6.004 L13: Introduction to the Physics of Communication

What is Information?

Information Resolves

6.004 Fall '98 L13 (10/27) Page 3

How do we measure information?

Error-Free data resolving 1 of 2 equally likely possibilities $=$
1 bit
of information.

How much information now?

3 independent coins yield
 of information
\# of possibilities $=8$

How about N coins?

N independent coins yield

$\#$ of possibilities $=\quad 2^{2^{\mathrm{N}}}$

What about Crooked Coins?

$\mathrm{P}_{\text {tail }}=.25$

$$
\mathrm{P}_{\text {head }}=.75
$$

\# Bits $=-\quad \Sigma \quad \mathrm{p}_{\mathrm{i}} \log _{2} \mathrm{p}_{\mathrm{i}}$
(about .81 bits for this example)

How Much Information?

. . 00000000000000000000000000000 . . .
None (on average)

How Much Information Now?

...01010101010101010101...

6.004 Fall '98 L13 (10/27) Page 9

How About English?

- 6.JQ4 ij a vondurfhl co8rse wibh sjart sthdenjs.
- If every English letter had maximum uncertainty, average information / letter would be $\log _{2}(26)$
- Actually, English has only 2 _ bits of information per letter if last 8 characters are used as a predictor.
- English actually has 1 __ bit / character if even more info is used for prediction.

Why Do These Work?

Answer: They Lower

Data Compression

Lot's O' Redundant Bits

Fewer Redundant Bits

Lot's O' Redundant Bits

An Interesting Consequence:

- A Data Stream containing the most possible information possible (i.e. the least redundancy) has the statistics of
Random Noise !!!!!

Digital Error Correction Original Message

Original Message

How do we encode digital information in an analog world?

Once upon a time, there were these aliens interested in bringing back to their planet the entire library of congress ...

The Effect of "Analog" Noise

VS.

6.004 Fall '98 L13 (10/27) Page 16

Max. Channel Capacity

for Uniform, Bounded Amplitude Noise

$乡$ Noise

Max \# Error-Free Symbols =

Max \# Bits / Symbol =

Max. Channel Capacity for Uniform, Bounded Amplitude Noise (cont)

$$
\begin{aligned}
& \text { P = Range of Transmitter's Signal Space } \\
& \text { N = Peak-Peak Width of Noise } \\
& \text { W = Bandwidth in \# Symbols } / \text { Sec } \\
& \mathrm{C}=\text { Channel Capacity = Max. \# of Error-Free Bits/Sec } \\
& \mathrm{C}=\quad \mathrm{W} \log _{2} \mathbf{(P / \mathbf { N })}
\end{aligned}
$$

Note: This formula is slightly different for Gaussian noise.

Further Reading on Information Theory

The Mathematical Theory of Communication,
Claude E. Shannon and Warren Weaver, 1972, 1949.
Coding and Information Theory, Richard Hamming, Second Edition, 1986, 1980.

The mythical equipotential wire

But every wire has parasitics:

$$
\begin{aligned}
& V=L \frac{d I}{d t} \\
& I=C \frac{d V}{d t}
\end{aligned}
$$

Why do wires act like transmission lines?

Signals take time to propagate
Propagating Signals must have energy
Inductance and Capacitance Stores Energy
Without termination, energy reaching the end of a transmission line has nowhere to go - so it

Echoes

Transmission Line Math

Lets try a sinusoidal solution for V and I:

$$
\begin{aligned}
V & =V_{0} e^{j\left(\omega_{t} t+\omega_{x} x\right)}=V_{0} e^{j \omega_{t} t} e^{j \omega_{x} x} \\
I & =I_{0} e^{j\left(\omega_{t} t+\omega_{x} x\right)}=I_{0} e^{j \omega_{t} t} e^{j \omega_{x} x} \\
\frac{\partial V}{\partial x} & =l \frac{\partial I}{\partial t} \longrightarrow \begin{array}{l}
j \omega_{x} V_{0}=l j \omega_{t} I_{0} \\
\frac{\partial I}{\partial x}
\end{array}=c \frac{\partial V}{\partial t} \longrightarrow j \omega_{x} I_{0}=c j \omega_{t} V_{0}
\end{aligned}
$$

Transmission Line Algebra

 $j \omega_{x} V_{0}=l j \omega_{t} I_{0} \quad \omega_{x} V_{0}=l \omega_{t} I_{0}$ $j \omega_{x} I_{0}=c j \omega_{t} V_{0} \quad \omega_{x} I_{0}=c \omega_{t} V_{0}$$$
\frac{\omega_{t}}{\omega_{x}}=\frac{1}{\sqrt{l c}}
$$

$$
\frac{V_{0}}{I_{0}}=\sqrt{\frac{l}{c}}
$$

The Open Transmission Line

The Shorted Transmission Line

Parallel Termination

6.004 Fall '98 L13 (10/27) Page 28

Series Termination

6.004 Fall '98 L13 (10/27) Page 29

Series or Parallel ?

- Series:
- No Static Power Dissipation
- Only One Output Point
- Slower Slew Rate if Output is Capacitively Loaded
- Parallel:
- Static Power Dissipation
- Many Output Points
- Faster Slew Rate if Output is Capacitively Loaded
- Fancier Parallel Methods:
- AC Coupled - Parallel w/o static dissipation
- Diode Termination - "Automatic" impedance matching

When is a wire a transmission line?

$$
t_{f l}=l / v
$$

Rule of Thumb:

$$
t_{r}<2.5 t_{f l}
$$

$$
t_{r}>5 t_{f l}
$$

Transmission Line

Equipotential Line

Making Transmission Lines On Circuit Boards

6.004 Fall '98 L13 (10/27) Page 32

Actual Formulas

$$
\begin{aligned}
& \text { Micro Stripline }
\end{aligned}
$$

$$
\begin{aligned}
& z_{0}=\sqrt{e_{r}+1.41} \ln \left(\frac{5.98 n}{0.8 b+c}\right) \Omega \\
& t_{P D}=1.017 \sqrt{0.475} \mathrm{e}_{r}+0.67 \mathrm{~ns} / \mathrm{ft} . \\
& \text { Stripline }
\end{aligned}
$$

$z_{0}=\sqrt{60} \sqrt{\epsilon_{r}} \ln \left(\frac{4 K}{0.67 \pi b\left(0.8+\frac{c}{b}\right)}\right) \mathrm{n}$
$t_{P D}=1.017 \sqrt{\epsilon_{r}} \quad n s / f t$.

$$
\begin{aligned}
& \quad \text { A Typical Circuit Board } \\
& \begin{array}{l}
\text { 1 Ounce Copper } \\
w=0.15 \mathrm{~cm} \\
t=0.0038 \mathrm{~cm} \\
h=0.038 \mathrm{~cm}
\end{array} \\
& \begin{array}{l}
\text { G-10 Fiberglass-Epoxy } \\
c=1.9 \quad p F / \mathrm{cm} \\
l=2.75 \mathrm{nH} / \mathrm{cm} \longrightarrow
\end{array} \begin{array}{r}
Z_{0}=38 \Omega \\
v=1.4 \times 10^{10} \mathrm{~cm} / \mathrm{sec} \\
(14 \mathrm{~cm} / \mathrm{ns})
\end{array}
\end{aligned}
$$

