
Lecture 9:
Shift, Mult, Div
Fixed & Floating Point

E85 Digital Design & Computer Engineering

Lecture 9 <2> Digital Design and Computer Architecture: ARM® Edition © 2015

Lecture 9

• Shifters
• Multipliers
• Dividers
• Fixed Point Numbers
• Floating Point Numbers

Lecture 9 <3> Digital Design and Computer Architecture: ARM® Edition © 2015
Copyright © 2007 Elsevier 5-<3>

Logical shifter: shifts value to left or right and fills empty spaces with 0’s
– Ex: 11001 >> 2 = 00110
– Ex: 11001 << 2 = 00100

Arithmetic shifter: same as logical shifter, but on right shift, fills empty
spaces with the old most significant bit (msb)

– Ex: 11001 >>> 2 = 11110
– Ex: 11001 <<< 2 = 00100

Rotator: rotates bits in a circle, such that bits shifted off one end are shifted
into the other end

– Ex: 11001 ROR 2 = 01110
– Ex: 11001 ROL 2 = 00111

Shifters

Lecture 9 <4> Digital Design and Computer Architecture: ARM® Edition © 2015

A3:0 Y3:0

shamt1:0

>>

2

4 4

A3 A2 A1 A0

Y3

Y2

Y1

Y0

shamt1:0

00

01

10

11

S1:0

S1:0

S1:0

S1:0

00

01

10

11

00

01

10

11

00

01

10

11

2

Shifter Design

Lecture 9 <5> Digital Design and Computer Architecture: ARM® Edition © 2015

• A << N = A × 2N

– Example: 00001 << 2 = 00100 (1 × 22 = 4)
– Example: 11101 << 2 = 10100 (-3 × 22 = -12)

• A >>> N = A ÷ 2N

– Example: 01000 >>> 2 = 00010 (8 ÷ 22 = 2)
– Example: 10000 >>> 2 = 11100 (-16 ÷ 22 = -4)

Shifters as Multipliers, Dividers

Lecture 9 <6> Digital Design and Computer Architecture: ARM® Edition © 2015

• Partial products formed by multiplying a single
digit of the multiplier with multiplicand

• Shifted partial products summed to form result

Decimal Binary
230

42x
0101
0111

5 x 7 = 35

460
920+
9660

0101
0101

0101
0000

x

+
0100011

230 x 42 = 9660

multiplier
multiplicand

partial
products

result

Multipliers

Lecture 9 <7> Digital Design and Computer Architecture: ARM® Edition © 2015

4 x 4 Multiplier

x B3 B2 B1 B0

A3B0 A2B0 A1B0 A0B0

A3 A2 A1 A0

 A3B1 A2B1 A1B1 A0B1

A3B2 A2B2 A1B2 A0B2

A3B3 A2B3 A1B3 A0B3+
P7 P6 P5 P4 P3 P2 P1 P0

0

P2

0

0

0

P1 P0P5 P4 P3P7 P6

A3 A2 A1 A0

B0B1

B2

B3

x

A B

P

44

8

Lecture 9 <8> Digital Design and Computer Architecture: ARM® Edition © 2015

A/B = Q + R/B
Decimal Example: 2584/15 = 172 R4

Dividers

Lecture 9 <9> Digital Design and Computer Architecture: ARM® Edition © 2015

A/B = Q + R/B
Decimal Example: 2584/15 = 172 R4
Long-Hand:

Dividers

Lecture 9 <10> Digital Design and Computer Architecture: ARM® Edition © 2015

A/B = Q + R/B
Decimal Example: 2584/15 = 172 R4
Long-Hand:

Dividers

Long-Hand Revisited:

Lecture 9 <11> Digital Design and Computer Architecture: ARM® Edition © 2015

A/B = Q + R/B
Decimal: 2584/15 = 172 R4

Dividers

Binary: 1101/0010 = 0110 R1

Lecture 9 <12> Digital Design and Computer Architecture: ARM® Edition © 2015

Divider Algorithm
A/B = Q + R/B

R’ = 0
for i = N-1 to 0

R = {R’ << 1, Ai}
D = R - B
if D < 0, Qi= 0; R’= R
else Qi= 1; R’= D

R=R’

Binary: 1101/10 = 0110 R1

Lecture 9 <13> Digital Design and Computer Architecture: ARM® Edition © 2015

4 x 4 Divider

+

R B

D

R'

N

CinCout

1 0

R B

D
R'N

CoutCin

Legend

Division: A/B = Q + R/B
R’ = 0
for i = N-1 to 0
R = {R’ << 1, Ai}
D = R - B
if D < 0, Qi=0, R’=R
else Qi=1, R’=D

R=R’Each row computes one iteration of the division algorithm.

