
Page 1 of 6

Introduction
In this lab, you will design a finite state machine to control the taillights of a 1965 Ford
Thunderbird1 and program your state machine into a field-programmable gate array
(FPGA) board. There are three lights on each side that operate in sequence to indicate
the direction of a turn. Figure 1 shows the tail lights and Figure 2 shows the flashing
sequence for (a) left turns and (b) right turns.

ZOTTFFS
CALIFORNIA

RA RB RCLC LB LA

Copyright © 2000 by Prentice Hall, Inc.
Digital Design Principles and Practices, 3/e

Figure 1: Thunderbird Tail Lights

LC(a) LB LA RA(b) RB RC

Copyright © 2000 by Prentice Hall, Inc.
Digital Design Principles and Practices, 3/e

Figure 2: Flashing Sequence (shaded lights are illuminated)

1 This lab is derived from an example by John Wakerly from the 3rd Edition of Digital Design.

Digital Electronics & Computer Engineering (E85)

Lab 4: Thunderbird Turn Signal

Page 2 of 6

This lab is divided into five parts: design, schematic entry, simulation, FPGA
implementation, and FPGA programming. If you follow the steps of FSM design
carefully and ask questions at the beginning if part is confusing, you will save yourself a
great deal of time. As always, don’t forget to refer to the “What to Turn In” section at the
end of this lab before you begin.

1) Design
You’ve already designed one state machine, so you should be able to do this one on your
own. You may assume you have a clock operating at a few Hz available run the FSM.
On paper, sketch a state transition diagram for your FSM. Give each state a name and
indicate the values of the six outputs LC, LB, LA, RA, RB, and RC in each state. Your
FSM should take three inputs: Reset, Left, and Right. On reset, the FSM should enter a
state with all lights off. When you press Left, you should see LA, then LA and LB, then
LA, LB, and LC, then finally all lights off again. This pattern should occur even if you
release Left during the sequence. If Left is still down when you return to the lights off
state, the pattern should repeat. Right is similar. It is up to you to decide what to do if
the user makes Left and Right simultaneously true; make a choice to keep your design
easy. Indicate on your state transition diagram the input conditions that will cause
transitions between states.

Write a state table listing the next state and outputs in terms of the current state and
inputs. Then choose a state encoding. Hint: with a careful choice of encoding, your
output and next state logic can be fairly simple. Rewrite the state table using your
encoding.

Finally, write a set of Boolean equations for the next state and outputs.

2) Schematic Entry
Open the Xilinx Project Manager with a new project named lab4_xx (where xx are your
initials). Use the Xilinx schematic editor to draw schematics for your FSM. You should
have a clock, three inputs, and six outputs. Remember to use the FD flip-flops and
whatever combinational logic you need. Later you will need to add pads, so leave some
room around the edge of your schematics.

3) Simulation
Simulate your FSM. Control the CLK with B0 from the Stimulus dialog. You may wish
to define formulas for Reset, Left, and Right, or may manually control them with letters
on the keyboard. Your simulation should convincingly show that the FSM performs all
functions correctly.

Page 3 of 6

4) FPGA Implementation
Now that you have your schematics working, you will map your design on to the field-
programmable gate array. First you will need to define the type of FPGA you are using.
From the Project Menu, choose File•Project Type. Set the flow to XC4000XL for the
Xilinx 4000XL series of 3.3-volt FPGAs we’ll be using. Set the type to 4010XLPC84,
the specific device. The 4010 model is a mid-sized FPGA with 400 CLBs. XL indicates
3.3-volt operation and PC84 indicates that it is packaged in an 84-pin plastic leaded chip
carrier (PLCC) package. The speed grade of 9 is ok; it specifies the performance of the
FPGA and doesn’t matter for this lab because your circuits can run slowly.

Now you will need to assign input and output pins. Edit your schematic. Delete the
input and output terminals. Add IPADs and OPADs as input and output pads. Each pad
needs a buffer to repower the signal coming from the pad. IBUF is an input buffer used
on most IPADS. OBUF is an output buffer used on most OPADs. BUFG is a global
clock buffer used on clock signals, which are routed specially on the chip for low skew.
The following schematic illustrates using pads and buffers on a simple circuit. Notice
how BUFG is used for the clock. Also notice how the nets between the PAD and the
BUF are labeled with the signal names. Update your design in a similar fashion. You
can add signal names by double-clicking on the wire you’d like to name.

Figure 3: Path illustrating IPAD, OPAD, IBUF, OBUF, and BUFG

Finally, assign pin numbers to each pad. Double-click on each PAD to bring up the
Symbol Properties dialog. Under the Parameters field, enter LOC as the Name and Pxx
as the pin number, where Pxx is a number given below. Click Add, then click OK. You
should see a label LOC = Pxx below each pad. Note that you can right click on the label
and move it around if it is in the way. Use the following pin numbering to be compatible
with the wiring on the board in the lab:

CLK

RESET

LEFT

RIGHT

P78

P3

P4

P5

LC

LB

LA

RA

RB

RC

P50

P49

P48

P47

P46

P45

Resimulate your design after adding pads to make sure you haven’t introduced any
mistakes. When your schematic is ready and saved, return to the Project Manager and
click the Implementation button. Click Yes if asked if you want to update the netlist
from the schematic. Check that the Device is listed in the dialog as 4010XLPC84 and

Page 4 of 6

click Run to begin. The flow engine will come up, showing the progress implementing
the design. You will then get a dialog reporting successful or unsuccessful
implementation.

When you are done, you can click on the Reports tab in the upper right pane of the
Project Manager to view the log files. Double-click on the Implementation Log file. If
anything had gone wrong, the Implementation log will show what went wrong.

