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• Timing of Sequential Logic
• Metastability
• Parallelism

Lecture 5
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• Flip-flop samples D at clock edge
• D must be stable when sampled
• Similar to a photograph, D must be stable 

around clock edge
• If not, metastability can occur

Timing



Lecture 5 <4> Digital Design and Computer Architecture: ARM® Edition © 2015

CLK

tsetup

D

thold

ta

• Setup time: tsetup = time before clock edge data must be 

stable (i.e. not changing)

• Hold time: thold = time after clock edge data must be stable

• Aperture time: ta = time around clock edge data must be 

stable (ta = tsetup +  thold)

Input Timing Constraints
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• Propagation delay: tpcq = time after clock edge that the 

output Q is guaranteed to be stable (i.e., to stop changing)

• Contamination delay: tccq = time after clock edge that Q
might be unstable (i.e., start changing)

Output Timing Parameters
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• Synchronous sequential circuit inputs must 
be stable during aperture (setup and hold) 
time around clock edge

• Specifically, inputs must be stable
– at least tsetup before the clock edge
– at least until thold after the clock edge

Dynamic Discipline
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• The delay between registers has a minimum
and maximum delay, dependent on the 
delays of the circuit elements
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Dynamic Discipline
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• Depends on the maximum delay from register R1 
through combinational logic to R2

• The input to register R2 must be stable at least tsetup
before clock edge
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tpcq tpd tsetup
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Q1 D2

R1 R2 Tc ≥ tpcq + tpd + tsetup

tpd ≤ Tc – (tpcq + tsetup)

Setup Time Constraint

(tpcq + tsetup): sequencing overhead
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• Depends on the minimum delay from register R1 
through the combinational logic to R2

• The input to register R2 must be stable for at least 
thold after the clock edge
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R1 R2 thold < tccq + tcd
tcd > thold - tccq

Hold Time Constraint
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Timing Characteristics
tccq = 30 ps
tpcq = 50 ps
tsetup = 60 ps
thold = 70 ps

tpd = 35 ps
tcd = 25 ps

tpd = 3 x 35 ps = 105 ps

tcd = 25 ps

Setup time constraint:

Tc ≥ (50 + 105 + 60) ps = 215 ps

fc = 1/Tc = 4.65 GHz

Hold time constraint:

tccq + tcd >  thold ?

(30 + 25) ps > 70 ps ?  No!

Timing Analysis
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Timing Characteristics
tccq = 30 ps
tpcq = 50 ps
tsetup = 60 ps
thold = 70 ps

tpd = 35 ps
tcd = 25 ps

tpd = 3 x 35 ps = 105 ps

tcd = 2 x 25 ps = 50 ps

Setup time constraint:

Tc ≥ (50 + 105 + 60) ps = 215 ps

fc = 1/Tc = 4.65 GHz

Hold time constraint:

tccq + tcd > thold ?

(30 + 50) ps > 70 ps ?  Yes!

Timing Analysis
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Add buffers to the short paths:
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• The clock doesn’t arrive at all registers at same time

• Skew: difference between two clock edges

• Perform worst case analysis to guarantee dynamic 
discipline is not violated for any register – many 
registers in a system!

t skew
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Clock Skew
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• In the worst case, CLK2 is earlier than CLK1
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tpcq tpd tsetuptskew
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CLK2
Tc ≥ tpcq + tpd + tsetup + tskew

tpd ≤ Tc – (tpcq + tsetup + tskew)

Setup Time Constraint with Skew
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• In the worst case, CLK2 is later than CLK1
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tccq + tcd > thold + tskew

tcd > thold + tskew – tccq

Hold Time Constraint with Skew
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Asynchronous (for example, user) 
inputs might violate the dynamic 
discipline

Violating the Dynamic Discipline
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metastable

stablestable

• Bistable devices: two stable states, and a 
metastable state between them

• Flip-flop: two stable states (1 and 0) and one 
metastable state

• If flip-flop lands in metastable state, could stay there 
for an undetermined amount of time

