6.004 L13: Introduction to the Physics of Communication

How About English?

- 6.JQ4 ij a vondurfhl co8rse wibh sjart sthdenjs.
- If every English letter had maximum uncertainty, average information / letter would be _______
- Actually, English has only 2 bits of information per letter if last 8 characters are used as a predictor.
- English actually has <u>1</u> bit / character if even more info is used for prediction.

An Interesting Consequence:

• A Data Stream containing the most possible information possible (i.e. the least redundancy) has the statistics of

! ! ! ! !

Random Noise

How do we encode digital information in an analog world?

Once upon a time, there were these aliens interested in bringing back to their planet the entire library of congress ...

Further Reading on Information Theory

The Mathematical Theory of Communication, Claude E. Shannon and Warren Weaver, 1972, 1949.

Coding and Information Theory, Richard Hamming, Second Edition, 1986, 1980.

Transmission Line Algebra

$$j\mathbf{w}_{x}V_{0} = l \ j\mathbf{w}_{t}I_{0}$$
 $\mathbf{w}_{x}V_{0} = l \ \mathbf{w}_{t} \ I_{0}$
 $j\mathbf{w}_{x}I_{0} = c \ j\mathbf{w}_{t}V_{0}$ $\mathbf{w}_{x} \ I_{0} = c \ \mathbf{w}_{t} \ V_{0}$
 $\frac{\mathbf{w}_{t}}{\mathbf{w}_{x}} = \frac{1}{\sqrt{l \ c}}$ $\frac{V_{0}}{I_{0}} = \sqrt{\frac{l}{c}}$
 $= \frac{1}{\sqrt{l \ c}}$

Series or Parallel ?

- Series:
 - No Static Power Dissipation
 - Only One Output Point
 - Slower Slew Rate if Output is Capacitively Loaded
- Parallel:
 - Static Power Dissipation
 - Many Output Points
 - Faster Slew Rate if Output is Capacitively Loaded
- Fancier Parallel Methods:
 - AC Coupled Parallel w/o static dissipation
 - Diode Termination "Automatic" impedance matching

