
Page 1 of 9

Introduction
In this lab and the next, you will design and build your own multicycle MIPS processor!

Your processor should match the design from the text reprinted below. It is divided into
four units: the cunit (control), eunit (execution), iunit (instructions), and munit (memory).
In this lab we will refer to the sections as units rather than boxes to avoid conflicting with
names from your previous labs. Note that the munit contains the shared memory used to
hold both data and instructions. Also note that the cunit comprises both the decoder using
Op[5:0] and the ALUControl logic taking ALUOp[1:0] and the Funct code from the low
bits of the instruction.

cunit

S h i f t

le f t 2

P C

M

u

x

0

1

R e g i s t e r s
W r it e

r e g i s t e r

W r it e

d a t a

R e a d

d a t a 1

R e a d

d a t a 2

R e a d

r e g i s t e r 1

R e a d

r e g i s t e r 2

I n s t r u c t io n

[1 5 – 1 1]

M

u

x

0

1

M

u

x

0

1

4

I n s t r u c t io n

[1 5 – 0]

S ig n

e x t e n d

3 21 6

I n s t r u c t i o n

[2 5 – 2 1]

I n s t r u c t i o n

[2 0 – 1 6]

I n s t r u c t i o n

[1 5 – 0]

I n s t r u c t io n

r e g is t e r

A L U

c o n t r o l

A L U

r e s u l t

A L U

Z e r o

M e m o r y

d a t a

r e g is te r

A

B

I o r D

M e m R e a d

M e m W r i t e

M e m t o R e g

P C W r i t e C o n d

P C W r i t e

I R W r i t e

A L U O p

A L U S r c B

A L U S r c A

R e g D s t

P C S o u r c e

R e g W r i t e

C o n t r o l

O u t p u t s

O p

[5 – 0]

I n s t r u c t i o n

[3 1 - 2 6]

I n s t r u c t io n [5 – 0]

M

u

x

0

2

J u m p

a d d r e s s [3 1 - 0]I n s t r u c t io n [2 5 – 0]
2 6 2 8

S h i f t

l e f t 2

P C [3 1 - 2 8]

1

1 M

u

x

0

3

2

M

u

x

0

1

A L U O u t

M e m o r y

M e m D a t a

W r it e

d a t a

A d d r e s s

PCEnable

A
LU

C
ontrol

iunit

munit

eunit

cunit

Figure 1: Multicycle Processor Datapath

Your task in this lab will be to design and test a microcoded state machine for the cunit
and to work out a test program for the processor as a whole. In the next lab, you will
design and test the remainder of the multicycle processor. You will be much more on
your own to complete these labs than you have been in the past, but may reuse any of
your hardware from previous labs.

Digital Electronics & Computer Engineering (E85)

Lab 10: Multicycle Processor (Part 1)

Page 2 of 9

Unit Overview
The units have the following inputs and outputs:

Clk input

Reset input

Op [5:0] input

Funct [3:0] input

Zero input

PCSource [1:0] output

ALUControl [2:0] output

ALUSrcB [1:0] output

ALUSrcA output

RegWrite output

RegDst output

IorD output

MemRead output

MemWrite output

MemtoReg output

IRWrite output

PCEnable output

Table 1: cunit interface signals

Clk input

Reset input

Instruction [31:0] input

ALUResult [31:0] input

ALUOut [31:0] input

PCEnable input

PCSource [1:0] input

PC [31:0] output

Table 2: iunit interface signals

Clk input

Reset input

PC [31:0] input

ALUOut [31:0] input

WriteData [31:0] input

IorD input

MemRead input

MemWrite input

IRWrite input

Instruction [31:0] output

MemoryData [31:0] output

Table 3: munit interface signals

Clk input

Reset input

Instruction [31:0] input

MemoryData [31:0] input

PC [31:0] input

RegDst input

MemtoReg input

RegWrite input

ALUSrcA input

ALUSrcB [1:0] input

ALUControl [2:0] input

Zero output

ALUResult [31:0] output

ALUOut [31:0] output

WriteData [31:0] output

Table 4: eunit interface signals

Page 3 of 9

Test Program
Your first task will be to prepare a simple test program, shown below, to test all of the
instructions. The program doesn’t do anything terribly interesting, but will prove your
processor is working correctly if it ends in an infinite loop at done with the proper value
in $t4. Translate the program to machine language and predict the values of major
signals after each cycle. You will use this program in the next lab as you debug your
processor. Note that the constants 42, 2C, and 28 are all in hexadecimal, not decimal.
Start the program at address 0 in memory. Recall that branches are counted relative to
the next instruction, to the beq branches back by –7 instructions (FFF9).

addi $t0, $0, 42

j later
earlier: addi $t1, $0, 4

sub $t2, $t0, $t1

or $t3, $t2, $t0
sw $t3, 2C($0)

lw $t4, 28($t1)

done: j done
later: beq $0, $0, earlier

What result should be in $t4 when the program reaches done?

