
Lecture 16:
RISC-V Assembly Language

E85
Digital Electronics & Computer Architecture

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <2>

Lecture 16

• Introduction
– Instruction Set Architecture (ISA)
– RISC-V History

• RISC-V Assembly Language
– Instructions
– Register Set
– Memory
– Programming constructs

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <3>

Lecture 16

• Introduction
– Instruction Set Architecture (ISA)
– RISC-V History

• RISC-V Assembly Language
– Instructions
– Register Set
– Memory
– Programming constructs

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <4>

• Jumping up a few levels of
abstraction
• Architecture: programmer’s

view of computer
• Defined by instructions &

operand locations

•Microarchitecture: how to
implement an architecture
in hardware (covered in
Chapter 7)

Introduction

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <5>

• Instructions: commands in a computer’s language
• Assembly language: human-readable format of

instructions
• Machine language: computer-readable format (1’s

and 0’s)
• RISC-V architecture:
• Developed by Krste Asanovic, David Patterson and

their colleagues at UC Berkeley in 2010.
• First open-source computer architecture

Once you’ve learned one architecture, it’s easier to learn others

Assembly Language

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <6>

Instruction Set Architecture Manual

• RISC-V ISA Manual available at:
https://riscv.org/specifications/
isa-spec-pdf/
• Details base integer ISA along

with optional extensions
• Gives not only the specs but

also some helpful rationale and
reasoning behind the decisions

https://riscv.org/specifications/isa-spec-pdf/

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <7>

• Professor of Computer Science at
the University of California,
Berkeley
• Developed RISC-V during one

summer
• Chairman of the Board of the

RISC-V Foundation
• Co-Founder of SiFive, a company

that commercializes and
develops supporting tools for
RISC-V

Krste Asanovic

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <8>

• Professor of Computer Science at
the University of California,
Berkeley since 1976
• Coinvented the Reduced

Instruction Set Computer (RISC)
with John Hennessy in the 1980’s
• Developed the RISC architecture

at Berkeley in 1984, which was
later commercialized as SPARC
architecture

David Patterson

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <9>

Underlying design principles, as articulated by
Hennessy and Patterson:

1.Simplicity favors regularity
2.Make the common case fast
3.Smaller is faster
4.Good design demands good compromises

Architecture Design Principles

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <10>

Lecture 16

• Introduction
– Instruction Set Architecture (ISA)
– RISC-V History

• RISC-V Assembly Language
– Instructions
– Register Set
– Memory
– Programming constructs

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <11>

• add: mnemonic indicates operation to perform
• b, c: source operands (on which the operation is performed)
• a: destination operand (to which the result is written)

C Code
a = b + c;

RISC-V assembly code
add a, b, c

Instructions: Addition

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <12>

Similar to addition - only mnemonic changes

• sub: mnemonic
• b, c: source operands
• a: destination operand

C Code
a = b - c;

RISC-V assembly code
sub a, b, c

Instructions: Subtraction

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <13>

Simplicity favors regularity
• Consistent instruction format
• Same number of operands (two sources and one

destination)
• Easier to encode and handle in hardware

Design Principle 1

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <14>

More complex code is handled by multiple
RISC-V instructions.

C Code
a = b + c - d;

RISC-V assembly code
add t, b, c # t = b + c
sub a, t, d # a = t - d

Multiple Instructions

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <15>

Make the common case fast
• RISC-V includes only simple, commonly used instructions
• Hardware to decode and execute instructions can be

simple, small, and fast
• More complex instructions (that are less common)

performed using multiple simple instructions
• RISC-V is a reduced instruction set computer (RISC), with

a small number of simple instructions
• Other architectures, such as Intel’s x86, are complex

instruction set computers (CISC)

Design Principle 2

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <16>

• Operand location: physical location in
computer
– Registers
– Memory
– Constants (also called immediates)