Metastability
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• Flip-flop has feedback: if Q is somewhere between 
1 and 0, cross-coupled gates drive output to either 
rail (1 or 0)

• Metastable signal: if it hasn’t resolved to 1 or 0

• If flip-flop input changes at random time, probability 
that output Q is metastable after waiting some time, t:

P(tres > t) = (T0/Tc ) e-t/τ

tres :  time to resolve to 1 or 0

T0, τ :  properties of the circuit

Flip-Flop Internals
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• Intuitively:
T0/Tc: probability input changes at a bad time (during aperture)

P(tres > t) = (T0/Tc ) e-t/τ

τ: time constant for how fast flip-flop moves away from 
metastability

P(tres > t) = (T0/Tc ) e-t/τ

• If flip-flop samples metastable input, if you wait long 
enough (t), the output will have resolved to 1 or 0 with 
high probability.

Metastability
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• Asynchronous inputs are inevitable (user interfaces, 
systems with different clocks interacting, etc.)

• Synchronizer goal: make the probability of failure (the 
output Q still being metastable) low

• Synchronizer cannot make the probability of failure 0

Synchronizers
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• Synchronizer: built with two back-to-back flip-flops

• Suppose D is transitioning when sampled by F1
• Internal signal D2 has (Tc - tsetup) time to resolve to 1 

or 0

Synchronizer Internals
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For each sample, probability of failure is:

P(failure) = (T0/Tc ) e-(Tc - tsetup)/τ

Synchronizer Probability of Failure
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• If asynchronous input changes once per second, 
probability of failure per second is P(failure).

• If input changes N times per second, probability of failure 
per second is:

P(failure)/second = (NT0/Tc) e-(Tc - tsetup)/τ

• Synchronizer fails, on average, 1/[P(failure)/second]
• Called mean time between failures, MTBF:

MTBF = 1/[P(failure)/second] = (Tc/NT0) e(Tc - tsetup)/τ

Synchronizer Mean Time Between Failures
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• Suppose:  Tc = 1/500 MHz = 2 ns τ = 200 ps
T0 = 150 ps tsetup = 100 ps
N = 10 events per second

• What is the probability of failure? MTBF?
P(failure) = (150 ps/2 ns) e-(1.9 ns)/200 ps

= 5.6 × 10-6

P(failure)/second = 10 × (5.6 × 10-6 )
= 5.6 × 10-5 / second

MTBF    = 1/[P(failure)/second] ≈ 5 hours

Example Synchronizer
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• Two types of parallelism:
– Spatial parallelism

• duplicate hardware performs multiple tasks at once
– Temporal parallelism

• task is broken into multiple stages
• also called pipelining
• for example, an assembly line

Parallelism
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• Token: Group of inputs processed to 
produce group of outputs

• Latency: Time for one token to pass from 
start to end

• Throughput: Number of tokens produced 
per unit time

Parallelism increases throughput

Parallelism Definitions
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• Ben Bitdiddle bakes cookies to celebrate traffic light 
controller installation 

• 5 minutes to roll cookies
• 15 minutes to bake
• What is the latency and throughput without parallelism?

Latency = 5 + 15 = 20 minutes = 1/3 hour
Throughput = 1 tray/ 1/3 hour = 3 trays/hour

Parallelism Example
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• What is the latency and throughput if Ben 
uses parallelism?
– Spatial parallelism: Ben asks Allysa P. Hacker to 

help, using her own oven
– Temporal parallelism:
• two stages: rolling and baking 

• He uses two trays  
• While first batch is baking, he rolls the 

second batch, etc.

Parallelism Example
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Latency = 5 + 15 = 20 minutes = 1/3 hour
Throughput = 2 trays/ 1/3 hour = 6 trays/hour

Spatial Parallelism
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Latency = 5 + 15 = 20 minutes = 1/3 hour
Throughput = 1 trays/ 1/4 hour = 4 trays/hour

Using both techniques, the throughput would be 8 trays/hour

Temporal Parallelism