Lecture 9 <14> Digital Design and Computer Architecture: ARM® Edition © 2015

4 x 4 Divider

+

R B

D

R'

N

CinCout

1 0

R B

D
R'N

CoutCin

Legend

Each row computes one iteration of the division algorithm.

Lecture 9 <15> Digital Design and Computer Architecture: ARM® Edition © 2015

Numbers we can represent using binary
representations

– Positive numbers
• Unsigned binary

– Negative numbers
• Two’s complement
• Sign/magnitude numbers

What about fractions?

Number Systems

Lecture 9 <16> Digital Design and Computer Architecture: ARM® Edition © 2015

Two common notations:
• Fixed-point: binary point fixed
• Floating-point: binary point floats to the right of

the most significant 1

Numbers with Fractions

Lecture 9 <17> Digital Design and Computer Architecture: ARM® Edition © 2015

01101100
0110.1100
22 + 21 + 2-1 + 2-2 = 6.75

• 6.75 using 4 integer bits and 4 fraction bits:

• Binary point is implied

• The number of integer and fraction bits must be
agreed upon beforehand

Fixed-Point Numbers

Lecture 9 <18> Digital Design and Computer Architecture: ARM® Edition © 2015

• Represent 7.510 using 4 integer bits and 4
fraction bits.

01111000

Fixed-Point Number Example

Lecture 9 <19> Digital Design and Computer Architecture: ARM® Edition © 2015

• Representations:
– Sign/magnitude

– Two’s complement

• Example: Represent -7.510 using 4 integer and 4 fraction
bits
– Sign/magnitude:

11111000

– Two’s complement:
1. +7.5: 01111000

2. Invert bits: 10000111

3. Add 1 to lsb: + 1

10001000

Signed Fixed-Point Numbers

Lecture 9 <20> Digital Design and Computer Architecture: ARM® Edition © 2015

• Binary point floats to the right of the most significant 1
• Similar to decimal scientific notation

• For example, write 27310 in scientific notation:
273 = 2.73 × 102

• In general, a number is written in scientific notation as:
±M × BE

– M = mantissa
– B = base
– E = exponent
– In the example, M = 2.73, B = 10, and E = 2

Floating-Point Numbers

Lecture 9 <21> Digital Design and Computer Architecture: ARM® Edition © 2015

Sign Exponent Mantissa

1 bit 8 bits 23 bits

• Example: represent the value 22810 using a 32-bit floating
point representation

We show three versions – final version is called the IEEE 754
floating-point standard

Floating-Point Numbers

Lecture 9 <22> Digital Design and Computer Architecture: ARM® Edition © 2015

0 00000111 11 1001 0000 0000 0000 0000
Sign Exponent Mantissa

1 bit 8 bits 23 bits

1. Convert decimal to binary
22810 = 111001002

2. Write the number in “binary scientific notation”:
111001002 = 1.110012 × 27

3. Fill in each field of the 32-bit floating point number:
– The sign bit is positive (0)

– The 8 exponent bits represent the value 7

– The remaining 23 bits are the mantissa

Floating-Point Representation 1

Lecture 9 <23> Digital Design and Computer Architecture: ARM® Edition © 2015

0 00000111 110 0100 0000 0000 0000 0000
Sign Exponent Fraction

1 bit 8 bits 23 bits

• First bit of the mantissa is always 1:

– 22810 = 111001002 = 1.11001 × 27

• So, no need to store it: implicit leading 1

• Store just fraction bits in 23-bit field

Floating-Point Representation 2

Lecture 9 <24> Digital Design and Computer Architecture: ARM® Edition © 2015

0 10000110
Sign Biased

Exponent
Fraction

1 bit 8 bits 23 bits
 110 0100 0000 0000 0000 0000

• Biased exponent: bias = 127 (011111112)
– Biased exponent = bias + exponent

– Exponent of 7 is stored as:

