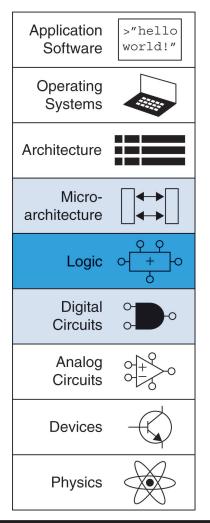


Lecture 9

- Shifters
- Multipliers
- Dividers
- Fixed Point Numbers
- Floating Point Numbers



Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 9 <2>

Shifters

Logical shifter: shifts value to left or right and fills empty spaces with 0's

- Ex: 11001 >> 2 =
- Ex: 11001 << 2 =

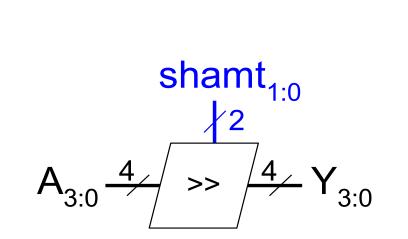
Arithmetic shifter: same as logical shifter, but on right shift, fills empty spaces with the old most significant bit (msb)

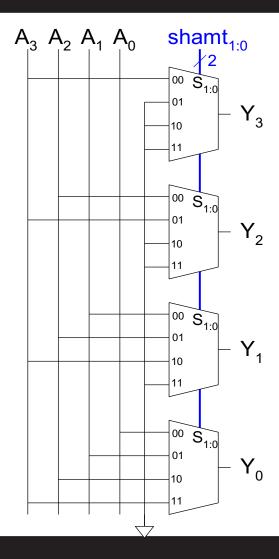
- Ex: 11001 >>> 2 =
- Ex: 11001 <<< 2 =

Rotator: rotates bits in a circle, such that bits shifted off one end are shifted into the other end

- Ex: 11001 ROR 2 =
- Ex: 11001 ROL 2 =

Shifter Design



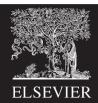


Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 9 <4>

Shifters as Multipliers, Dividers

- $A \ll N = A \times 2^N$
 - **Example:** $00001 \ll 2 = 00100 (1 \times 2^2 = 4)$
 - **Example:** 11101 << 2 = 10100 (-3 × 2² = -12)
- $A >>> N = A \div 2^N$
 - **Example:** 01000 >>> 2 = 00010 (8 \div 2² = 2)
 - **Example:** 10000 >>> 2 = 11100 (-16 ÷ 2² = -4)

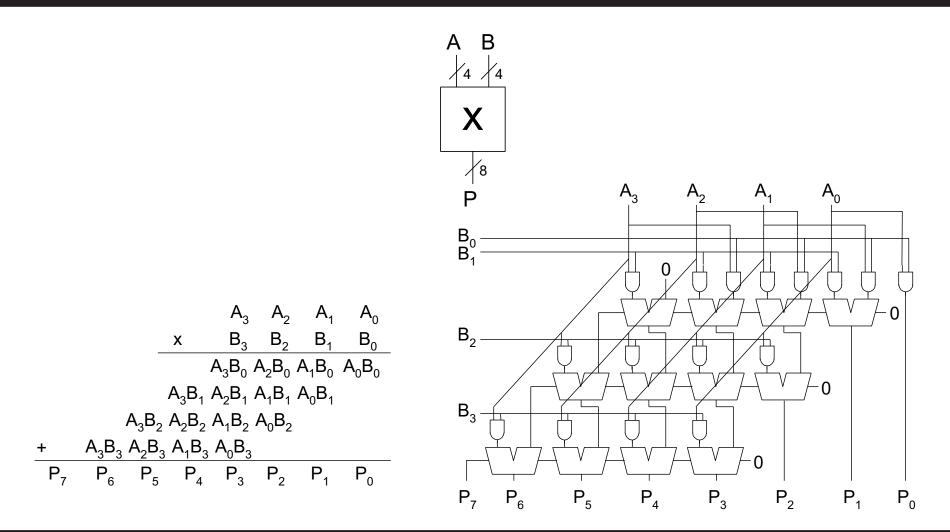


Multipliers

- **Partial products** formed by multiplying a single digit of the multiplier with multiplicand
- Shifted partial products summed to form result

Decimal		Binary
230 x 42	multiplicand multiplier	0101 x 0111
460 + 920 9660	partial products	0101 0101 0101 + 0000
	result	0100011
230 x 42 = 966	50	5 x 7 = 35

4 x 4 Multiplier



Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 9 <7>

A/B = Q + R/B Decimal Example: 2584/15 = 172 R4

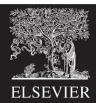
Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 9 <8>

