Digital Design and Computer Architecture, RISC-V Edition
David M. Harris and Sarah L. Harris

R I SC ® Digital Design and Computer Architecture: RISC-V Edition
‘ Chapter 7 <1> Harris & Harris © 2020 Elsevier

Chapter 7 :: Microarchitecture

Application |>"hello

* Introduction Software

hell
world!”
Operating
Systems
I

* Performance Analysis

[
Architecture =
N

* Single-Cycle Processor

* Multicycle Processor o
* Pipelined Processor Digia
 Advanced Microarchitecture Greles oo
Devices @
Physics %

R I SC ® Digital Design and Computer Architecture: RISC-V Edition
‘ Chapter 7 <2> Harris & Harris © 2020 Elsevier

Review: Single-Cycle RISC-V Processor

)

PCSrc
ResultSrc
MemWrite
funct7s | ALUControl,.q
funct3 |ALUSrc

op ImmSrc4.
(Zero | RegWrite

Control
Unit

30

14:12

6:0

—

CLK CLK
CLK | |

. WE3
N PCNext |¢| PC nstr F=] A RD1 SreA

A RD
| L RD

Instruction 24:20
Data

[
Memory 11:7 2§ Rb2 (1) SrcB M
Register WriteData emory

WD3 File wD

= +
ImmExt
37 Extend
PCPlus4

Result
4

Zero WE
ALUResult ReadData

—

\ AYU /I

PCTarget

R I SC ® Digital Design and Computer Architecture: RISC-V Edition
‘ Chapter 7 <3> Harris & Harris © 2020 Elsevier

Review: Multicycle RISC-V Processor

CLK

e

PCWrite
AdrSrc|control
MemWrite| Unit
IRWrite ResultSrc4.g
ALUControl,.q
30 fUﬂCt75 ALUSFCB1;0
14:12 funct3 ALUSrcA1,
6:0 op ImmSrcq.o
RegWrite
Zero
—
Zero
CLK
.
OldPC
\h
CLK CLK CLK 00
o ‘ ‘ 01 CLK
WE 19:15 Rs1 WE3 A SrcA [~
PCNext | || PC] s RD Instr Al RD1 H |10 Lsrea
EN Add A EN S|ALUResult_[™|ALUOUt [55!
1 | T 24:20 Rs2 ~ >3:'
Instr / Data A2 RD2 = 007) SrcB 01
Memory 5 : Rd = 01 10
WD gg T A3 Register = 4 —1o
9 wD3 File 5
o a
37 Extend ImmExt
Data L
Result

R I SC ® Digital Design and Computer Architecture: RISC-V Edition
‘ Chapter 7 <4> Harris & Harris © 2020 Elsevier

Review: Multicycle Main FSM

State Datapath pOp Reset
Fetch Instr —Mem[PC]; PC «— PC+4
Decode ALUOut — PCTarget
MemAdr ALUOuUt « rs1 +imm i:&ge:?%?
MemRead Data — Mem[ALUOu] ALUSIGA = 00 ALUSICB = 01
MemWB rd — Data ALUSIcB =10 ALUOp = 00
MemWrite Mem[ALUOut] « rd —or =90,
ExecuteR ALUOut < rs1 op rs2 PCUpdate
Executel ALUOUt « rs1 op imm
op = 0000011 (1w) op = op = _
ALUWB rd — ALUOut _ OR 0010011 1101111 o 00011
BEQ ALUResult = rs1-rs2; if Zero, PC = ALUOut op = 0100011 (sw) (R-type) (I-type ALU) (3a1) (beq)
JAL PC = ALUOut; ALUOut = PC+4 5
S2: MemAdr S6: ExecuteR S8: Executel S$10: BEQ
ALUSIcA = 10 ALUSICA = 10 ALUSICA = 10 ALUSTIcA = 01 ALUSICA = 10
ALUSICB = 01 ALUSIGB = 00 ALUSTCB = 01 ALUSIGB = 10 ALUSIcB = 00
ALUOp = 00 ALUOp = 10 ALUOp = 10 ALUOp = 00 ALUOp = 01
ResultSrc = 00 ResultSrc = 00
PCUpdate Branch

b RISC

op= op=
0000011 0100011
(1w) (sw)

S3: MemRead
ResultSrc = 00
AdrSrc =1

AdrSrc =1
MemWrite

S5: MemWrite
ResultSrc = 00

S7: ALUWB
ResultSrc = 00
RegWrite

S4: MemWB
ResultSrc = 01
RegWrite
® Digital Design and Computer Architecture: RISC-V Edition
Chapter 7 <5> Harris & Harris © 2020 Elsevier

Advanced Microarchitecture

* Deep Pipelining

* Micro-operations

* Branch Prediction

* Superscalar Processors
* Out of Order Processors
* Register Renaming
 SIMD

 Multithreading

* Multiprocessors

R I SC ® Digital Design and Computer Architecture: RISC-V Edition
‘ Chapter 7 <6> Harris & Harris © 2020 Elsevier