Before debugging your multicycle processor, you will need to have a good idea of what
to expect out of the processor. Complete Table 6 at the end of this lab showing the
values of the FSM state, PC, Instruction, SrcA, SrcB, ALUResult, and Zero at each cycle
for your program. The FSM states are numbered in Figure 5.42 of your textbook; addi
requires States 10 and 11 as shown in Table 5 later in this lab. When Table 5 indicates a
don’t care, you can leave a ? in Table 6 indicating the result is implementation-
dependent. Notice that the instruction code is fetched during state 0 and therefore not
updated until state 1 of each instruction.

cunit design
The cunit is the most complex part of the multicycle processor. It should take the inputs
and produce the outputs described in Table 1. On Reset, the cunit should start at State 0.
The cunit should support the instructions from Figure 5.42 plus addi, as we added in
class. The state transition table is shown in Table 5. Recall that Seq of 00 means next
state, 10 means Dispatch 1, 11 means Dispatch 2, and 01 means Fetch, as defined in
Figure 5.46.

Design your controller using a microcode sequencer, as shown in Figure 2. The
microcode storage is a ROM taking a 4-bit state as input and producing 18 bits of output.

Page 4 of 9

Translate the state transition table in Table 5 into a series of 5-nibble hexadecimal values
(treat the upper two bits as 0) that can be entered as the contents of the microcode ROM.

Microprogram counter

Addres s select logic

Adder

1

Input

Datapath
control
outputs

Microcode
s torage

Outputs

Sequencing
control

Op[5:0]

6
4

1
2

4

4

Reset

Plus1[3:0]

Next[3:0]

Sel[1:0]

Figure 2: Microcode Sequencer

State

ALUOp[1:0]

ALUSrcA

ALUSrcB[1:0]

RegWrite

RegDst

MemtoReg

IorD

MemRead

MemWrite

IRWrite

PCSource[1:0]

PCWrite

PCWriteCond

Seq[1:0]

ROM Contents

0 00 0 01 0 x x 0 1 0 1 00 1 0 00 02148

1 00 0 11 0 x x x 0 0 0 xx 0 0 10

2 00 1 10 0 x x x 0 0 0 xx 0 0 11

3 xx x xx 0 x x 1 1 0 0 xx 0 0 00

4 xx x xx 1 0 1 x 0 0 0 xx 0 0 01

5 xx x xx 0 x x 1 0 1 0 xx 0 0 01

6 10 1 00 0 x x x 0 0 0 xx 0 0 00

7 xx x xx 1 1 0 x 0 0 0 xx 0 0 01

8 01 1 00 0 x x x 0 0 0 01 0 1 01

9 xx x xx 0 x x x 0 0 0 10 1 0 01

A 00 1 10 0 x x x 0 0 0 xx 0 0 00

B xx x xx 1 0 0 x 0 0 0 xx 0 0 01

Table 5: Microcode ROM Contents

Page 5 of 9

The address select logic of the Microcode Sequencer is shown in Figure 3. The dispatch
tables are ROMs that determine next addresses based on the opcode. For example, the
Dispatch2 ROM should go to state 3 on a lw (opcode=2316) or state 5 on a opcode=2B16).

Dispatch1
ROM

Dispatc h2
ROM

0000

Plus1[3:0]

Next[3:0]

Op[5:0]

Address Mux
Seq[1:0]

0 1 2 3

4 4

Figure 3: Address Select Logic

Create a schematic for your cunit. The schematic should include the microcode
sequencer from Figure 2 along with logic to compute ALUControl[2:0] from
ALUOp[1:0] (you can copy this from your Lab 2) and logic to compute PCEnable from
PCWrite, PCWriteCond, and Zero.

You will want to use LogiBLOX extensively in your design. You can make a resettable
flip-flop by specifying a LogiBLOX data register with an ASYNC CONTROL input and
an ASYNC VALUE of 0; the ASYNC CONTROL is the reset input and the value is the
value to which the register is set on reset. You can also use LogiBLOX to create four-bit
constants like 0 and 1 as inputs to the adder and address mux. You can avoid a very
messy combinational logic design problem by using ROMs for the microcode and
dispatch tables. Place the contents of the ROM after the DATA line in the .mem file.
When the ROM contains only a few nonzero entries, you can specify addresses for
particular contents to avoid listing lots of 0’s. For example, a Dispatch2 ROM .mem file
is shown below, with the two lines you need to add indicated in bold. Observe that the
ROM width is 4 bits (because it puts out a 4-bit output) and depth is 64 (6 bits of opcode
address one of 26 = 64 words).