127 + 7 = 134 = 0x100001102

• The IEEE 754 32-bit floating-point representation of 22810

in hexadecimal: 0x43640000

Floating-Point Representation 3

Lecture 9 <25> Digital Design and Computer Architecture: ARM® Edition © 2015

Write -58.2510 in floating point (IEEE 754)

Floating-Point Example

Lecture 9 <26> Digital Design and Computer Architecture: ARM® Edition © 2015

1 100 0010 0 110 1001 0000 0000 0000 0000
Sign Exponent Fraction

1 bit 8 bits 23 bits

Write -58.2510 in floating point (IEEE 754)
1. Convert decimal to binary:

58.2510 = 111010.012

2. Write in binary scientific notation:

1.1101001 × 25

3. Fill in fields:
Sign bit: 1 (negative)
8 exponent bits: (127 + 5) = 132 = 100001002
23 fraction bits: 110 1001 0000 0000 0000 0000

in hexadecimal: 0xC2690000

Floating-Point Example

Lecture 9 <27> Digital Design and Computer Architecture: ARM® Edition © 2015

Number Sign Exponent Fraction

0 X 00000000 00000000000000000000000

∞ 0 11111111 00000000000000000000000

- ∞ 1 11111111 00000000000000000000000

NaN X 11111111 non-zero

Floating-Point: Special Cases

Lecture 9 <28> Digital Design and Computer Architecture: ARM® Edition © 2015

• Single-Precision:
– 32-bit
– 1 sign bit, 8 exponent bits, 23 fraction bits
– bias = 127

• Double-Precision:
– 64-bit
– 1 sign bit, 11 exponent bits, 52 fraction bits
– bias = 1023

Floating-Point Precision

Lecture 9 <29> Digital Design and Computer Architecture: ARM® Edition © 2015

• Overflow: number too large to be represented

• Underflow: number too small to be represented

• Rounding modes:
– Down

– Up

– Toward zero

– To nearest

• Example: round 1.100101 (1.578125) to only 3 fraction bits
– Down: 1.100

– Up: 1.101

– Toward zero: 1.100

– To nearest: 1.101 (1.625 is closer to 1.578125 than 1.5 is)

Floating-Point: Rounding

Lecture 9 <30> Digital Design and Computer Architecture: ARM® Edition © 2015

1. Extract exponent and fraction bits
2. Prepend leading 1 to form mantissa
3. Compare exponents
4. Shift smaller mantissa if necessary
5. Add mantissas
6. Normalize mantissa and adjust exponent if necessary
7. Round result
8. Assemble exponent and fraction back into floating-point

format

Floating-Point Addition

Lecture 9 <31> Digital Design and Computer Architecture: ARM® Edition © 2015

Add the following floating-point numbers:

0x3FC00000

0x40500000

Floating-Point Addition Example

Lecture 9 <32> Digital Design and Computer Architecture: ARM® Edition © 2015

0 01111111 100 0000 0000 0000 0000 0000
Sign Exponent Fraction

1 bit 8 bits 23 bits

0 10000000 101 0000 0000 0000 0000 0000
1 bit 8 bits 23 bits

Sign Exponent Fraction

1. Extract exponent and fraction bits

For first number (N1): S = 0, E = 127, F = .1
For second number (N2): S = 0, E = 128, F = .101

2. Prepend leading 1 to form mantissa
N1: 1.1
N2: 1.101

Floating-Point Addition Example

Lecture 9 <33> Digital Design and Computer Architecture: ARM® Edition © 2015

3. Compare exponents
127 – 128 = -1, so shift N1 right by 1 bit

4. Shift smaller mantissa if necessary
shift N1’s mantissa: 1.1 >> 1 = 0.11 (× 2

1
)

5. Add mantissas
0.11 × 2

1

+ 1.101 × 2
1

10.011 × 2
1

Floating-Point Addition Example

Lecture 9 <34> Digital Design and Computer Architecture: ARM® Edition © 2015

0 10000001 001 1000 0000 0000 0000 0000
Sign Exponent Fraction

1 bit 8 bits 23 bits

6. Normalize mantissa and adjust exponent if necessary
10.011 × 21 = 1.0011 × 22

7. Round result
No need (fits in 23 bits)

8. Assemble exponent and fraction back into floating-point
format
S = 0, E = 2 + 127 = 129 = 100000012, F = 001100..

in hexadecimal: 0x40980000

Floating Point Addition Example