Operands

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <17>

• RISC-V has 32 32-bit registers
• Registers are faster than memory
• RISC-V called “32-bit architecture”

because it operates on 32-bit data

Operands: Registers

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <18>

Smaller is Faster
• RISC-V includes only a small number of registers

Design Principle 3

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <19>

Name Register Number Usage
zero x0 Constant value 0
ra x1 Return address
sp x2 Stack pointer
gp x3 Global pointer
tp x4 Thread pointer
t0-2 x5-7 Temporaries
s0/fp x8 Saved register / Frame pointer
s1 x9 Saved register
a0-1 x10-11 Function arguments / return values
a2-7 x12-17 Function arguments
s2-11 x18-27 Saved registers
t3-6 x28-31 Temporaries

RISC-V Register Set

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <20>

• Registers:
– Can use either name (i.e., ra, zero) or x0, x1, etc.
– Using name is preferred

• Registers used for specific purposes:
• zero always holds the constant value 0.
• the saved registers, s0-s11, used to hold

variables
• the temporary registers, t0-t6, used to hold

intermediate values during a larger
computation

• Discuss others later

Operands: Registers

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <21>

• Revisit add instruction

C Code

a = b + c

RISC-V assembly code
s0 = a, s1 = b, s2 = c
add s0, s1, s2

Instructions with Registers

indicates a single-line comment

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <22>

Operands: Memory

• Too much data to fit in only 32 registers
• Store more data in memory
• Memory is large, but slow
• Commonly used variables kept in registers

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <23>

• First, we’ll discuss word-addressable
memory

• Then we’ll discuss byte-addressable
memory

Memory

RISC-V is byte-addressable

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <24>

Data

00000003 4 0 F 3 0 7 8 8
0 1 E E 2 8 4 2
F 2 F 1 A C 0 7
A B C D E F 7 8

00000002
00000001
00000000

Word Address

Word 3
Word 2
Word 1
Word 0

• Each 32-bit data word has a unique
address

Word-Addressable Memory

Note: RISC-V uses byte-addressable memory, which we’ll talk about next.

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <25>

• Memory read called load
• Mnemonic: load word (lw)
• Format:

lw <rd>, <offset>(<base register>)
lw t1, 5(s0)

• Address calculation:
– add offset (5) to the base address (s0)
– address = (s0 + 5)

• Destination register (rd):
– t1 holds the value at address (s0 + 5)

Any register may be used as base address

Reading Word-Addressable Memory

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <26>

Data

00000003 4 0 F 3 0 7 8 8
0 1 E E 2 8 4 2
F 2 F 1 A C 0 7
A B C D E F 7 8

00000002
00000001
00000000

Word Address

Word 3
Word 2
Word 1
Word 0

• Example: read a word of data at memory
address 1 into s3
– address = (0 + 1) = 1

– s3 = 0xF2F1AC07 after load

Assembly code
lw s3, 1(zero) # read memory word 1 into s3

Reading Word-Addressable Memory

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <27>

• Memory write are called store
• Mnemonic: store word (sw)
• Format similar to load

sw <src1>, <offset>(<base register>)

Writing Word-Addressable Memory

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <28>

Data

00000003 4 0 F 3 0 7 8 8
0 1 E E 2 8 4 2
F 2 F 1 A C 0 7
A B C D E F 7 8

00000002
00000001
00000000

Word Address

Word 3
Word 2
Word 1
Word 0

• Example: Write (store) the value in t4 into
memory address 7
– add the base address (zero) to the offset (0x7)
– address: (0 + 0x7) = 7

Offset can be written in decimal (default) or hexadecimal
Assembly code
sw t4, 0x7(zero) # write the value in t4

to memory word 7

Writing Word-Addressable Memory

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <29>

Word Address Data

0000000C
00000008
00000004
00000000

width = 4 bytes

4 0 F 3 0 7 8 8
0 1 E E 2 8 4 2
F 2 F 1 A C 0 7
A B C D E F 7 8

Word 3
Word 2
Word 1
Word 0

• Each data byte has unique address
• Load/store words or single bytes: load byte (lb) and

store byte (sb)
• 32-bit word = 4 bytes, so word address increments by 4

Byte-Addressable Memory

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <30>

• The address of a memory word must now
be multiplied by 4. For example,
– the address of memory word 2 is 2 × 4 = 8
– the address of memory word 10 is 10 × 4 = 40

