significand again. 

Since your code will add only strictly positive numbers, the sign bits in the numbers 
being summed can be ignored.  The sign bit of the resulting sum should be set to zero. 

In summary, your algorithm will need to do the following: 

1) mask and shift down the two exponents 
2) mask the two significands and append leading 1’s 
3) compare the exponents, subtract the smaller from the larger 
4) set the exponent of the result to be the larger of the addend exponents 
5) right shift the significand of the smaller number by the difference between 

exponents to align the two significands 
6) sum the significands 
7) if the sum overflows [1, 2), right shift by 1 and increment the exponent by 1 
8) strip the leading 1 off the sum significand 
9) merge the sum significand and exponent 

As a guideline: you should be able to implement the floating-point addition algorithm in 
under 50 lines of code; the solution uses 31 lines. 
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3. Testing the Code 
Before running your code, make sure that your PCSpim settings are as given from Lab 6.  

In testing your code, you may want to use it to simply add two predetermined numbers 
instead of to compute e.  The comments in the code explain that you can do this by un-
commenting the short segment of code that calls your addition function, and commenting 
out the program that computes e.  You can try adding simple numbers like 1+1 to debug 
your code first this way. 

As you step through the code when you are running the program that computes e, 
compare the values that your procedure returns in $v0 with the values shown in bold in 
Table 1.  Having these values as a reference should help you verify that your addition 
function works correctly.  You can also see from this table how quickly the series 
converges. 

Sum of first i terms in series 

i Ideal 
Decimal 
Value 

Computed 
Hex Value Computed Value in Binary 

    0 1.0000000 3F800000 0 01111111 00000000000000000000000 

1 2.0000000 40000000 0 10000000 00000000000000000000000 

2 2.5000000 40200000 0 10000000 01000000000000000000000 

3 2.6666666 402AAAAA 0 10000000 01010101010101010101010 

4 2.7083333 402D5554 0 10000000 01011010101010101010100 

5 2.7166666 402DDDDC 0 10000000 01011011101110111011100 

6 2.7180555 402DF49D 0 10000000 01011011111010010011101 

7 2.7182539 402DF7DD 0 10000000 01011011111011111011101 

8 2.7182787 402DF845 0 10000000 01011011111100001000101 

9 2.7182815 402DF850 0 10000000 01011011111100001010000 

10 2.7182818 402DF851 0 10000000 01011011111100001010001 
. 
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Table 1: The correct return values for your program 

 

An explanation to eliminate confusion: Although your code should not make use of the 
floating point registers, the provided code uses them to compute e.  While stepping 
through this code be sure to examine the floating point single-precision registers, not the 
double-precision registers.   

If your code is not working, don’t panic!  You now have the opportunity to learn to debug 
assembly language code.  Step through the code one line at a time (using the F10 single 
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step command in PCSpim).  Check that after each step, the results are what you expect 
they should be.  If you don’t know what the result should be, take the time to figure it 
out; in the long run, it will save you debugging time.  When the results differ, you have 
found your bug.  Correct your code, open it again with PCSpim, and single step again 
until you verify that the correct answer is now produced. 

What to Turn In 
Please provide a hard copy of each of the following items: 

1. Please indicate how many hours you spent on this lab.  This will not affect your 
grade, but will be helpful for calibrating the workload for next semester’s labs. 

2. Your answers to the hand analysis questions. 

3. The code that you inserted into flpadd.asm, including your complete function that 
performs floating-point addition. 

4. A table of the 11 values returned in $v0 by your procedure after each call while 
calculating e.  If your program works, the values should match Table 1.  If your code 
doesn’t work, explain what you believe the problem is.  You’ll need to single-step 
through the entire program or set breakpoints at an appropriate place to view these 
values after each floating point addition. 

5. EXTRA CREDIT: Add support for negative numbers to your function. This requires 
the following significant modifications, which could take approximately another 30 
lines of code: 

?? Extracting the sign bits from the arguments and handling them appropriately 

?? Negating the significands for negative numbers before adding them. 

?? Adding support for doing the proper number of left shifts (which will now be 
needed) in the normalization step 

?? Setting sign bit of result properly and negating significand of result when 
needed 

If you do the extra credit, turn in a list of difficult cases that you tested and show that 
the algorithm produced the correct result.  Choose the cases that are most likely to 
stress the algorithm.  Your score on this extra credit assignment can substitute for one 
entire problem set grade. 


