
Lecture 5:
Sequential Timing

E85 Digital Design & Computer Engineering

Lecture 5 <2> Digital Design and Computer Architecture: ARM® Edition © 2015

• Timing of Sequential Logic
• Metastability
• Parallelism

Lecture 5

Lecture 5 <3> Digital Design and Computer Architecture: ARM® Edition © 2015

• Flip-flop samples D at clock edge
• D must be stable when sampled
• Similar to a photograph, D must be stable

around clock edge
• If not, metastability can occur

Timing

Lecture 5 <4> Digital Design and Computer Architecture: ARM® Edition © 2015

CLK

tsetup

D

thold

ta

• Setup time: tsetup = time before clock edge data must be

stable (i.e. not changing)

• Hold time: thold = time after clock edge data must be stable

• Aperture time: ta = time around clock edge data must be

stable (ta = tsetup + thold)

Input Timing Constraints

Lecture 5 <5> Digital Design and Computer Architecture: ARM® Edition © 2015

CLK

tccq
tpcq

Q

• Propagation delay: tpcq = time after clock edge that the

output Q is guaranteed to be stable (i.e., to stop changing)

• Contamination delay: tccq = time after clock edge that Q
might be unstable (i.e., start changing)

Output Timing Parameters

Lecture 5 <6> Digital Design and Computer Architecture: ARM® Edition © 2015

• Synchronous sequential circuit inputs must
be stable during aperture (setup and hold)
time around clock edge

• Specifically, inputs must be stable
– at least tsetup before the clock edge
– at least until thold after the clock edge

Dynamic Discipline

Lecture 5 <7> Digital Design and Computer Architecture: ARM® Edition © 2015

• The delay between registers has a minimum
and maximum delay, dependent on the
delays of the circuit elements

CL

CLKCLK

R1 R2

Q1 D2

(a)

CLK

Q1

D2
(b)

Tc

Dynamic Discipline

Lecture 5 <8> Digital Design and Computer Architecture: ARM® Edition © 2015

• Depends on the maximum delay from register R1
through combinational logic to R2

• The input to register R2 must be stable at least tsetup
before clock edge

CLK

Q1

D2

Tc

tpcq tpd tsetup

CL

CLKCLK
Q1 D2

R1 R2 Tc ≥ tpcq + tpd + tsetup

tpd ≤ Tc – (tpcq + tsetup)

Setup Time Constraint

(tpcq + tsetup): sequencing overhead

Lecture 5 <9> Digital Design and Computer Architecture: ARM® Edition © 2015

• Depends on the minimum delay from register R1
through the combinational logic to R2

• The input to register R2 must be stable for at least
thold after the clock edge

CLK

Q1

D2
tccq tcd
thold

CL

CLKCLK
Q1 D2

R1 R2 thold < tccq + tcd
tcd > thold - tccq

Hold Time Constraint

Lecture 5 <10> Digital Design and Computer Architecture: ARM® Edition © 2015

CLK CLK
A

B

C

D

X'

Y'

X

Y pe
r g

at
e

Timing Characteristics
tccq = 30 ps
tpcq = 50 ps
tsetup = 60 ps
thold = 70 ps

tpd = 35 ps
tcd = 25 ps

tpd = 3 x 35 ps = 105 ps

tcd = 25 ps

Setup time constraint:

Tc ≥ (50 + 105 + 60) ps = 215 ps

fc = 1/Tc = 4.65 GHz

Hold time constraint:

tccq + tcd > thold ?

(30 + 25) ps > 70 ps ? No!

Timing Analysis

Lecture 5 <11> Digital Design and Computer Architecture: ARM® Edition © 2015
pe

r g
at

e

Timing Characteristics
tccq = 30 ps
tpcq = 50 ps
tsetup = 60 ps
thold = 70 ps

tpd = 35 ps
tcd = 25 ps

tpd = 3 x 35 ps = 105 ps

tcd = 2 x 25 ps = 50 ps

Setup time constraint:

Tc ≥ (50 + 105 + 60) ps = 215 ps

fc = 1/Tc = 4.65 GHz

Hold time constraint:

tccq + tcd > thold ?