(0x28)
• RISC-V is byte-addressed, not word-

addressed

Reading Byte-Addressable Memory

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <31>

Word Address Data

0000000C
00000008
00000004
00000000

width = 4 bytes

4 0 F 3 0 7 8 8
0 1 E E 2 8 4 2
F 2 F 1 A C 0 7
A B C D E F 7 8

Word 3
Word 2
Word 1
Word 0

• Example: Load a word of data at memory
address 4 into s3.

• s3 holds the value 0xF2F1AC07 after load
RISC-V assembly code
lw s3, 4(zero) # read word at address 4 into s3

Reading Byte-Addressable Memory

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <32>

Word Address Data

0000000C
00000008
00000004
00000000

width = 4 bytes

4 0 F 3 0 7 8 8
0 1 E E 2 8 4 2
F 2 F 1 A C 0 7
A B C D E F 7 8

Word 3
Word 2
Word 1
Word 0

• Example: stores the value held in t7 into
memory address 0x2C (44)

RISC-V assembly code
sw t7, 44(zero) # write t7 into address 44

Writing Byte-Addressable Memory

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <33>

0 1 2 3
MSB LSB

4 5 6 7
8 9 A B
C D E F

Byte
Address

3 2 1 00
7 6 5 44
B A 9 88
F E D CC

Byte
Address

Word
Address

Big-Endian Little-Endian

MSB LSB

• How to number bytes within a word?
• Little-endian: byte numbers start at the little (least

significant) end
• Big-endian: byte numbers start at the big (most

significant) end
• Word address is the same for big- or little-endian

Big-Endian & Little-Endian Memory

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <34>

0 1 2 3
MSB LSB

4 5 6 7
8 9 A B
C D E F

Byte
Address

3 2 1 00
7 6 5 44
B A 9 88
F E D CC

Byte
Address

Word
Address

Big-Endian Little-Endian

MSB LSB

• Jonathan Swift’s Gulliver’s Travels: the Little-Endians
broke their eggs on the little end of the egg and the Big-
Endians broke their eggs on the big end

• It doesn’t really matter which addressing type used –
except when the two systems need to share data!

Big-Endian & Little-Endian Memory

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <35>

• Suppose t0 initially contains 0x23456789
• After following code runs on big-endian system, what

value is s0?
• In a little-endian system?

sw t0, 0(zero)

lb s0, 1(zero)

Big-Endian & Little-Endian Example

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <36>

Big-Endian & Little-Endian Example

23 45 67 89
0 1 2 3

23 45 67 890
3 2 1 0

Word
Address

Big-Endian Little-Endian

Byte Address
Data Value

Byte Address
Data Value

MSB LSB MSB LSB

• Suppose t0 initially contains 0x23456789
• After following code runs on big-endian system, what

value is s0?
• In a little-endian system?

sw t0, 0(zero)

lb s0, 1(zero)

• Big-endian: s0 = 0x00000045
• Little-endian: s0 = 0x00000067

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <37>

• High-level languages:
– e.g., C, Java, Python
– Written at higher level of abstraction

• Common high-level software constructs:
– if/else statements
– for loops
– while loops
– arrays
– function calls

Programming

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <38>

• Wrote the first computer
program

• Her program calculated
the Bernoulli numbers
on Charles Babbage’s
Analytical Engine

• She was the daughter of
the poet Lord Byron

Ada Lovelace, 1815-1852

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <39>

• Execute instructions out of sequence
• Types of branches:
• Conditional

• branch if equal (beq)
• branch if not equal (bne)
• branch if less than (blt/bltu)
• branch if greater than or equal to (bge/bgeu)