Page 6 of 9

;
; memfile dispatch2.mem for LogiBLOX symbol dispatc2
; Created on Tuesday, April 11, 2000 15:45:48
;
; Header Section
RADIX 10
DEPTH 64
WIDTH 4
DEFAULT 0
;
; Data Section
; Specifies data to be stored in different addresses
; e.g., DATA 0:A, 1:0
RADIX 16
DATA
23:3
2B:5
; end of LogiBLOX memfile

There are a number of ways to connect the microcode ROM output bus to the individual
outputs. One of the simpler ways is to draw 18 bus taps and hook each bit of the bus to a
buffer, which in turn can drive the output with appropriate name.

When you have completed your schematics, simulate the cunit. Develop stimulus for the
Clk, Reset, Op, Funct, and Zero inputs based on your Table 6. For example, the first part
of each waveform is shown below; the rest of Op and Funct is yours to determine from
the appropriate bits of your Table 6. You may find it helpful to refer to your Lab 8 when
generating the stimulus. If you use a LogiBLOX ROM for your dispatch logic, you may
get a peculiar complaint about a bus conflict on your dispatch ROMs. This is caused by a
bug in the simulator that doesn’t properly understand the LogiBLOX ROM. You can
eliminate the error by modifying the “Multiplexer Style” field of the LogiBLOX ROM to
be “Normal Gates” rather than “Maximum Speed.” Print out your waveforms showing
all of the control outputs at each state. Make sure the outputs match your expectations
(you haven’t written these expectations, so you’ll have to work them out as you go by
looking at the current state and Table 5). If you find any errors, debug your circuit.
CLK: B0
RESET: [1]10[0]1000
OP: [08]57[02]30[04]30 …
FUNCT: [2]57[8]30[9]30 …
ZERO: [0]97[1]10[0]1000

Page 7 of 9

What to Turn In
Please turn in each of the following items:

1. Please indicate how many hours you spent on this lab. This will not affect your
grade, but will be helpful for calibrating the workload for next semester’s labs.

2. Your test program, written in machine language.

3. Your expected results from the test program:

• the value of $t4 upon reaching done

• A completed Table 6 showing the FSM state, PC, Instruction, SrcA, SrcB,
ALUResult, and Zero, of your program at each cycle until reaching done.

4. List the contents (in hexadecimal) of the microcode ROM from Table 5 and dispatch
ROMs.

5. A printout of your schematics from the cunit.

6. Simulation waveforms of the cunit showing all the inputs and outputs while running
the test program. Be sure the results match your expectations.

Page 9 of 9

Cycle Reset PC Instruction FSM State SrcA SrcB ALUResult Zero
0 1 00 0 0 00 04 04 0

1 1 00 0 0 00 04 04 0

2 0 04 addi
20080042

1 04 108 10C 0

3 0 04 addi
20080042

A 00 42 42 0

4 0 04 addi
20080042

B ?? ?? ?? ?

5 0 04 addi
20080042

0 04 04 08 0

6 0 08 j
08000008

1 08 20 28 0

7 0 08 j
08000008

9 ?? ?? ?? ?

8 0 20 j
08000008

0 20 04 0

9 0 24 beq
1000fff9

1 24 FFFF
FFE4

08 0

10 0 24 beq
1000fff9

8 00 00 00 1

11 0 08 beq
1000fff9

08 04 0C 0

12 0 0C addi
20090004

0

13 0 0C addi
20090004

A 00 04 04 0

14 0 0C addi
20090004

B ?? ?? ?? ?

15 0

16 0

17 0

18 0

19 0 10 sub
01095022

0 10 04 14 0

20 0

21 0

22 0

23 0

24 0 18 sw
ac0b002c

1 18 B0 C8 0

25 0

26 0

27 0

28 0 1C lw
8d2c0028

1 1C A0 BC 0

29 0

30 0

31 0 1C lw
8d2c0028

4 ?? ?? ?? ?

32 0 1C lw
8d2c0028

0 1C 04 20 0

33 0 20 j
08000007

1 20 1C 3C 0

34 0 20 j
08000007

9 ?? ?? ?? ?

35 0 1C j
08000007

0 1C 04 20 0

36 0 20 j
08000007

1 20 1C 3C 0

37 0 20 j
08000007

9 ?? ?? ?? ?

Table 6: Expected Instruction Trace

