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Evolution of ARM Processors

• Architecture
• Microarchitecture
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ARM v4 Architecture
• 16 32-bit registers
– R15 is the program counter

• Write to R15 causes a jump
• Read to R15 returns PC+8

– R14 is the link register for function calls
• Typical RISC instruction set +
– Conditional execution

• Avoids need for some branches
– Shifter in datapath on second source

• Helpful for memory addressing
– Postincrement memory addressing mode
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ARM v4 Instruction Formats
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Data Processing Instructions
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Memory Instructions
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Branch Instructions
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Conditional Execution
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Single Cycle ARM Processor

Similar to RISC-V
PC/R15 input to register file
Source registers fields vary in location
ALU Flags
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Architecture Revisions

ARMv2: 1985  Acorn Computer

26-bit address bus, status in upper PC bits 

ARMv3: 32-bit address bus, CPSR

ARMv4: 1993  Halfword loads & stores

Core ARM instruction set, described here

ARMv4T: Thumb instruction set (16-bit)

ARMv5TE: DSP, Floating point

ARMv6: multimedia, enhanced Thumb

ARMv7: advanced SIMD

ARMv8: 64-bit new instruction set



Chapter 7 <11> Digital Design and Computer Architecture: ARM® Edition © 2015

Thumb

Pack common instructions into 16 bits.

Compete with 16-bit processors for code 
density.

Limitations: 

R0-R7

Reuse register as source and dest

Shorter immediates

No conditional execution

Always write status flags
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Thumb Example Encodings

Thumb-2 instructions are identified by their most significant 5 bits being
11101, 11110, or 11111. The processor then fetches a second halfword
containing the remainder of the instruction. The Cortex-M series of pro-
cessors operates exclusively in Thumb state.

6 . 7 . 2 DSP Instructions

Digital signal processors (DSPs) are designed to efficiently handle signal pro-
cessing algorithms such as the Fast Fourier Transform (FFT) and Finite/Infi-
nite Impulse Response filters (FIR/IIR). Common applications include audio
and video encoding and decoding, motor control, and speech recognition.
ARMprovides a number ofDSP instructions for these purposes. DSP instruc-
tions include multiply, add, and multiply-accumulate (MAC)—multiply and
add the result to a running sum: sum= sum+ src1 × src2. MAC is a distin-
guishing feature separatingDSP instruction sets from regular instruction sets.
It is very commonly used in DSP algorithms and doubles the performance
relative to separate multiply and add instructions. However, MAC requires
specifying an extra register to hold the running sum.

DSP instructions often operate on short (16-bit) data representing
samples read from a sensor by an analog-to-digital converter. However,
the intermediate results are held to greater precision (e.g., 32 or 64 bits)

15 0
0 1 0 0 0 0 funct Rm Rdn <funct>S Rdn, Rdn, Rm     (data-processing)

0 0 ASR LSR imm5 Rm Rd0 LSLS / LSRS / ASRS Rd, Rm, #imm5

1 1 1 SUB imm3 Rm Rd0 ADDS / SUBS Rd, Rm, #imm30 0

1 ADDS / SUBS Rdn, Rdn, #imm80 10 Rdn imm8

0 0 MOV Rd, #imm80 1

0 1 CMP Rn, #imm80 1

0

0

Rd

Rn

imm8

imm8

0 1 BX / BLX Rm1 00 Rm1 1 L0 0 00

0 1 B<cond> imm81 1 cond imm8

0 1 STR(B / H) / LDR(B / H) Rd, [Rn, Rm]0 1 B HL Rm Rn Rd

1 0 STR / LDR Rd, [Rn, #imm5]1 L imm5 Rn Rd

0 11 0 L Rd imm8 STR / LDR Rd, [SP, #imm8]

0

0 01 1 Rd imm8 LDR Rd, [PC, #imm8]0

0 0 1 0 Rm Rdn[2:0]0 1 0 0 ADD Rdn, Rdn, RmRdn
[3]

1 0 0 0 imm71 0 1 0 ADD / SUB SP, SP, #imm7SUB

0 0 1 1 Rm Rdn[2:0]0 1 0 0 MOV Rdn, RmRdn
[3]

1 0 B imm111 1 imm80

1 11 0 imm22[21:11]1 1 11 1 imm22[10:0]1 BL imm22

SUB

Figure 6.33 Thumb instruction encoding examples

The basic multiply instructions,
listed in Appendix B, are part of
ARMv4. ARMv5TE added the
saturating math instructions and
packed and fractional multiplies
to support DSP algorithms.