A/B = Q + R/B Decimal Example: 2584/15 = 172 R4 Long-Hand:

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 9 <9>



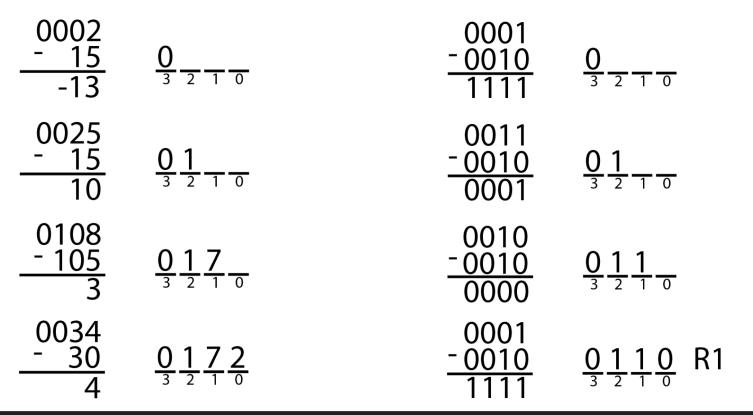
A/B = Q + R/B**Decimal Example:** 2584/15 = 172 R4 **Long-Hand Revisited:** Long-Hand: 0002 $\frac{-15}{-13}$ $\frac{0}{32}$ 172 R4 15 2584 0025 $\frac{-15}{10}$ $\frac{0}{3}\frac{1}{2}$ 108 -<u>105</u> _34 0108 08 <u>105</u> 3 $\frac{0}{3}\frac{1}{2}\frac{7}{10}$ 0034 - 30 $\frac{0}{3}$ $\frac{1}{2}$ $\frac{7}{1}$ $\frac{2}{0}$

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 9 < 10>

A/B = Q + R/B

Decimal: 2584/15 = 172 R4 **Binary:** 1101/0010 = 0110 R1



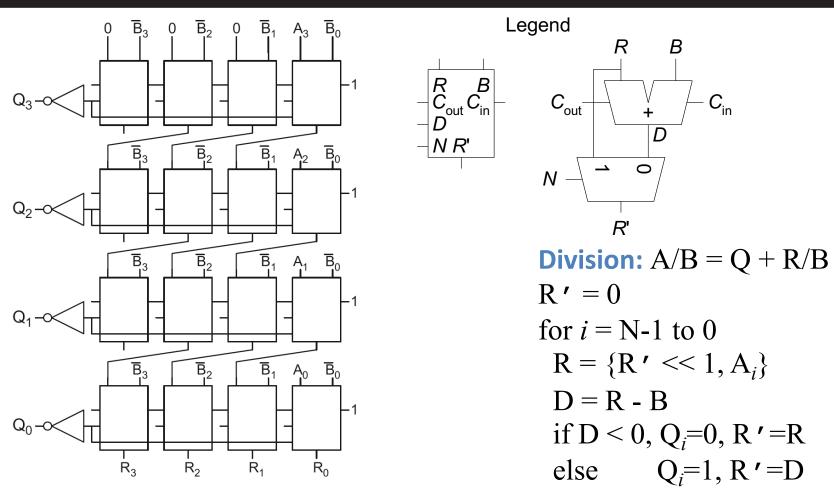
Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 9 <11>

Divider Algorithm

$\mathbf{A}/\mathbf{B} = \mathbf{Q} + \mathbf{R}/\mathbf{B}$	Binary: 1101/10 =	= 0110 R1
R' = 0 for $i = N-1$ to 0 $R = \{R' \le 1, A_i\}$ D = R - B if $D \le 0, Q_i = 0; R' = R$	$ \begin{array}{c} 0001 \\ -0010 \\ 11111 \\ 0 \\ 3 \\ 2 \\ 1 \end{array} $	
else $Q_i = 1; R' = D$ R=R'	$\frac{\begin{array}{c} 0010 \\ -0010 \\ 0000 \end{array} \begin{array}{c} 0 \\ \frac{1}{3} \\ \frac{1}{2} \\ 1 \end{array}$	0
	$\begin{array}{c} 0001 \\ -0010 \\ \hline 1111 \end{array} \begin{array}{c} 0 \\ 3 \\ 3 \\ 2 \\ 1 \end{array}$	<u>0</u> R1

4 x 4 Divider

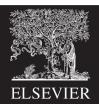


Each row computes one iteration of the division algorithm.