If something goes wrong along the way, close any windows related to the implementation
(including report views) and use the Project Manager’s Project•Clear Implementation
Data to discard the old implementation files before clicking Implementation again. If you
have any files open when you try to clear implementation data or reimplement, you may
have to manually close them and then delete the entire xproj folder in your lab directory
using Windows Explorer.

Reading through the log file, you should not see any errors reported. There will be one
warning in the map report (looking at map.mrp will tell you this is because all of the
outputs use slow drivers, which is what we want). There will also be a warning that no
timing constraints were found because we did not set any. You will see that the tools first
translated the netlist into an NGD file. It then mapped the hardware onto CLBs in the
FPGA. Looking at the design summary, you should find the number of CLBs used. This
is broken down into Flip-Flops, Latches, 4-input LUTs, and 3-input LUTs. Remember
that each CLB contains 2 4-input LUTs (the F and G blocks), 1 3-input LUT (the H
block), and two flip-flops. You’ll also see how many IO (input/output) blocks are
attached; you should see 10 bonded IOBs (1 for your clock, 3 for inputs, and 6 for
outputs). Finally, the equivalent gate count is reported for the design. This is roughly the
number of two-input NAND gates that would be required to construct your design and is
a measure of the size of the design. After mapping, you’ll see the place and route report
in which the tool tries various placements of logic among CLBs scattered around the
FPGA. It looks for placements that will make the design run fast and allow all of the
interconnections between components inside the chip. You should see that the chip
routed with no errors. Next you’ll see a timing report. Finally, you’ll see a bitgen report
in which a .bit file containing all of the FPGA configuration information is generated.
This is the file you will download to the FPGA.

Next, look at the placement of your design on the chip by choosing
Tools•Implementation•Floorplanner from the Project Manager. A window will come up
with two large square subwindows in the right plane. Click on the back one called
Placement. You’ll see how your CLBs were place in the middle of the array and how IOs
were assigned around the periphery of the chip. By clicking on a CLB, you can see the
connections between logic. By expanding the primitives in the upper left window, you
can see all the inputs, outputs, LUTs, and flip-flops used in the design and click on
specific ones to identify them in the design. You will not need to do anything with this
information, but it gives you a physical sense of how your logic was mapped onto the
FPGA.

Page 5 of 6

4) FPGA Programming
Now you are ready to “burn2” your design into an FPGA and try out your FSM connected
to a set of switches and LEDs.

Find your lab4_xx.bit file in some location like lab4_xx\xproj\ver1\rev1\lab4_xx.bit
where your project is stored. If you created multiple versions or revisions, the location
might be different. Copy it onto a floppy disk. Go to the Microprocessors lab where an
XS40 FPGA evaluation board is plugged into a protoboard and connected to a
workstation. The XS40 board contains the XC4010XL FPGA, a microcontroller, and
some memory, along with a port for downloading designs from the workstation. If you
are interested in more information about the board, you can find it at:
http://www.xess.com/FPGA/homepage.html

You’ll be using DOS tools to program the FPGA, so you’ll need to set up your paths. In
the network neighborhood, open ENgServ1. Right-click on the E85 folder and map it as
a network drive (say, to the G drive). Then choose Start: Run and enter cmd to bring up
a DOS command window. Change to the E85\xstools\bin directory by typing:

g:

cd g:\xstools\bin

Try out the board using the lab solutions to make sure it is working and that you
understand the process. Type:
xsload lab4sol

You should see a message about downloading the file. You now need to reset the state
machine using the white reset wire on the breadboard. There are four horizontal rows
near the top of the breadboard. The bottom of the four rows is connected to ground (logic
0) and the top is connected to VDD (logic 1). Reset your circuit by connecting the white
reset line to 1 and then back to 0.

There are two blue buttons on the left side of the board. These are the Left and Right
inputs. Press them and watch the LEDs operate. There is also a slider controlling the
clock frequency. Adjust it and watch the lights flash faster or slower when you initiate a
turn.

When you are comfortable with the operation of the board, download your own code by
putting your floppy disk with your program in the drive (a floppy should be available by
slither) and typing:

xsload b:\lab4_xx

If your lab works correctly, congratulations! If the logic seems in error, go back and fix
your schematics and try again. If you get nothing out at all, check that you followed all
the steps in this section, then ask a lab assistant or the instructor for help. When you are
all done, put everything (the frequency slider, reset switch, and floppy disk) back where
you found it.

2 Burn is an old term dating back to when devices were programmed by blowing fuses inside the chip. This
process was irreversible. These days your FPGA stores its configuration information in internal static
RAM, so it is completely reconfigurable.

Page 6 of 6

What to Turn In
Please turn in each of the following items:

1. Please indicate how many hours you spent on this lab. This will not affect your
grade, but will be helpful for calibrating the workload for next semester’s labs.

2. Your paper FSM design, including:

• A completed state transition diagram for your FSM.

• Your table listing next state and outputs in terms of current state and inputs.

• A list of your binary encodings for each state.

• The revised copy of your tables using your binary encodings.

• Your Boolean equations for the output and next state.

3. Printouts of your schematics. Be sure they are legible; try not to use schematic pages
larger than B-sized.

4. Printouts of your simulation waveforms demonstrating that your FSM performs all
tasks correctly.

5. A brief description of your implementation results. Did the lights on the protoboard
flash correctly? If you did not get it working, discuss the difficulties you had.

6. Optimization contest: how many CLBs did your design require (this information is
reported in the implementation log)? You will receive one bonus point on this lab if
you can pack your design into 4 CLBs. You’ll wow the professor if you can pack it
into fewer.