Deep Pipelining

e 10-20 stages typical

* Number of stages limited by:
— Pipeline hazards
— Sequencing overhead
— Power
— Cost

R I SC ® Digital Design and Computer Architecture: RISC-V Edition
‘ Chapter 7 <7> Harris & Harris © 2020 Elsevier

Micro-operations

 Decompose more complex instructions into a series of simple
instructions called micro-operations (micro-ops or u-ops)

* Atrun-time, complex instructions are decoded into one or
more micro-ops

e Used heavily in CISC (complex instruction set computer)
architectures (e.g., x86)

Complex Op Micro-op Sequence
lw s1, 0(s2), postincr 4 1w sl, 0(s2)
addi s2, s2, 4

Without p-ops, would need 2nd write port on the register file

R I SC ® Digital Design and Computer Architecture: RISC-V Edition
‘ Chapter 7 <8> Harris & Harris © 2020 Elsevier

Branch Prediction

* Guess whether branch will be taken
— Backward branches are usually taken (loops)

— Consider history to improve guess

* Good prediction reduces fraction of branches
requiring a flush

R I SC ® Digital Design and Computer Architecture: RISC-V Edition
‘ Chapter 7 <9> Harris & Harris © 2020 Elsevier

Branch Prediction

* |deal pipelined processor: CPlI =1
* Branch misprediction increases CPI

e Static branch prediction:
— Check direction of branch (forward or backward)
— If backward, predict taken
— Else, predict not taken

* Dynamic branch prediction:

— Keep history of last several hundred (or thousand)
branches in branch target buffer, record:

e Branch destination
e Whether branch was taken

R I SC ® Digital Design and Computer Architecture: RISC-V Edition
‘ Chapter 7 <10> Harris & Harris © 2020 Elsevier

Branch Prediction Example

addi sl1,
addi sO0,
addi tO,
For:
bge sO0,
add sl1,
addi sO0,
] For
Done:

b RISC

zero, O

zero, O

zero, 10

t0,
sl,

sO,

Done

®
Chapter 7 <11>

sl = sum
sO = 1
t0 = 10

for (1=0; 1<10; 1=1+1)

sum = sum + 1

1 =1+ 1

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 Elsevier

1-Bit Branch Predictor

e Remembers whether branch was taken the
last time and does the same thing

* Mispredicts first and last branch of loop

R I SC ® Digital Design and Computer Architecture: RISC-V Edition
‘ Chapter 7 <12> Harris & Harris © 2020 Elsevier

2-Bit Branch Predictor

taken

predict
not taken

predict

predict predict taken
taken taken tak not taken
aken

taken

Only mispredicts last branch of loop

R I SC ® Digital Design and Computer Architecture: RISC-V Edition
‘ Chapter 7 <13> Harris & Harris © 2020 Elsevier

Superscalar

 Multiple copies of datapath execute multiple
Instructions at once

* Dependencies make it tricky to issue multiple
Instructions at once

CLK CLK CLK CLK

< < < <

CLK

| f IPC RD A1
A2
A = A3 RD1 frm Fl :|l
Instruction |: A5 Register % - A2 RD2
Memory AB File ~ RD2f=— < Data
RD5 |
Wwbe L— Memory
WD1
wWD2

R I SC ® Digital Design and Computer Architecture: RISC-V Edition
‘ Chapter 7 <14> Harris & Harris © 2020 Elsevier

Superscalar Example

Ideal IPC:
Actual IPC:

ILDR

ADD

SUB

ORR

STR

R8, [RO,

R9, R1,

R10, RI1,

R11, R3,

R12, RI1,

#40]

R2

R3

R4

R5

#801]

b RISC

2

7 i 8
.

LDR:

ADD§

RO

40 |}

R1 |i

R2 [}

SUB| :

anpli

®

e

RF

R1

DM : RF

RO

R3

R3

R4

ORR]

R10

STR

/=

/

RF

RF
R11

R1

R5 [

RO |}

80 |

Chapter 7 <15>

e

Time (cycles)

R12

DM
R5

RF

Digital Design and Computer Architecture: RISC-V Edition

Harris & Harris © 2020 Elsevier

Superscalar with Dependencies

Ideal IPC: 2
Actual IPC: 6/5=1.2

1 4 02 4 3 f a4 i 5 b6 i 7 i 8 1 9

5 L
Time (cyéles)

LDR R8, [RO, #40] LDRY:

RF

O oo N
ADD R9, , R1 1 e | va— (B
SUB R8, R2, R3 | IR | :El—

RF

ORR R11l, R5, R6

R8
DM_
v RMVE_W =l
: : : : STH[} H H N
STR R7, , #80] il feo i [om| |

RF

R I SC ® Digital Design and Computer Architecture: RISC-V Edition
‘ Chapter 7 <16> Harris & Harris © 2020 Elsevier

Out of Order Processor

* Looks ahead across multiple instructions
* |ssues as many instructions as possible at once