The Fast Fourier Transform
(FFT), the most common DSP
algorithm, is both complicated
and performance-critical. The
DSP instructions in computer
architectures are intended to
perform efficient FFTs, especially
on 16-bit fractional data.
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Digital Signal Processing Instructions

Efficient DSP code, e.g. FFT and FIR

Especially support multiply-accumulate (MAC)

Z = Z + A * B

Needs extra source

Often run on shorter data types (e.g. 16 bits)

Need longer accumulator Z

Saturated arithmetic
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DSP Data Types

or saturated to prevent overflow. In saturated arithmetic, results larger
than the most positive number are treated as the most positive, and results
smaller than the most negative are treated as the most negative. For exam-
ple, in 32-bit arithmetic, results greater than 231 – 1 saturate at 231 – 1,
and results less than −231 saturate at −231. Common DSP data types
are given in Table 6.15. Two's complement numbers are indicated as hav-
ing one sign bit. The 16-, 32-, and 64-bit types are also known as half,
single, and double precision, not to be confused with single and double-
precision floating-point numbers. For efficiency, two half-precision num-
bers are packed in a single 32-bit word.

The integer types come in signed and unsigned flavors with the sign
bit in the msb. Fractional types (Q15 and Q31) represent a signed frac-
tional number; for example, Q31 spans the range [−1, 1–2−31] with a step
of 2−31 between consecutive numbers. These types are not defined in the
C standard but are supported by some libraries. Q31 can be converted
to Q15 by truncation or rounding. In truncation, the Q15 result is just
the upper half. In rounding, 0x00008000 is added to the Q31 value
and then the result is truncated. When a computation involves many
steps, rounding is useful because it avoids accumulating multiple small
truncation errors into a significant error.

ARM added a Q flag to the status registers to indicate that overflow
or saturation has occurred in DSP instructions. For applications where
accuracy is critical, the program can clear the Q flag before a computa-
tion, do the computation in single-precision, and check the Q flag
afterward. If it is set, overflow occurred and the computation can be
repeated in double precision if necessary.

Saturated arithmetic is an
important way to gracefully
degrade accuracy in DSP
algorithms. Commonly,
single-precision arithmetic is
sufficient to handle most
inputs, but pathological cases
can overflow the single-
precision range. An overflow
causes an abrupt sign change
to a radically wrong answer,
which may appear to the user
as a click in an audio stream
or a strangely colored pixel in
a video stream. Going to
double-precision arithmetic
prevents overflow but
degrades performance and
increases power consumption
in the typical case. Saturated
arithmetic clips the overflow
at the maximum or minimum
value, which is usually close to
the desired value and causes
little inaccuracy.

Table 6.15 DSP data types

Type Sign Bit Integer Bits Fractional Bits

short 1 15 0

unsigned short 0 16 0

long 1 31 0

unsigned long 0 32 0

long long 1 63 0

unsigned long long 0 64 0

Q15 1 0 15

Q31 1 0 31
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Floating Point

16 64-bit double registers D0-D15
Also usable as 32 32-bit float registers S0-S31
Or 8 128-bit quad registers Q0-Q7 for SIMD

VADD.F32 S2, S0, S1
VADD.F64 D2,D0, D1
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Floating-Point Instructions

6 . 7 . 3 Floating-Point Instructions

Floating-point is more flexible than the fixed-point numbers favored in
DSP and makes programming easier. Floating-point is widely used in gra-
phics, scientific applications, and control algorithms. Floating-point arith-
metic can be performed with a series of ordinary data-processing
instructions but is faster and consumes less power using dedicated float-
ing-point instructions and hardware.

