
Page 1 of 4

Introduction
In labs 8-11 you will be constructing a simple microprocessor running a subset of the
MIPS instruction set. One of the key components of the microprocessor is the controller,
which receives an instruction encoded in binary and decodes it to produce appropriate
control signals that direct the movement of data through the processor. In this lab, you
will construct the controller given a truth table specifying its operation. In Chapter 5 you
will learn more about the controller and what the outputs actually do; for now, you can
treat the device as a black box. In this lab you will also learn more about the schematic
editor and simulator, including how to draw busses and create formula test vectors.

As always, don’t forget to refer to the “What to Turn In” section at the end of this lab
before you begin.

Background
The MIPS instruction set uses a six-bit operation code (opcode, or just op) to specify the
action a processor should perform, such as add, subtract, or load information from
memory. Certain “R-type” instructions share the same operation code and are
distinguished by an additional four-bit function code (funct).

For each instruction, the controller must produce a suitable set of control signals that
direct the rest of the processor. The truth table below lists the controller outputs as a
function of inputs. It is identical to Figure C.4 except that it adds support for the j and
addi instruction. Note that ALUOp is not actually an output seen by the external world,
but is actually an internal signal used by the controller to compute the ALUControl
signals (this is indicated by the italics).

Digital Electronics & Computer Engineering (E85)

Lab 2: MIPS Controller

Page 2 of 4

Control Outputs

Op[5:0] Instruction R
egD

st

A
LU

Src

M
em

toR
eg

R
egW

rite

M
em

R
ead

M
em

W
rite

B
ranch

Jum
p

ALU
O

p[1:0]

000000 R-type 1 0 0 1 0 0 0 0 10

001000 addi 0 1 0 1 0 0 0 0 00

100011 lw 0 1 1 1 1 0 0 0 00

101011 sw X 1 X 0 0 1 0 0 00

000100 beq X 0 X 0 0 0 1 0 01

000010 j X X X 0 0 0 0 1 00

The controller must also generate three ALUControl signals using the Funct input and
ALUOp output:

ALUOp[1:0] Funct[3:0] ALUControl[2:0]

00 XXXX 010

01 XXXX 110

1X 0000 010

1X 0010 110

1X 0100 000

1X 0101 001

1X 1010 111

You may assume the outputs are undefined for inputs not given in these tables.

Page 3 of 4

1) Schematics
Your first task is to design the logic to compute the control outputs and draw it in the
Foundation Schematic Editor. Remember that you should optimize for least design time,
not for fewest number of gates. Don’t get bogged down trying too much to simplify your
logic. Open the Xilinx Project Manager with a new project named “lab2_xx” (where xx
are your initials).

Note that many of the signals are multiple bits wide. Rather than, for example, drawing
six lines to represent the single signal Op, you will learn how to draw a bus in the
Schematic Editor. To draw a bus, first click on the “Draw Buses” button.

Then click in the schematic where you would like the bus to end. Move the mouse to the
place where you would like the bus terminal for the Op input, and then right-click. Select
“Add Bus Terminal” from the popup menu, and you will see the “Add Bus
Terminal/Label” window. Specify “Op” as the bus name, “5:0” as the bus range, and a
terminal marker type of “INPUT,” then click OK.

The separate bits of the Op signal need to be wired to logic gates in the controller. To do
this, first draw six wires starting in space and ending on the Op bus. Next you will need
to draw bus “taps” to specify which bit of the Op signal each wire is actually connected
to. Click on the “Draw Bus Taps” button.

Your mouse cursor should have changed, and you are now in the mode to draw bus taps.
This mode works as follows: first click on the bus that you want to tap into. Then notice
that the status bar at the bottom of the window indicates a specific bit of the bus, starting
at the most significant bit Op5. Place your mouse cursor over a wire that taps into the
bus that corresponds to the bit indicated. Each time you click, the bus line will
decrement. Keep clicking on wires that tap into the bus until you have specified which
bit each of them connects to. At any point, you can cancel any operation in the schematic
editor by pressing ‘Esc’. (For more information on the “Draw Bus Taps” mode, search
for “Bus Taps” in the Schematic Editor’s online help system.)

You will also need to create busses for Funct[3:0] and ALUControl[2:0]. Remember to
make ALUControl an output. Finally, create regular hierarchy connectors for the single-
bit outputs: RegDst, ALUSrc, MemtoReg, RegWrite, MemWrite, Branch, and Jump.
When you have created the inputs and outputs, use any logic gates in the library to
compute the outputs according to the truth tables given. You will probably need a B-
sized drawing sheet to fit all of your gates; you can select the size from File•Page Setup.
If you need to use a single wire for two purposes, you will discover the wire cannot have
two names. To get around this problem, you can add buffers (BUF) to the design.

You may wish to label internal signals to help probe during simulation. For example,
even though ALUOp is neither an input nor output of the controller, you may wish to be
able to probe it later. To give a name to a wire, double-click on the wire. Then type in
the net name. For example, name the ALUOp wires ALUOp1 and ALUOp0.

Page 4 of 4

2) Simulation
When you are done drawing your control logic, your next step is to simulate and debug
the logic. Bring up the Logic Simulator window and add at least the two input busses and
all of the outputs. For debugging purposes, you may wish to add some internal signals as
well.

We will use formulas to specify the Op and Funct inputs. Choose Signal•Add
Stimulators, then click on the Formula button in the Stimulator Selector dialog to create
new formulas. Double-click on the F0 line and enter the following formula:

[00]50[08]10[23]10[2b]10[04]10[02]10

The numbers in brackets are hexadecimal values to apply to the bus and the numbers
after each bracket are durations to apply the value, measured in nanoseconds. In binary,
this formula assigns the value 00000000 for 50 ns, 00001000 for 10 ns, 00100011 for 10
ns, 00101011 for 10ns, 00000100 for 10 ns, and 00000010 for 10 ns. We will use it as
the stimulator for the Op input, which is only 6 bits, so the top two bits will be ignored.
You can check that the remaining 6 bits correspond to rows of the Op truth table.

Similarly, create a formula F1 that will be used for the Funct input:

[0]10[2]10[4]10[5]10[a]10[0]50

Now assign these formulas to the inputs using the Stimulator Selector. Click on Op in
the Waveform viewer, then click on the F0 yellow square in the Stimulator Selector.

Similarly, assign the next yellow button, F1, to the Funct input. When you have done this
correctly, you should see the red letters F0 and F1 next to the inputs in the Waveform
Viewer.

By default, bus values are displayed in hexadecimal. Since our truth tables are specified
in binary, let’s change the busses to display in binary as well. Click on a bus name in the
Waveform Viewer (such as Op), then choose Signal•Bus•Display Binary. Repeat the
process for the Funct and ALUControl busses.

Set the Simulation duration to 100 ns by typing 100 into the box on the Logic Simulator
toolbar. Now press the Simulation Step button to run the simulation for 100 ns and check
that the outputs agree with the truth table. If they do not, track down and fix your logic
errors in the schematic. You may find it useful that the values of nodes displayed in the
Waveform Viewer under the vertical cursor are also listed on the schematic.

What to Turn In
Please provide a hard copy of each of the following items:

1. Please indicate how many hours you spent on this lab. This will not affect your
grade, but will be helpful for calibrating the workload for next semester’s labs.

2. A printout of your schematic showing your controller logic.

3. A printout of your simulation waveforms showing correct operation for 100 ns.

