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Review: Single-Cycle RISC-V Processor

)

PCSrc
ResultSrc
MemWrite
funct7s | ALUControl,.q
funct3 |ALUSrc

op ImmSrc4.
(Zero | RegWrite

Control
Unit

30

14:12

6:0

—

CLK CLK
CLK | |

. WE3
N PCNext |¢| PC nstr F=] A RD1 SreA

A RD
| L RD

Instruction 24:20
Data

[
Memory 11:7 2§ Rb2 (1) SrcB M
Register WriteData emory

WD3 File wD

= +
ImmExt
37 Extend
PCPlus4

Result
4

Zero WE
ALUResult ReadData

—

\ AYU /I

PCTarget

R I SC ® Digital Design and Computer Architecture: RISC-V Edition
‘ Chapter 7 <3> Harris & Harris © 2020 Elsevier



Review: Multicycle RISC-V Processor
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Review: Multicycle Main FSM
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Advanced Microarchitecture

* Deep Pipelining

* Micro-operations

* Branch Prediction

* Superscalar Processors
* Out of Order Processors
* Register Renaming
 SIMD

 Multithreading

* Multiprocessors
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Deep Pipelining

e 10-20 stages typical

* Number of stages limited by:
— Pipeline hazards
— Sequencing overhead
— Power
— Cost
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Micro-operations

 Decompose more complex instructions into a series of simple
instructions called micro-operations (micro-ops or u-ops)

* Atrun-time, complex instructions are decoded into one or
more micro-ops

e Used heavily in CISC (complex instruction set computer)
architectures (e.g., x86)

Complex Op Micro-op Sequence
lw s1, 0(s2), postincr 4 1w sl, 0(s2)
addi s2, s2, 4

Without p-ops, would need 2nd write port on the register file
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Branch Prediction

* Guess whether branch will be taken
— Backward branches are usually taken (loops)

— Consider history to improve guess

* Good prediction reduces fraction of branches
requiring a flush
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Branch Prediction

* |deal pipelined processor: CPlI =1
* Branch misprediction increases CPI

e Static branch prediction:
— Check direction of branch (forward or backward)
— If backward, predict taken
— Else, predict not taken

* Dynamic branch prediction:

— Keep history of last several hundred (or thousand)
branches in branch target buffer, record:

e Branch destination
e Whether branch was taken
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Branch Prediction Example

addi sl1,
addi sO0,
addi tO,
For:
bge sO0,
add sl1,
addi sO0,
] For
Done:

b RISC

zero, O

zero, O

zero, 10

t0,
sl,

sO,

Done

®
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sl = sum
sO = 1
t0 = 10

for (1=0; 1<10; 1=1+1)

sum = sum + 1

1 =1+ 1
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1-Bit Branch Predictor

e Remembers whether branch was taken the
last time and does the same thing

* Mispredicts first and last branch of loop
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2-Bit Branch Predictor

taken

predict
not taken

predict

predict predict taken
taken taken tak not taken
aken

taken

Only mispredicts last branch of loop
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Superscalar

 Multiple copies of datapath execute multiple
Instructions at once

* Dependencies make it tricky to issue multiple
Instructions at once

CLK CLK CLK CLK

< < < <

CLK

| f IPC RD A1
A2
A = A3 RD1 frm Fl :|l
Instruction |: A5 Register % - A2 RD2
Memory AB File ~ RD2f=— < Data
RD5 |
Wwbe L— Memory
WD1
wWD2

R I SC ® Digital Design and Computer Architecture: RISC-V Edition
‘ Chapter 7 <14> Harris & Harris © 2020 Elsevier



Superscalar Example
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Actual IPC:
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Superscalar with Dependencies

Ideal IPC: 2
Actual IPC: 6/5=1.2
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Out of Order Processor

* Looks ahead across multiple instructions
* |ssues as many instructions as possible at once

* [ssues instructions out of order (as long as no
dependencies)

* Dependencies:

— RAW (read after write): one instruction writes, later
instruction reads a register

— WAR (write after read): one instruction reads, later
instruction writes a register

— WAW (write after write): one instruction writes, later
instruction writes a register
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Out of Order Processor

* Instruction level parallelism (ILP): number
of instruction that can be issued

simultaneously (average < 3)

* Scoreboard: table that keeps track of:
—Instructions waiting to issue
— Available functional units

—Dependencies

R I SC ® Digital Design and Computer Architecture: RISC-V Edition
‘ Chapter 7 <18> Harris & Harris © 2020 Elsevier



Out of Order Processor Example
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Register Renaming
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SIMD

* Single Instruction Multiple Data (SIMD)

— Single instruction acts on multiple pieces of data at once

— Common application: graphics

— Perform short arithmetic operations (also called packed
arithmetic)

* For example, add eight 8-bit elements

63 56 55 48 47 40 39 32 3 24 23 16 15 87 0  Bit position
ay ds as g as ao aq do DO
+ b, bs bs o bs b, b, bo D1

as + b7 s t+ be as + b5 as + b4 as + b3 a + b2 a, + b1 Q t+ bo D2
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Advanced Architecture Techniques

* Multithreading

— Wordprocessor: thread for typing, spell checking,
printing

* Multiprocessors
— Multiple processors (cores) on a single chip
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Threading: Definitions

* Process: program running on a computer
— Multiple processes can run at once: e.g., surfing
Web, playing music, writing a paper
* Thread: part of a program

— Each process has multiple threads: e.g., a word
processor may have threads for typing, spell
checking, printing
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Threads in Conventional Processor

* One thread runs at once

 When one thread stalls (for example, waiting
for memory):
— Architectural state of that thread stored

— Architectural state of waiting thread loaded into
processor and it runs

— Called context switching

* Appears to user like all threads running
simultaneously
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Multithreading

 Multiple copies of architectural state
* Multiple threads active at once:

— When one thread stalls, another runs immediately

— If one thread can’t keep all execution units busy,
another thread can use them

* Does not increase instruction-level parallelism
(ILP) of single thread, but increases
throughput

Intel calls this “hyperthreading”
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Multiprocessors

* Multiple processors (cores) with a method of
communication between them

* Types:
— Homogeneous: multiple cores with shared main
memory

— Heterogeneous: separate cores for different tasks (for
example, DSP and CPU in cell phone)

— Clusters: each core has own memory system
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