The ARMv5 instruction set includes optional floating-point instruc-
tions. These instructions access at least 16 64-bit double-precision regis-
ters separate from the ordinary registers. These registers can also be
treated as pairs of 32-bit single-precision registers. The registers are
named D0 –D15 as double-precision or S0 –S31 as single-precision. For
example, VADD.F32 S2, S0, S1 and VADD.F64 D2, D0, D1 perform single
and double-precision floating-point adds, respectively. Floating-point
instructions, listed in Table 6.18, are suffixed with .F32 or .F64 to indi-
cate single- or double-precision floating-point.

Table 6.18 ARM floating-point instructions

Instruction Function

VABS Rd, Rm Rd = |Rm|

VADD Rd, Rn, Rm Rd = Rn + Rm

VCMP Rd, Rm Compare and set floating-point status flags

VCVT Rd, Rm Convert between int and float

VDIV Rd, Rn, Rm Rd = Rn / Rm

VMLA Rd, Rn, Rm Rd = Rd + Rn * Rm

VMLS Rd, Rn, Rm Rd = Rd − Rn * Rm

VMOV Rd, Rm or #const Rd = Rm or constant

VMUL Rd, Rn, Rm Rd = Rn * Rm

VNEG Rd, Rm Rd = −Rm

VNMLA Rd, Rn, Rm Rd = −(Rd + Rn * Rm)

VNMLS Rd, Rn, Rm Rd = −(Rd − Rn * Rm)

VNMUL Rd, Rn, Rm Rd = −Rn * Rm

VSQRT Rd, Rm Rd = sqrt(Rm)

VSUB Rd, Rn, Rm Rd = Rn – Rm
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SIMD Instructions

Packed operations on 8-64 bit data 
in 64-128 bit registers D, Q

.I8, .I16, .I32, .I64

.F32, .F64

VADD.I8 D2, D1, D0
VADD.I32 Q2, Q1, Q0
VADD.F32 D2, D1, D0
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64-bit Instruction Set

32-bit addresses access 232 = 4GB of RAM

too little for PCs or phone nowadays

64-bit addresses access 264 bytes (huge)

ARMv8 uses 64-bit registers and addresses

Instructions still 32 bits
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ARMv8 Registers

Expands to 32 64-bit registers
X0-X30

PC and SP are no longer general purpose regs
X30 acts as the link regiser
No X31, but Zero Reg (ZR) instead

Hardwired to 0
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ARMv8 Instruction Encodings

Different instruction encoding in 64-bit mode

5 bit register addresses

Remove conditionals from all but branch instrs.

Expands SIMD registers

Cryptography instructions

Boot in 64-bit mode

Can change to 32-bit for compatibility
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Evolution of ARM Processors

systems both have their places in modern systems. Symmetric multi-
processors are good for situations like large data centers that have lots
of thread level parallelism available. Heterogeneous systems are good
for cases that have more varying or special-purpose workloads.
Clusters
In clustered multiprocessors, each processor has its own local memory
system. One type of cluster is a group of personal computers connected
together on the network running software to jointly solve a large pro-
blem. Another type of cluster that has become very important is the data
center, in which racks of computers and disks are networked together and
share power and cooling. Major Internet companies including Google,
Amazon, and Facebook have driven the rapid development of data cen-
ters to support millions of users around the world.

7.8 REAL-WORLD PERSPECTIVE: EVOLUTION OF ARM
MICROARCHITECTURE*
This section traces the development of the ARM architecture and micro-
architecture since its inception in 1985. Table 7.7 summarizes the
highlights, showing 10x improvement in IPC and 250x increase in

DMIPS (Dhrystone millions of
instructions per second)
measures performance.

