
Lecture 9: 
Shift, Mult, Div
Fixed & Floating Point

E85 Digital Design & Computer Engineering
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Lecture 9

• Shifters
• Multipliers
• Dividers
• Fixed Point Numbers
• Floating Point Numbers
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Logical shifter: shifts value to left or right and fills empty spaces with 0’s
– Ex: 11001 >> 2 =  00110
– Ex: 11001 << 2 =  00100

Arithmetic shifter: same as logical shifter, but on right shift, fills empty 
spaces with the old most significant bit (msb)

– Ex: 11001 >>> 2 =  11110
– Ex: 11001 <<< 2 =  00100

Rotator: rotates bits in a circle, such that bits shifted off one end are shifted 
into the other end

– Ex: 11001 ROR 2 =  01110
– Ex: 11001 ROL 2 =  00111

Shifters
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Shifter Design
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• A << N = A × 2N

– Example: 00001 << 2  = 00100  (1 × 22 = 4)
– Example: 11101 << 2  = 10100  (-3 × 22 = -12)

• A >>> N = A ÷ 2N

– Example: 01000 >>> 2 = 00010  (8 ÷ 22 = 2)
– Example: 10000 >>> 2 = 11100  (-16 ÷ 22 = -4)

Shifters as Multipliers, Dividers
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• Partial products formed by multiplying a single 
digit of the multiplier with multiplicand

• Shifted partial products summed to form result

Decimal Binary
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Multipliers
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4 x 4 Multiplier
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A/B = Q + R/B
Decimal Example:  2584/15 = 172 R4

Dividers
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A/B = Q + R/B
Decimal Example:  2584/15 = 172 R4
Long-Hand:

Dividers
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A/B = Q + R/B
Decimal Example:  2584/15 = 172 R4
Long-Hand:

Dividers

Long-Hand Revisited:
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A/B = Q + R/B
Decimal:  2584/15 = 172 R4

Dividers

Binary:   1101/0010 = 0110 R1
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Divider Algorithm
A/B = Q + R/B

R’ = 0
for i = N-1 to 0

R = {R’ << 1, Ai}
D = R - B
if D < 0, Qi= 0;  R’= R
else        Qi= 1;  R’= D

R=R’

Binary:   1101/10 = 0110 R1
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4 x 4 Divider
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Division: A/B = Q + R/B
R’ = 0
for i = N-1 to 0
R = {R’ << 1, Ai}
D = R - B
if D < 0, Qi=0, R’=R
else        Qi=1, R’=D

R=R’Each row computes one iteration of the division algorithm.
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4 x 4 Divider
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Each row computes one iteration of the division algorithm.
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Numbers we can represent using binary 
representations

– Positive numbers
• Unsigned binary

– Negative numbers
• Two’s complement
• Sign/magnitude numbers

What about fractions?

Number Systems
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Two common notations:
• Fixed-point: binary point fixed
• Floating-point: binary point floats to the right of 

the most significant 1

Numbers with Fractions
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01101100
0110.1100
22 + 21 + 2-1 + 2-2 = 6.75

• 6.75 using 4 integer bits and 4 fraction bits:

• Binary point is implied

• The number of integer and fraction bits must be 
agreed upon beforehand

Fixed-Point Numbers
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• Represent 7.510 using 4 integer bits and 4 
fraction bits.

01111000

Fixed-Point Number Example
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• Representations:
– Sign/magnitude

– Two’s complement

• Example: Represent -7.510 using 4 integer and 4 fraction 
bits
– Sign/magnitude:

11111000

– Two’s complement:
1. +7.5: 01111000

2. Invert bits: 10000111

3. Add 1 to lsb: +             1

10001000

Signed Fixed-Point Numbers
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• Binary point floats to the right of the most significant 1
• Similar to decimal scientific notation

• For example, write 27310 in scientific notation:
273 = 2.73 × 102

• In general, a number is written in scientific notation as:
±M × BE

– M = mantissa
– B = base
– E = exponent
– In the example, M = 2.73, B = 10, and E = 2

Floating-Point Numbers
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Sign Exponent Mantissa

1 bit 8 bits 23 bits

• Example: represent the value 22810 using a 32-bit floating 
point representation

We show three versions – final version is called the IEEE 754 
floating-point standard

Floating-Point Numbers
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0 00000111     11 1001 0000 0000 0000 0000
Sign Exponent Mantissa