(30 + 50) ps > 70 ps ? Yes!

Timing Analysis

CLK CLK
A

B

C

D

X'

Y'

X

Y

Add buffers to the short paths:

Lecture 5 <12> Digital Design and Computer Architecture: ARM® Edition © 2015

• The clock doesn’t arrive at all registers at same time

• Skew: difference between two clock edges

• Perform worst case analysis to guarantee dynamic
discipline is not violated for any register – many
registers in a system!

t skew

CLK1

CLK2

CL

CLK2CLK1

R1 R2

Q1 D2

CLKdelay

CLK

Clock Skew

Lecture 5 <13> Digital Design and Computer Architecture: ARM® Edition © 2015

• In the worst case, CLK2 is earlier than CLK1

CLK1

Q1

D2

Tc

tpcq tpd tsetuptskew

CL

CLK2CLK1

R1 R2

Q1 D2

CLK2
Tc ≥ tpcq + tpd + tsetup + tskew

tpd ≤ Tc – (tpcq + tsetup + tskew)

Setup Time Constraint with Skew

Lecture 5 <14> Digital Design and Computer Architecture: ARM® Edition © 2015

• In the worst case, CLK2 is later than CLK1

tccq tcd

thold

Q1

D2

tskew

CL

CLK2CLK1

R1 R2

Q1 D2

CLK2

CLK1

tccq + tcd > thold + tskew

tcd > thold + tskew – tccq

Hold Time Constraint with Skew

Lecture 5 <15> Digital Design and Computer Architecture: ARM® Edition © 2015

CLK

tsetup thold

taperture

D

Q

D

Q

D

Q ???

C
as

e
I

C
as

e
II

C
as

e
III

D Q

CLK
bu
tto
n

Asynchronous (for example, user)
inputs might violate the dynamic
discipline

Violating the Dynamic Discipline

Lecture 5 <16> Digital Design and Computer Architecture: ARM® Edition © 2015

metastable

stablestable

• Bistable devices: two stable states, and a
metastable state between them

• Flip-flop: two stable states (1 and 0) and one
metastable state

• If flip-flop lands in metastable state, could stay there
for an undetermined amount of time

Metastability

Lecture 5 <17> Digital Design and Computer Architecture: ARM® Edition © 2015

R

S

Q

Q

N1

N2

• Flip-flop has feedback: if Q is somewhere between
1 and 0, cross-coupled gates drive output to either
rail (1 or 0)

• Metastable signal: if it hasn’t resolved to 1 or 0

• If flip-flop input changes at random time, probability
that output Q is metastable after waiting some time, t:

P(tres > t) = (T0/Tc) e-t/τ

tres : time to resolve to 1 or 0

T0, τ : properties of the circuit

Flip-Flop Internals

Lecture 5 <18> Digital Design and Computer Architecture: ARM® Edition © 2015

• Intuitively:
T0/Tc: probability input changes at a bad time (during aperture)

P(tres > t) = (T0/Tc) e-t/τ

τ: time constant for how fast flip-flop moves away from
metastability

P(tres > t) = (T0/Tc) e-t/τ

• If flip-flop samples metastable input, if you wait long
enough (t), the output will have resolved to 1 or 0 with
high probability.

Metastability

Lecture 5 <19> Digital Design and Computer Architecture: ARM® Edition © 2015

D Q

CLK

SYN
C

• Asynchronous inputs are inevitable (user interfaces,
systems with different clocks interacting, etc.)

• Synchronizer goal: make the probability of failure (the
output Q still being metastable) low

• Synchronizer cannot make the probability of failure 0

Synchronizers

Lecture 5 <20> Digital Design and Computer Architecture: ARM® Edition © 2015

D

Q

D2 Q

D2

Tc

tsetup tpcq

CLK CLK

CLK

tres

metastable

F1 F2

• Synchronizer: built with two back-to-back flip-flops

• Suppose D is transitioning when sampled by F1
• Internal signal D2 has (Tc - tsetup) time to resolve to 1

or 0

Synchronizer Internals

Lecture 5 <21> Digital Design and Computer Architecture: ARM® Edition © 2015

D

Q

D2 Q

D2

Tc

tsetup tpcq

CLK CLK

CLK

tres

metastable

F1 F2

For each sample, probability of failure is:

P(failure) = (T0/Tc) e-(Tc - tsetup)/τ

Synchronizer Probability of Failure

Lecture 5 <22> Digital Design and Computer Architecture: ARM® Edition © 2015

• If asynchronous input changes once per second,
probability of failure per second is P(failure).