Table 7.7 Evolution of ARM processors

Microarchitecture Year Architecture
Pipeline
Depth

DMIPS/
MHz

Representative
Frequency
(MHz) L1 Cache

Relative
Size

ARM1 1985 v1 3 0.33 8 N/A 0.1

ARM6 1992 v3 3 0.65 30 4 KB unified 0.6

ARM7 1994 v4T 3 0.9 100 0–8 KB unified 1

ARM9E 1999 v5TE 5 1.1 300 0–16 KB I+D 3

ARM11 2002 v6 8 1.25 700 4–64 KB I+D 30

Cortex-A9 2009 v7 8 2.5 1000 16–64 KB I+D 100

Cortex-A7 2011 v7 8 1.9 1500 8–64 KB I+D 40

Cortex-A15 2011 v7 15 3.5 2000 32 KB I+D 240

Cortex-M0 + 2012 v7M 2 0.93 60–250 None 0.3

Cortex-A53 2012 v8 8 2.3 1500 8–64 KB I+D 50

Cortex-A57 2012 v8 15 4.1 2000 48 KB I+ 32 KB D 300

470 CHAPTER SEVEN Microarchitecture
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ARM1 die photo

frequency over three decades and eight revisions of the architecture.
Frequency, area, and power will vary with manufacturing process and
the goals, schedule, and capabilities of the design team. The representative
frequencies are quoted for a fabrication process at the time of product
introduction, so much of the frequency gain comes from transistors rather
than microarchitecture. The relative size is normalized by the transistor fea-
ture size and can vary widely depending on cache size and other factors.

Figure 7.68 shows a die photograph of the ARM1 processor, which
contained 25,000 transistors in a three-stage pipeline. If you count care-
fully, you can observe the 32 bits of the datapath at the bottom. The reg-
ister file is on the left and the ALU is on the right. At the very left is the
program counter; observe that the two least significant bits at the bottom
are empty (tied to 0) and the six at the top are different because they are
used for status bits. The controller sits on top of the datapath. Some of the
rectangular blocks are PLAs implementing control logic. The rectangles
around the edge are I/O pads, with tiny gold bond wires visible leading
out of the picture.

Figure 7.68 ARM1 die photograph
(Reproduced with permission from ARM. © 1985 ARM Ltd)

7.8 Real-World Perspective: Evolution of ARM Microarchitecture 471
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ARM7 Block Diagram (v4T)

supporting only Thumb instructions. ARM introduced the Cortex-A and
Cortex-M families of processors. The Cortex-A family of high-perfor-
mance processors are now used in virtually all smart phones and tablets.
The Cortex-M family, running the Thumb instruction set, are tiny and
inexpensive microcontrollers used in embedded systems. For example,
the Cortex-M0+ uses a two-stage pipeline and only 12,000 gates, com-
pared with hundreds of thousands in an A-series processor. It costs well
under a dollar as a stand-alone chip, or under a penny when integrated

Steve Furber (1953 –) was born in
Manchester, England, and
received a PhD in aerodynamics
from the University of
Cambridge. He joined Acorn
Computer, where he codesigned
the BBCMicro and ARM1
microprocessor for Acorn
Computer. In 1990, he joined the
faculty of the University of
Manchester, where his research
has focused on asynchronous
computing and neural systems.

(Photograph © 2012 The
University of Manchester.
Reproduced with permission.)
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ARM9 Block Diagram (v5TE)

on a larger SoC. The power consumption is roughly 3 μW/MHz, so the
processor powered by a watch battery could run continuously for nearly
a year at 10 MHz.

Higher-end ARMv7 processors captured the cell phone and tablet
markets. The Cortex-A9 was widely used in mobile phones, often as part
of a dual-core SoC containing two Cortex-A9 processors, a graphics
accelerator, a cellular modem, and other peripherals. Figure 7.71 shows
a block diagram of the Cortex-A9. The processor decodes two instruc-
tions per cycle, performs register renaming, and issues them to out-of-
order execution units.