* [ssues instructions out of order (as long as no
dependencies)

* Dependencies:

— RAW (read after write): one instruction writes, later
instruction reads a register

— WAR (write after read): one instruction reads, later
instruction writes a register

— WAW (write after write): one instruction writes, later
instruction writes a register

R I SC ® Digital Design and Computer Architecture: RISC-V Edition
‘ Chapter 7 <17> Harris & Harris © 2020 Elsevier

Out of Order Processor

* Instruction level parallelism (ILP): number
of instruction that can be issued

simultaneously (average < 3)

* Scoreboard: table that keeps track of:
—Instructions waiting to issue
— Available functional units

—Dependencies

R I SC ® Digital Design and Computer Architecture: RISC-V Edition
‘ Chapter 7 <18> Harris & Harris © 2020 Elsevier

Out of Order Processor Example

LDR
ADD
SUB
AND
ORR
STR

R9,
RS,
R10,
R11,
R7,

[RO,
RS,
R2,
R4,
R5,

[R11,

#40]

R1

R3

R8

R6
#80]

Ideal IPC:
Actual IPC:

2
6/4=1.5

8

-
Time (cycles)

LDR R8, [RO, #40]

ORR RI, R5, R6
RAW
STR R7,\ [R1), #80]

two cycle latency
between load and
use of R8

ADD RY,

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 Elsevier

b RISC-\/° cerras

Register Renaming

LDR
ADD

SUB
AND

ORR
STR

R8,
R9,
R8,

R10,
R11,

R7,

[RO,
RS,
R2,
R4,
R5,

[R11,

LDR RS

#40]
R1
R3 Ideal IPC: 2
R8 Actual IPC: 6/3=2
RO
#80]
1 2 3 4 5 6 7
. : >
; ; é Time (cycles)
. . . &
, [RO, #40] oAl o v:EI— | e
m| i] R | ‘ il [RF|
SUB Ty, R2, R3 — R3 :B— —{i
anD R10, R4,(T0) AND?{ 10 /a M o —?Rlo .
A\ M ORR;{RF = :D— _gRll RF
e I El B
i i DM i
Mefld TR | %

b RISC

®

Chapter 7 <20>

Digital Design and Computer Architecture: RISC-V Edition

Harris & Harris © 2020 Elsevier

SIMD

* Single Instruction Multiple Data (SIMD)

— Single instruction acts on multiple pieces of data at once

— Common application: graphics

— Perform short arithmetic operations (also called packed
arithmetic)

* For example, add eight 8-bit elements

63 56 55 48 47 40 39 32 3 24 23 16 15 87 0 Bit position
ay ds as g as ao aq do DO
+ b, bs bs o bs b, b, bo D1

as + b7 s t+ be as + b5 as + b4 as + b3 a + b2 a, + b1 Q t+ bo D2

R I SC ® Digital Design and Computer Architecture: RISC-V Edition
‘ Chapter 7 <21> Harris & Harris © 2020 Elsevier

Advanced Architecture Techniques

* Multithreading

— Wordprocessor: thread for typing, spell checking,
printing

* Multiprocessors
— Multiple processors (cores) on a single chip

R I SC ® Digital Design and Computer Architecture: RISC-V Edition
‘ Chapter 7 <22> Harris & Harris © 2020 Elsevier

Threading: Definitions

* Process: program running on a computer
— Multiple processes can run at once: e.g., surfing
Web, playing music, writing a paper
* Thread: part of a program

— Each process has multiple threads: e.g., a word
processor may have threads for typing, spell
checking, printing

R I SC ® Digital Design and Computer Architecture: RISC-V Edition
‘ Chapter 7 <23> Harris & Harris © 2020 Elsevier

Threads in Conventional Processor

* One thread runs at once

 When one thread stalls (for example, waiting
for memory):
— Architectural state of that thread stored

— Architectural state of waiting thread loaded into
processor and it runs

— Called context switching

* Appears to user like all threads running
simultaneously

R I SC ® Digital Design and Computer Architecture: RISC-V Edition
‘ Chapter 7 <24> Harris & Harris © 2020 Elsevier

Multithreading

 Multiple copies of architectural state
* Multiple threads active at once:

— When one thread stalls, another runs immediately

— If one thread can’t keep all execution units busy,
another thread can use them

* Does not increase instruction-level parallelism
(ILP) of single thread, but increases
throughput

Intel calls this “hyperthreading”

R I SC ® Digital Design and Computer Architecture: RISC-V Edition
‘ Chapter 7 <25> Harris & Harris © 2020 Elsevier

Multiprocessors

* Multiple processors (cores) with a method of
communication between them

* Types:
— Homogeneous: multiple cores with shared main
memory

— Heterogeneous: separate cores for different tasks (for
example, DSP and CPU in cell phone)

— Clusters: each core has own memory system

R I SC ® Digital Design and Computer Architecture: RISC-V Edition
‘ Chapter 7 <26> Harris & Harris © 2020 Elsevier