• Unconditional
• jump (j)
• jump register (jr)
• jump and link (jal)
• jump and link register (jalr)

Branching

Will talk about these
when we discuss
function calls

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <40>

RISC-V assembly
addi s0, zero, 4 # s0 = 0 + 4 = 4

addi s1, zero, 1 # s1 = 0 + 1 = 1

slli s1, s1, 2 # s1 = 1 << 2 = 4

beq s0, s1, target # branch is taken

addi s1, s1, 1 # not executed

sub s1, s1, s0 # not executed

target: # label

add s1, s1, s0 # s1 = 4 + 4 = 8

Labels indicate instruction location. They can’t be reserved words and
must be followed by colon (:)

Conditional Branching (beq)

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <41>

RISC-V assembly
addi s0, zero, 4 # s0 = 0 + 4 = 4

addi s1, zero, 1 # s1 = 0 + 1 = 1

slli s1, s1, 2 # s1 = 1 << 2 = 4

bne s0, s1, target # branch not taken

addi s1, s1, 1 # s1 = 4 + 1 = 5

sub s1, s1, s0 # s1 = 5 – 4 = 1

target:

add s1, s1, s0 # s1 = 1 + 4 = 5

The Branch Not Taken (bne)

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <42>

Other Conditional Branches

• Branch if less than (blt/bltu)

blt s0, s1, target # branches if s0 < s1 (signed)
bltu s0, s1, target # same as blt but interprets

s0 and s1 as unsigned

• Branch if less than (bge/bgeu)

bge s0, s1, target # branches if s0 > s1 (signed)
bgeu s0, s1, target # branches if s0 > s1 (unsigned)

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <43>

RISC-V assembly

j target # jump to target

srai s1, s1, 2 # not executed

addi s1, s1, 1 # not executed

sub s1, s1, s0 # not executed

target:

add s1, s1, s0 # s1 = 1 + 4 = 5

Unconditional Branching (j)

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <44>

• High-level constructs: loops, conditional
statements

• First, introduce:
• Logical operations
• Shifty instructions
• Generating constants
• Multiplication

Programming

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <45>

• and, or, xor
– and: useful for masking bits

• Masking all but the least significant byte of a value:
0xF234012F AND 0x000000FF = 0x0000002F

– or: useful for combining bit fields
• Combine 0xF2340000 with 0x000012BC:

0xF2340000 OR 0x000012BC = 0xF23412BC
– xor: useful for inverting bits:

• A xor -1 = NOT A (remember that -1 = 0xFFFFFFFF)

Logical Instructions

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <46>

Logical Instructions Example 1

s1
Source Registers

ResultAssembly Code
and s3, s1, s2

or s4, s1, s2

xor s5, s1, s2

1111 1111 1111 1111 0000 0000 0000 0000
0100 0110 1010 0001 1111 0001 1011 0111

s2

0100 0110 1010 0001 0000 0000 0000 0000
1111 1111 1111 1111 1111 0001 1011 0111
1011 1001 0101 1110 1111 0001 1011 0111

s3
s4
s5

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <47>

Logical Instructions Example 2

-1484 = 0xA34 in 12-bit 2’s complement representation.

0011 1010 0111 0101 0000 1101 0110 1111t3

Assembly Code

1111 1111 1111 1111 1111 1010 0011 0100imm

s5

s6

s7

andi s5, t3, -1484

Source Values

Result

ori s6, t3, -1484

xori s7, t3, -1484

sign-extended

0011 1010 0111 0101 0000 1000 0010 0100
1111 1111 1111 1111 1111 1111 0111 1111
1100 0101 1000 1010 1111 0111 0101 1011

