E85 Digital Design & Computer Engineering

Lecture 5:

Sequential Timing

HARVEY

MUDD

COLLEGE




Lecture 5

Application |>"hello
Software

world!
Operating
Systems
I —
I
I —

* Timing of Sequential Logic
* Metastability

Architecture

e Parallelism e T

architecture

Digital
Circuits

Analog
Circuits

Devices

Physics

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 5 <2>

ELSEVIER



e Flip-flop samples D at clock edge
e D must be stable when sampled

e Similar to a photograph, D must be stable
around clock edge

e If not, metastability can occur
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Input Timing Constraints

e Setup time: t.,, = time before clock edge data must be
stable (i.e. not changing)

e Hold time: t,,4 = time after clock edge data must be stable

e Aperture time: t, = time around clock edge data must be
stable (ta = tsetup + thold)
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Output Timing Parameters

* Propagation delay: t, , = time after clock edge that the
output Q is guaranteed to be stable (i.e., to stop changing)

e Contamination delay: t ., = time after clock edge that Q
might be unstable (i.e., start changing)
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Dynamic Discipline

e Synchronous sequential circuit inputs must
be stable during aperture (setup and hold)
time around clock edge

e Specifically, inputs must be stable

— at least t,, before the clock edge
— at least until t,,,,4 after the clock edge
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Dynamic Discipline

 The delay between registers has a minimum
and maximum delay, dependent on the

delays of the circuit elements
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Setup Time Constraint

* Depends on the maximum delay from register R1
through combinational logic to R2

* The input to register R2 must be stable at least t,,,
before clock edge
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Hold Time Constraint

* Depends on the minimum delay from register R1
through the combinational logic to R2

* The input to register R2 must be stable for at least
tho1g after the clock edge
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Timing Analysis

ck Timing Characteristics

e 1

tpa =3 X35 ps =105 ps
t.g=25ps

Setup time constraint:
T.2

fc=1/Tc=

teeg =300ps
theg =50 ps
fsetup = 60 ps
thola =70 ps
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1 T |ty =35ps
o | t =25 ps
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Hold time constraint:

tccq + tcd > thold ?
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Timing Analysis

Add buffers to the short paths: Timing Characteristics

CLK CLK teg =30ps
YA theg =50 ps
fsetup = 60 ps

Y18 thoa =70 ps
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thg =3 X35 ps =105 ps
t.g=2x25ps=>50ps

Setup time constraint: Hold time constraint:
T.2

fc=1/Tc=

tccq + tcd > thold ?
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Clock Skew

 The clock doesn’t arrive at all registers at same time
* Skew: difference between two clock edges

* Perform worst case analysis to guarantee dynamic
discipline is not violated for any register — many

registers in a system!
delay
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Setup Time Constraint with Skew

In the worst case, CLK2 is earlier than CLK1
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Hold Time Constraint with Skew

* |In the worst case, CLK2 is later than CLK1
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Violating the Dynamic Discipline

Asynchronous (for example, user) tetup Thola
inputs might violate the dynamic LK r
discipline |
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Metastability

e Bistable devices: two stable states, and a
metastable state between them

e Flip-flop: two stable states (1 and 0) and one
metastable state

e |f flip-flop lands in metastable state, could stay there
for an undetermined amount of time

metastable

stable stable
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Flip-Flop Internals

e Flip-flop has feedback: if Q is somewhere between
1 and O, cross-coupled gates drive output to either

rail (1 or O) R m. 9
s Nepia

e Metastable signal: if it hasn’t resolved to 1 or O

e |f flip-flop input changes at random time, probability
that output Q is metastable after waiting some time, t:
P(t. >t)=(T,/T.) et/

t.. : timetoresolvetolorO
To, T: properties of the circuit
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Metastability

e [ntuitively:
T,/ T.: probability input changes at a bad time (during aperture)
P(t,..>t)=(T,/T.) et/

T: time constant for how fast flip-flop moves away from
metastability

P(tres > 1) = (To/T.) eF

e |f flip-flop samples metastable input, if you wait long
enough (t), the output will have resolved to 1 or 0 with
high probability.
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Synchronizers

e Asynchronous inputs are inevitable (user interfaces,
systems with different clocks interacting, etc.)

e Synchronizer goal: make the probability of failure (the
output Q still being metastable) low

e Synchronizer cannot make the probability of failure O
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Synchronizer Internals

e Synchronizer: built with two back-to-back flip-flops
e Suppose D is transitioning when sampled by F1
* Internal signal D2 has (T, - t.,,) time to resolve to 1
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Synchronizer Probability of Failure

For each sample, probability of failure is:

P(failure) = (T/T.) e~ L)'
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Synchronizer Mean Time Between Failures

e If asynchronous input changes once per second,
probability of failure per second is P(failure).

e |f input changes N times per second, probability of failure
per second is:

P(failure)/second = (NT,/T,) e(Te~ tewl/®

e Synchronizer fails, on average, 1/[P(failure)/second]
e Called mean time between failures, MTBF:

MTBF = 1/[P(failure)/second] = (T./NT,) e(Tc- tewl/t
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Example Synchronizer
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e Suppose: 1., =1/500MHz=2ns t© =200ps
T, =150ps Lietup = 100 ps
N =10 events per second
« What is the probability of failure? MTBF?
P(failure) = (150 ps/2 ns) (1.9 1s)/200 ps
=5.6 x 10°
P(failure)/second = 10 x (5.6 x 107%)
=5.6 X 10/ second
MTBF = 1/[P(failure)/second] = 5 hours
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Parallelism

e Two types of parallelism:
— Spatial parallelism
e duplicate hardware performs multiple tasks at once
— Temporal parallelism
e task is broken into multiple stages
e also called pipelining
e for example, an assembly line
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Parallelism Definitions

e Token: Group of inputs processed to
produce group of outputs

e Latency: Time for one token to pass from
start to end

* Throughput: Number of tokens produced
per unit time

Parallelism increases throughput
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Parallelism Example

e Ben Bitdiddle bakes cookies to celebrate traffic light
controller installation

e 5 minutes to roll cookies
e 15 minutes to bake
e What is the latency and throughput without parallelism?

Latency =
Throughput =
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Parallelism Example

e What is the latency and throughput if Ben
uses parallelism?

— Spatial parallelism: Ben asks Allysa P. Hacker to
help, using her own oven

— Temporal parallelism:
* two stages: rolling and baking
* He uses two trays

 While first batch is baking, he rolls the
second batch, etc.
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Spatial
Parallelism

Spatial Parallelism

Tray 1
Tray 2
Tray 3

Tray 4

Latency:
time to
first tray
0 5 10 15 20 25 30 35 40 45 50
L ] ] ] ] ] ] ] ] ] ] .
Time

Roll

Alyssa 1

Alyssa 2

Legend

Latency -

Throughput =
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Temporal Parallelism

Latency:
time to
first tray

5 g Tray 1
8-% Tray 2
Ews
® &

Fa Tray3

Latency =
Throughput =

Using both techniques, the throughput would be trays/hour
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