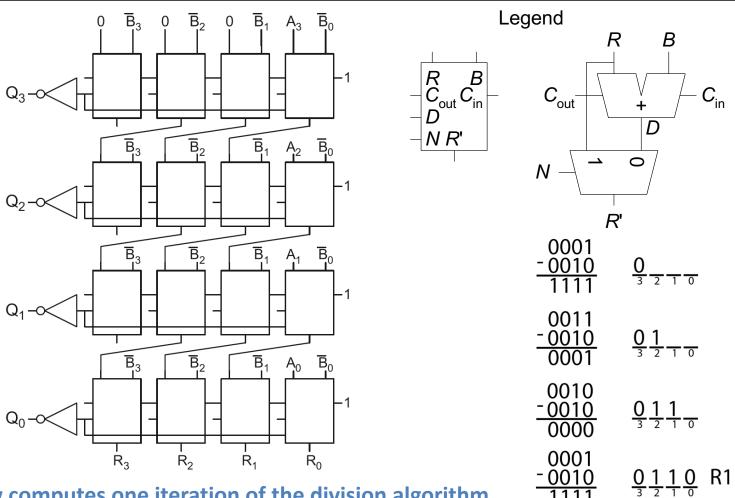
• R=R ′

Digital Design and Computer Architecture: ARM[®] Edition © 2015 Lectu

Lecture 9 <13>



4 x 4 Divider



Each row computes one iteration of the division algorithm.

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 9 <14>

Number Systems

Numbers we can represent using binary representations

- Positive numbers
 - Unsigned binary
- Negative numbers
 - Two's complement
 - Sign/magnitude numbers

What about **fractions**?



Numbers with Fractions

Two common notations:

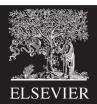
- **Fixed-point:** binary point fixed
- Floating-point: binary point floats to the right of the most significant 1

Fixed-Point Numbers

• 6.75 using 4 integer bits and 4 fraction bits:

01101100 0110.1100 $2^{2} + 2^{1} + 2^{-1} + 2^{-2} = 6.75$

- Binary point is implied
- The number of integer and fraction bits must be agreed upon beforehand



Fixed-Point Number Example

Represent 7.5₁₀ using 4 integer bits and 4 fraction bits.

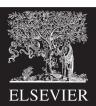
Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 9 <18>

Signed Fixed-Point Numbers

• Representations:

- Sign/magnitude
- Two's complement
- **Example:** Represent -7.5₁₀ using 4 integer and 4 fraction bits
 - Sign/magnitude:
 - Two's complement:
 - 1. +7.5:
 - 2. Invert bits:
 - 3. Add 1 to lsb: + 1



Floating-Point Numbers

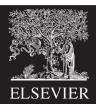
- Binary point floats to the right of the most significant 1
- Similar to decimal scientific notation
- For example, write 273₁₀ in scientific notation:

273 = 2.73 × 10²

• In general, a number is written in scientific notation as:

\pm M \times B^E

- M = mantissa
- **B** = base
- E = exponent
- In the example, M = 2.73, B = 10, and E = 2



Floating-Point Numbers

Example: represent the value 228₁₀ using a 32-bit floating point representation

We show three versions – final version is called the **IEEE 754** floating-point standard

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 9 <21>

Floating-Point Representation 1

1. Convert decimal to binary

228₁₀ = **11100100**₂

2. Write the number in "binary scientific notation":

```
11100100_2 = 1.11001_2 \times 2^7
```

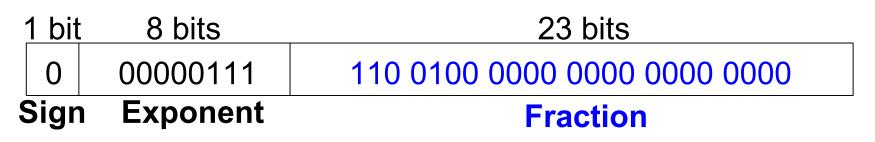
- 3. Fill in each field of the 32-bit floating point number:
 - The sign bit is positive (0)
 - The 8 exponent bits represent the value 7
 - The remaining 23 bits are the mantissa

1 bit	8 bits	23 bits
0	00000111	11 1001 0000 0000 0000 0000
Sign	Exponent	Mantissa

Digital Design and Computer Architecture: ARM[®] Edition © 2015 Lecture 9 <22>

Floating-Point Representation 2

- First bit of the mantissa is always 1:
 - $228_{10} = 11100100_2 = 1.11001 \times 2^7$
- So, no need to store it: *implicit leading 1*
- Store just fraction bits in 23-bit field