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <48>

Shift amount is in (lowest 5 bits of) a register
• sll: shift left logical

– Example: sll t0, t1, t2 # t0 = t1 << t2

• srl: shift right logical
– Example: srl t0, t1, t2 # t0 = t1 >> t2

• sra: shift right arithmetic
– Example: sra t0, t1, t2 # t0 = t1 >>> t2

Shift Instructions

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <49>

Shift amount is an immediate between 0 to 31
• slli: shift left logical immediate

– Example: slli t0, t1, 23 # t0 = t1 << 23

• srli: shift right logical immediate
– Example: srli t0, t1, 18 # t0 = t1 >> 18

• srai: shift right arithmetic imeediate
– Example: srai t0, t1, 5 # t0 = t1 >>> 5

Immediate Shift Instructions

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <50>

• 12-bit signed constants using addi:

Any immediate that needs more than 12 bits
cannot use this method.

C Code
// int is a 32-bit signed word
int a = -372;

RISC-V assembly code
s0 = a
addi s0, 0, -372

Generating Constants

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <51>

• Use load upper immediate (lui) and addi:
• lui: puts an immediate in the upper 20 bits

of destination register, 0’s in lower 12 bits
C Code

int a = 0xFEDC8765;

RISC-V assembly code
s0 = a
lui s0, 0xFEDC8
addi s0, s0, 0x765

Generating 32-bit Constants

Remember that addi sign-extends its 12-bit
immediate

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <52>

• If bit 11 of 32-bit constant is 1, increment
upper 20 bits by 1 in lui

C Code
int a = 0xFEDC8EAB;

RISC-V assembly code
s0 = a
lui s0, 0xFEDC9 # s0 = 0xFEDC9000
addi s0, s0, -341 # s0 = 0xFEDC9000 + 0xFFFFFEAB

= 0xFEDC8EAB

Generating 32-bit Constants

Note: -341 = 0xEAB

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <53>

• 32 × 32 multiplication, 64-bit result
mul s0, s1, s2
s0 = lower 32 bits of result

mulh s0, s1, s2
s0 = upper 32 bits of result, treats operands as signed

mulhu s0, s1, s2
s0 = upper 32 bits of result, treats operands as
unsigned

mulhsu s0, s1, s2
s0 = upper 32 bits of result, treats s1 as signed, s3
as unsigned

Multiplication

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <54>

• 32 × 32 multiplication, 64-bit result
• For full 64-bit result:

mulh s4, s1, s2
mul s3, s1, s2

{s4, s3} = s1 x s2

• Could also use mulhu or mulhsu instead
of mulh

Multiplication

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <55>

• 32-bit division, 32-bit quotient, remainder
– div s1, s2, s3 # s1 = s2/s3
– divu s1, s2, s3 # unsigned division

Division

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <56>

• if statements
• if/else statements
• while loops
• for loops

High-Level Code Constructs

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <57>

C Code

if (i == j)
f = g + h;

f = f – i;

RISC-V assembly code
s0 = f, s1 = g, s2 = h
s3 = i, s4 = j

bne s3, s4, L1
add s0, s1, s2

L1:
sub s0, s0, s3

Assembly tests opposite case (i != j) of high-level code (i == j)

If Statement

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <58>

C Code

if (i == j)
f = g + h;

else
f = f – i;

RISC-V assembly code
s0 = f, s1 = g, s2 = h
s3 = i, s4 = j

bne s3, s4, L1
add s0, s1, s2
j done

L1:
sub s0, s0, s3

done:

If/Else Statement

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <59>

C Code
// determines the power
// of x such that 2x = 128
int pow = 1;
int x = 0;

while (pow != 128) {
pow = pow * 2;
x = x + 1;

}

RISC-V assembly code
s0 = pow, s1 = x

addi s0, zero, 1
add s1, zero, zero
addi t0, zero, 128

while:
beq s0, t0, done
slli s0, s0, 1
addi s1, s1, 1
j while

done:

While Loops

Assembly tests for the opposite case (pow == 128) of the C
code (pow != 128).