Energy efficiency and performance are both critical for mobile
devices, so ARM has been promoting the big.LITTLE architecture
combining several high-performance “big” cores for peak workloads
with energy-efficient “LITTLE” cores that handle most routine processes.
For example, the Samsung Exynos 5 Octa in the Galaxy S5 phone
contains four Cortex-A15 big cores running up to 2.1 GHz and four
Cortex-A7 LITTLE cores running at up to 1.5 GHz. Figure 7.72 shows
pipeline diagrams for the two types of cores. The Cortex-A7 is an in-order
processor that can decode and issue up to one memory instruction and
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Cortex A9 Block Diagram
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(This image has been sourced by the authors and does not imply ARM endorsement.)
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Cortex A7 Pipeline
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Cortex A15 Pipeline
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Recent Developments

64-bit ARMv8
Bit.LITTLE / DynamIQ

Cortex A73/A53
Cortex A75/A55
Cortex A76
Cortex A77
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2019 Benchmarks

Manufacturer Chip Product Process Big Core Frequency 
(GHz)

SpecInt2006 
Energy (kJ)

SpecInt2006 
Speed

Core Size 
(mm2)

Apple A12 iPhone XS/XR TSMC 7nm Vortex 2.49 9.5 45.3 2.07

Samsung Exynos 9820 Galaxy S10 Samsung 8nm M4 2.73 14.3 26.3

Qualcomm Snapdragon 855 Galaxy S10+ TSMC 7 nm A76 2.84 9.7 26.7

Huawei Kirin 980 Huawei P30 TSMC 7nm A76 2.6 9.5 25.7

Apple A11 iPhone 8/X TSCM 10 nm Monsoon 2.39 10.6 36.8 2.68

Samsung Exynos 9810 Galaxy S9 Samsung 10 nm M3 2.70 20.1 23.8 3.46

Qualcomm Snapdragon 845 Note S9 Samsung 10 nm A75 2.80 12.5 17.7

Qualcomm Snapdragon 835 Galaxy S8 10 nm A73 2.45 13.3 13.6
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2019 Benchmarks

Manufacturer Chip Cores Cache Size Die Size (mm2) Transistors 
(Billion)

Apple A12 2 Vortex, 4 Tempest 8 MB 83 6.9B

Samsung Exynos 9820 2 M4, 2 A75, 4 A55 2 MB 127

Qualcomm Snapdragon 855 4 A76, 4 A55 5 MB 73

Huawei Kirin 980 4 A76, 4 A55 4 MB 74 6.9

Apple A11 2 Monsoon, 4 Mistral 8 MB 88 4.3

Samsung Exynos 9810 4 M3 4 MB 119

Qualcomm Snapdragon 845 4 A75, 4 A55 2 MB 95 5.3

Qualcomm Snapdragon 835 4 A73, 4 A53 2 MB 72 3
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Microarchitectures

Manufacturer Core Decode Out-of-Order Pipeline Stages

Apple Vortex (A12)
Monsoon (A11)

7-Way Yes

Samsung M4 6-Way Yes 16

ARM Cortex A76 4-Way Yes 11-13

ARM Cortex A75 3-Way Yes 11-13

ARM Cortex A55 2-Way No 8
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Apple A12

2018

TSMC 7 nm

83 mm2

2x Vortex 

2.49 GHz

512 KB L2$

4x Tempest

1.8 GHz

128 KB L2$

4 MB L3$

Mali GPU

LTE Modem
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Samsung Exynos 9820

2018
TSMC 7 nm
74 mm2

2x M4 2.6 GHz
512 KB L2$

2x A75 1.92 GHz
4x A55 1.8 GHz

128 KB L2$
4 MB L3$
Mali GPU
LTE Modem
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Samsung Exynos 9820 M4 uArch

6-way decode
12 execution pipes

1 branch
2 alu
2 complex
4 ld/store
3 FP pipes
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Huawei Kirin 980

2018
TSMC 7 nm
74 mm2

2x A76 2.6 GHz
512 KB L2$

2x A76 1.92 GHz
4x A55 1.8 GHz

128 KB L2$
4 MB L3$
Mali GPU
LTE Modem
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ARM A76 uArch

4-way decode
8 execution pipes

1 branch
2 alu
1 complex
2 ld/store
2 FP pipes
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ARM A77 uArch

4-way decode
12 execution pipes

2 branch
3 alu
1 complex
4 ld/store
2 FP pipes