Floating-Point Representation 3

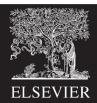
- *Biased exponent*: bias = 127 (01111111₂)
 - Biased exponent = bias + exponent
 - Exponent of 7 is stored as:

 $127 + 7 = 134 = 0 \times 10000110_2$

• The IEEE 754 32-bit floating-point representation of 228₁₀

<u>1 bit</u>	8 bits	23 bits
0	10000110	110 0100 0000 0000 0000 0000
Sign	Biased Exponent	Fraction

in hexadecimal: 0x43640000



Floating-Point Example

Write -58.25₁₀ in floating point (IEEE 754)

Floating-Point Example

Write -58.25₁₀ in floating point (IEEE 754)

1. Convert decimal to binary:

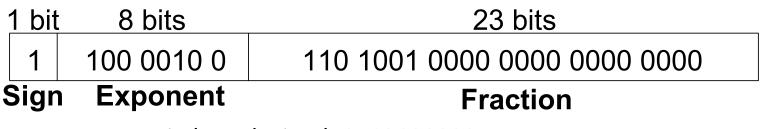
58.25₁₀ = **111010.01**₂

2. Write in binary scientific notation:

1.1101001 × **2**⁵

3. Fill in fields:

Sign bit: 1 (negative)
8 exponent bits: (127 + 5) = 132 = 10000100₂
23 fraction bits: 110 1001 0000 0000 0000



in hexadecimal: 0xC2690000

Floating-Point: Special Cases

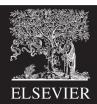
Number	Sign	Exponent	Fraction
0	X	00000000	000000000000000000000000000000000000000
∞	0	11111111	000000000000000000000000000000000000000
- ∞	1	11111111	000000000000000000000000000000000000000
NaN	Х	11111111	non-zero

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 9 <27>

Floating-Point Precision

- Single-Precision:
 - 32-bit
 - 1 sign bit, 8 exponent bits, 23 fraction bits
 - bias = 127
- Double-Precision:
 - 64-bit
 - 1 sign bit, 11 exponent bits, 52 fraction bits
 - bias = 1023



Floating-Point: Rounding

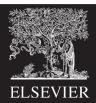
- **Overflow:** number too large to be represented
- **Underflow:** number too small to be represented
- Rounding modes:
 - Down
 - Up
 - Toward zero
 - To nearest
- Example: round 1.100101 (1.578125) to only 3 fraction bits

—	Down:	1.100

- Up: 1.101
- Toward zero: 1.100
- To nearest: 1.101 (1.625 is closer to 1.578125 than 1.5 is)

Floating-Point Addition

- 1. Extract exponent and fraction bits
- 2. Prepend leading 1 to form mantissa
- 3. Compare exponents
- 4. Shift smaller mantissa if necessary
- 5. Add mantissas
- 6. Normalize mantissa and adjust exponent if necessary
- 7. Round result
- 8. Assemble exponent and fraction back into floating-point format



Floating-Point Addition Example

Add the following floating-point numbers:

- 0x3FC00000
- 0x40500000

Floating-Point Addition Example

1. Extract exponent and fraction bits

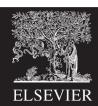
1 bit	8 bits	23 bits
0	01111111	100 0000 0000 0000 0000 0000
Sign	Exponent	Fraction
1 bit	8 bits	23 bits
0	10000000	101 0000 0000 0000 0000 0000
Sign	Exponent	Fraction

For first number (N1): For second number (N2): S = 0, E = 127, F = .1

S = 0, E = 128, F = .101

2. Prepend leading 1 to form mantissa

N1:	1.1
N2:	1.101



Floating-Point Addition Example

3. Compare exponents

127 – 128 = -1, so shift N1 right by 1 bit

- 4. Shift smaller mantissa if necessary shift N1's mantissa: 1.1 >> 1 = 0.11 (× 2¹)
- 5. Add mantissas

$$0.11 \times 2^{1} \\ + 1.101 \times 2^{1} \\ \hline 10.011 \times 2^{1}$$

Floating Point Addition Example

- 6. Normalize mantissa and adjust exponent if necessary $10.011 \times 2^1 = 1.0011 \times 2^2$
- 7. Round result

No need (fits in 23 bits)

8. Assemble exponent and fraction back into floating-point format

S = 0, E = 2 + 127 = 129 = 10000001₂, F = 001100..

<u>1 bit</u>	8 bits	23 bits
0	10000001	001 1000 0000 0000 0000 0000
0!	F	· · · · · · · · · · · · · · · · · · ·
Sign	Exponent	Fraction

Digital Design and Computer Architecture: ARM[®] Edition © 2015 Lecture 9 <34>