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <60>

for (initialization; condition; loop operation)

statement

• initialization: executes before the loop begins
• condition: is tested at the beginning of each iteration
• loop operation: executes at the end of each iteration
• statement: executes each time the condition is met

For Loops

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <61>

C Code
// add the numbers from 0 to 9
int sum = 0;
int i;

for (i=0; i!=10; i = i+1) {
sum = sum + i;

}

RISC-V assembly code
s0 = i, s1 = sum

addi s1, zero, 0
add s0, zero, zero
addi t0, zero, 10

for:
beq s0, t0, done
add s1, s1, s0
addi s0, s0, 1
j for

done:

For Loops

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <62>

C Code
// add the powers of 2 from 1
// to 100
int sum = 0;
int i;

for (i=1; i < 101; i = i*2) {
sum = sum + i;

}

RISC-V assembly code
s0 = i, s1 = sum

addi s1, zero, 0
addi s0, zero, 1
addi t0, zero, 101

loop:
bge s0, t0, done
add s1, s1, s0
slli s0, s0, 1
j loop

done:

Less Than Comparison

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <63>

• Access large amounts of similar data
• Index: access each element
• Size: number of elements

Arrays

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <64>

array[4]
array[3]
array[2]
array[1]
array[0]0x12348000

0x12348004
0x12348008
0x1234800C
0x12340010

• 5-element array
• Base address = 0x12348000 (address of first element,
array[0])

• First step in accessing an array: load base address into a
register

Arrays

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <65>

// C Code

int array[5];

array[0] = array[0] * 2;

array[1] = array[1] * 2;

RISC-V assembly code

s0 = array base address

lui s0, 0x12348 # 0x12348 in upper 20 bits of s0

lw t1, 0(s0) # t1 = array[0]

slli t1, t1, 1 # t1 = t1 * 2

sw t1, 0(s0) # array[0] = t1

lw t1, 4(s0) # t1 = array[1]

slli t1, t1, 1 # t1 = t1 * 2

sw t1, 4(s0) # array[1] = t1

Accessing Arrays

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <66>

// C Code

int array[1000];

int i;

for (i=0; i < 1000; i = i + 1)

array[i] = array[i] * 8;

RISC-V assembly code

s0 = array base address, s1 = i

Arrays Using For Loops

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <67>

RISC-V assembly code

s0 = array base address, s1 = i

initialization code

lui s0, 0x23B8F # s0 = 0x23B8F000

ori s0, s0, 0x400 # s0 = 0x23B8F400

addi s1, zero, 0 # i = 0

addi t2, zero, 1000 # t2 = 1000

loop:

bge s1, t2, done # if not then done

slli t0, s1, 2 # t0 = i * 4 (byte offset)

add t0, t0, s0 # address of array[i]

lw t1, 0(t0) # t1 = array[i]

slli t1, t1, 3 # t1 = array[i] * 8

sw t1, 0(t0) # array[i] = array[i] * 8

addi s1, s1, 1 # i = i + 1

j loop # repeat

done:

Arrays Using For Loops

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <68>

• American Standard Code for Information
Interchange

• Each text character has unique byte
value
• For example, S = 0x53, a = 0x61, A = 0x41
• Lower-case and upper-case differ by 0x20 (32)

ASCII Code

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <69>

Cast of Characters

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <70>

RISC-V assembly

0x00000200 addi s0, zero, 0x210

0x00000204 jr s0

0x00000208 addi s1, zero, 1 # not executed

0x0000020C sra s1, s1, 2 # not executed

0x00000210 lw s3, 44(s1)

Unconditional Branching (jr)

Digital Design and Computer Architecture: RISC-V Edition
Harris & Harris © 2020 ElsevierChapter 6 <71>

Lecture 16

• Introduction
– Instruction Set Architecture (ISA)
– RISC-V History

• RISC-V Assembly Language
– Instructions
– Register Set
– Memory
– Programming constructs