• If input changes N times per second, probability of failure
per second is:

P(failure)/second = (NT0/Tc) e-(Tc - tsetup)/τ

• Synchronizer fails, on average, 1/[P(failure)/second]
• Called mean time between failures, MTBF:

MTBF = 1/[P(failure)/second] = (Tc/NT0) e(Tc - tsetup)/τ

Synchronizer Mean Time Between Failures

Lecture 5 <23> Digital Design and Computer Architecture: ARM® Edition © 2015

D D2 Q

CLK CLK

F1 F2

• Suppose: Tc = 1/500 MHz = 2 ns τ = 200 ps
T0 = 150 ps tsetup = 100 ps
N = 10 events per second

• What is the probability of failure? MTBF?
P(failure) = (150 ps/2 ns) e-(1.9 ns)/200 ps

= 5.6 × 10-6

P(failure)/second = 10 × (5.6 × 10-6)
= 5.6 × 10-5 / second

MTBF = 1/[P(failure)/second] ≈ 5 hours

Example Synchronizer

Lecture 5 <24> Digital Design and Computer Architecture: ARM® Edition © 2015

• Two types of parallelism:
– Spatial parallelism

• duplicate hardware performs multiple tasks at once
– Temporal parallelism

• task is broken into multiple stages
• also called pipelining
• for example, an assembly line

Parallelism

Lecture 5 <25> Digital Design and Computer Architecture: ARM® Edition © 2015

• Token: Group of inputs processed to
produce group of outputs

• Latency: Time for one token to pass from
start to end

• Throughput: Number of tokens produced
per unit time

Parallelism increases throughput

Parallelism Definitions

Lecture 5 <26> Digital Design and Computer Architecture: ARM® Edition © 2015

• Ben Bitdiddle bakes cookies to celebrate traffic light
controller installation

• 5 minutes to roll cookies
• 15 minutes to bake
• What is the latency and throughput without parallelism?

Latency = 5 + 15 = 20 minutes = 1/3 hour
Throughput = 1 tray/ 1/3 hour = 3 trays/hour

Parallelism Example

Lecture 5 <27> Digital Design and Computer Architecture: ARM® Edition © 2015

• What is the latency and throughput if Ben
uses parallelism?
– Spatial parallelism: Ben asks Allysa P. Hacker to

help, using her own oven
– Temporal parallelism:
• two stages: rolling and baking

• He uses two trays
• While first batch is baking, he rolls the

second batch, etc.

Parallelism Example

Lecture 5 <28> Digital Design and Computer Architecture: ARM® Edition © 2015

Latency = 5 + 15 = 20 minutes = 1/3 hour
Throughput = 2 trays/ 1/3 hour = 6 trays/hour

Spatial Parallelism
Sp
at
ia
l

Pa
ra
lle
lis
m Roll

Bake

Ben 1 Ben 1

Alyssa 1 Alyssa 1

Ben 2 Ben 2

Alyssa 2 Alyssa 2

Time

0 5 10 15 20 25 30 35 40 45 50

Tray 1

Tray 2

Tray 3

Tray 4

Latency:
time to

first tray

Legend

Lecture 5 <29> Digital Design and Computer Architecture: ARM® Edition © 2015

Te
m
po
ra
l

Pa
ra
lle
lis
m Ben 1 Ben 1

Ben 2 Ben 2

Ben 3 Ben 3

Time

0 5 10 15 20 25 30 35 40 45 50

Latency:
time to

first tray

Tray 1

Tray 2

Tray 3

Latency = 5 + 15 = 20 minutes = 1/3 hour
Throughput = 1 trays/ 1/4 hour = 4 trays/hour

Using both techniques, the throughput would be 8 trays/hour

Temporal Parallelism

