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6.004 Fall ‘98
L11: Arbitration,
Synchronization,
and Metastability
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Review :
Edge-Triggered Tim ing Constraints
n Edge  Triggered Flip-Flop
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Maximum Frequency
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Skew
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_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ < _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
Clock Period > _______________________________
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What we will cover today:
The Trouble with Asynchronous Inputs
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A Synchronizer as Arbiter
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What Happens Now?

Ts ThCLOCK

D

Flip-Flop Specification Says:______________________NothingNothing
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Buridan’s Ass

Buridan, Jean 
    
Buridan, Jean (1300-58), French Scholastic philosopher, who held a theory of determinism, contending 
that the will must choose the greater good. Born in Bethune, he was educated at the University of Paris, 
where he studied with the English Scholastic philosopher William of Ockham. After his studies were 
completed, he was appointed professor of philosophy, and later rector, at the same university. Buridan is 
traditionally but probably incorrectly associated with a philosophical dilemma of moral choice called 
"Buridan's ass." In the problem an ass starves to death between two alluring bundles of hay because it 
does not have the will to decide which one to eat. 
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The Game Show Arbiter

Arbiter

A wins          B Wins

A B
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A Simpler Arbiter

AA

BB
B winsB wins

A winsA wins
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With Both Inputs High

H

H
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Static Metastability
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Static Metastability:
Inverted Pendulum Analogy
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What does Heisenberg Say ?

hpx >∆∆
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What if we relax accuracy?

0 Ta - Tb

Arbiter output perfectly correct if | Ta - Tb | > Tmargin
if | Ta - Tb | <= Tmargin, output can be RANDOM

Who Won
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The Remarkable Fact

The perfect arbiter:

Tmargin and Tpd finite and constant
Correct Ouput if | Ta - Tb | > Tmargin
Any Output if | Ta - Tb | <= Tmargin
Answer valid and stable after Tpd

IT IS IMPOSSIBLE TO BUILD ! ! ! !
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Dynamic Metastability
(More Stupid Classroom Tricks)
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Lecture Demonstration Circuit

delay

delay

D Q
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Is It Possible to Build This?

A B

Winner Done

The
Asynchronous
Arbiter:

Answer:

__________YesYes
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Practical Metastability

FSM

Clock

Async.
Inputs
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A Simple Model of Static Metstability

A
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Assume Vout = A Vin (i.e. not saturated)

i = 

Vin(t) =
1
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E t (A - 1) / ( R C )E t (A - 1) / ( R C )
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Evolution of Vout
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How Small must Vin(0) be
to make time to saturation take longer

 than time t?
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1/(A e t/tau) = e -t/tau / A1/(A e t/tau) = e -t/tau / A
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If Vin(0) is uniformly distributed:

Vin

But if Vin is in linear rise/fall a certain fraction
(p transition) of the time:

p metastable (t) = __________________________

p metastable (t) = __________________________

Vin

1/(A e t/tau) = e -t/tau / A1/(A e t/tau) = e -t/tau / A

p transition /(A e t/tau) = (p transition / A) e -t/taup transition /(A e t/tau) = (p transition / A) e -t/tau
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How much time do we need
to achieve a certain pmetastable?
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Example:
How Long for 1 failure / year?

100 MHz Clock (t = 10 ns)
ptransition = 0.1
A = 10
τ = 1 ns
Pmetstable = 1 / (100MHz . 1 year)
              = 1 / (108 x π x 10 7 ) = π x 10 -16

 

t = 10 -9 ln( 0.1 / (10 x π x 10 -16 ) ) = about 31 ns

How about 10 years instead of 1?
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t = (10^-9)ln(pi x 10^(-15)) = 33nst = (10^-9)ln(pi x 10^(-15)) = 33ns
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How often will failures
occur if we wait 100 ns?
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At 100 MHz, this is about 1 failure every 1030 YEARS!
Age of Hominids:
Age of Earth:
Age of Universe:

10 710 7

10 910 9

10 1010 10
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Is this a Good Excuse
For Cruising a Light?

You get 10 30 Years!You get 10 30 Years!
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What did we Learn Today?
• If we violate setup or hold times, a flip-flop can give a random digital

output.
• If we violate setup or hold times, we can’t bound the propagation delay

of a flip-flop.
• Metastability usually causes strange outputs, but flip-flops are sold that

have valid, stable, outputs while internal nodes are metastable. They
can still change their minds when coming out of metastability.

• In practice, we can choose a propagation time that will have a forever
stable output “most” of the time.

• If we wait long enough (typ. 10-100 ns) “most of the time” is almost
all of the time.

• We can easily detect when settling happens, but we can’t say how long
it will take.