1 bit 8 bits 23 bits

1. Convert decimal to binary
22810 = 111001002

2. Write the number in “binary scientific notation”:
111001002 = 1.110012 × 27

3. Fill in each field of the 32-bit floating point number:
– The sign bit is positive (0)

– The 8 exponent bits represent the value 7

– The remaining 23 bits are the mantissa

Floating-Point Representation 1
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0 00000111     110 0100 0000 0000 0000 0000
Sign Exponent Fraction

1 bit 8 bits 23 bits

• First bit of the mantissa is always 1:

– 22810 = 111001002 = 1.11001 × 27

• So, no need to store it: implicit leading 1

• Store just fraction bits in 23-bit field

Floating-Point Representation 2
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0 10000110
Sign Biased

Exponent
Fraction

1 bit 8 bits 23 bits
    110 0100 0000 0000 0000 0000

• Biased exponent: bias = 127 (011111112)
– Biased exponent = bias + exponent

– Exponent of 7 is stored as:

127 + 7 = 134 = 0x100001102

• The IEEE 754 32-bit floating-point representation of 22810

in hexadecimal: 0x43640000

Floating-Point Representation 3
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Write -58.2510 in floating point (IEEE 754)

Floating-Point Example
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1 100 0010 0     110 1001 0000 0000 0000 0000
Sign Exponent Fraction

1 bit 8 bits 23 bits

Write -58.2510 in floating point (IEEE 754)
1. Convert decimal to binary:

58.2510 = 111010.012

2. Write in binary scientific notation:

1.1101001 × 25

3. Fill in fields:
Sign bit: 1 (negative)
8 exponent bits: (127 + 5) = 132 = 100001002
23 fraction bits: 110 1001 0000 0000 0000 0000

in hexadecimal: 0xC2690000

Floating-Point Example
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Number Sign Exponent Fraction

0 X 00000000 00000000000000000000000

∞ 0 11111111 00000000000000000000000

- ∞ 1 11111111 00000000000000000000000

NaN X 11111111 non-zero

Floating-Point: Special Cases
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• Single-Precision:
– 32-bit
– 1 sign bit, 8 exponent bits, 23 fraction bits
– bias = 127

• Double-Precision:
– 64-bit
– 1 sign bit, 11 exponent bits, 52 fraction bits
– bias = 1023

Floating-Point Precision
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• Overflow: number too large to be represented

• Underflow:  number too small to be represented

• Rounding modes:
– Down

– Up

– Toward zero

– To nearest

• Example: round 1.100101 (1.578125)  to only 3 fraction bits
– Down: 1.100

– Up: 1.101

– Toward zero: 1.100

– To nearest: 1.101 (1.625 is closer to 1.578125 than 1.5 is)

Floating-Point: Rounding
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1. Extract exponent and fraction bits
2. Prepend leading 1 to form mantissa
3. Compare exponents
4. Shift smaller mantissa if necessary
5. Add mantissas
6. Normalize mantissa and adjust exponent if necessary
7. Round result
8. Assemble exponent and fraction back into floating-point 

format

Floating-Point Addition
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Add the following floating-point numbers:

0x3FC00000

0x40500000

Floating-Point Addition Example
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0 01111111     100 0000 0000 0000 0000 0000
Sign Exponent Fraction

1 bit 8 bits 23 bits

0 10000000     101 0000 0000 0000 0000 0000
1 bit 8 bits 23 bits

Sign Exponent Fraction

1. Extract exponent and fraction bits

For first number (N1): S = 0, E = 127, F = .1
For second number (N2): S = 0, E = 128, F = .101

2. Prepend leading 1 to form mantissa
N1: 1.1
N2: 1.101

Floating-Point Addition Example
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3. Compare exponents
127 – 128 = -1, so shift N1 right by 1 bit

4. Shift smaller mantissa if necessary
shift N1’s mantissa: 1.1 >> 1 = 0.11  (× 2

1
)

5. Add mantissas
0.11   × 2

1

+ 1.101 × 2
1

10.011  × 2
1

Floating-Point Addition Example
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0 10000001     001 1000 0000 0000 0000 0000
Sign Exponent Fraction

1 bit 8 bits 23 bits

6. Normalize mantissa and adjust exponent if necessary
10.011 × 21 = 1.0011 × 22

7. Round result
No need (fits in 23 bits)

8. Assemble exponent and fraction back into floating-point 
format
S = 0, E = 2 + 127 = 129 = 100000012, F = 001100..

in hexadecimal: 0x40980000

Floating Point Addition Example


