
Lecture 13:
More C Programming

E85 Digital Design & Computer Engineering

Lecture 13 <2> Digital Design and Computer Architecture: ARM® Edition © 2019

Lecture 13

• Structures
• Memory
• Pointers
• Memory Allocation
• Example: Variable Size Matrices

eCC Programming

C.1 INTRODUCTION
The overall goal of this book is to give a picture of how computers work on
many levels, from the transistors bywhich they are constructed all theway up
to the software they run. The first five chapters of this bookwork up through
the lower levels of abstraction, from transistors to gates to logic design.
Chapters 6 through 8 jump up to architecture andwork back down tomicro-
architecture to connect the hardware with the software. This Appendix on C
programming fits logically between Chapters 5 and 6, covering C program-
ming as the highest level of abstraction in the text. It motivates the architec-
ture material and links this book to programming experience that may
already be familiar to the reader. This material is placed in the Appendix
so that readers may easily cover or skip it depending on previous experience.

Programmers use many different languages to tell a computer what to
do. Fundamentally, computers process instructions in machine language
consisting of 1’s and 0’s, as is explored in Chapter 6. But programming
in machine language is tedious and slow, leading programmers to use more
abstract languages to get their meaning across more efficiently. Table eC.1
lists some examples of languages at various levels of abstraction.

One of the most popular programming languages ever developed is
called C. It was created by a group including Dennis Ritchie and Brian
Kernighan at Bell Laboratories between 1969 and 1973 to rewrite the
UNIX operating system from its original assembly language. By many
measures, C (including a family of closely related languages such as C++,
C#, and Objective C) is the most widely used language in existence. Its
popularity stems from a number of factors including its:

▶ Availability on a tremendous variety of platforms, from supercomputers
down to embedded microcontrollers

▶ Relative ease of use, with a huge user base

C.1 Introduction

C.2 Welcome to C

C.3 Compilation

C.4 Variables

C.5 Operators

C.6 Function Calls

C.7 Control-Flow Statements

C.8 More Data Types

C.9 Standard Libraries

C.10 Compiler and Command Line
Options

C.11 Common Mistakes

+

+−

Physics

Devices

Analog
Circuits

Digital
Circuits

Logic

Micro-
architecture

Architecture

Operating
Systems

Application
Software

>”hello
world!”

541.e1

Lecture 13 <3> Digital Design and Computer Architecture: ARM® Edition © 2019

Structures

• Store a collection of related information
• General format:

struct name {
type1 element1;
type2 element2;
...

};

Lecture 13 <4> Digital Design and Computer Architecture: ARM® Edition © 2019

Structures
struct contact {
char name[30];
int phone;
float height; // in meters

};

struct contact c1;
Strcpy(c1.name, "Ben Bitdiddle”);
c1.phone = 7226993;
c1.height = 1.82;

Lecture 13 <5> Digital Design and Computer Architecture: ARM® Edition © 2019

Memory

• Variables are stored in memory
• Each data type has a size
– char 1 byte
– short 2 bytes
– long 4 bytes
– int native word size of machine

(4 bytes on 32-bit computer)
– float 4 bytes
– double 8 bytes

• Arrays stored in multiple consecutive locations

Lecture 13 <6> Digital Design and Computer Architecture: ARM® Edition © 2019

Typedef

• If you’re using lots of the same structure, you can
shorten your typing by using typedef.

• typedef type name;

typedef struct contact {
char name[30];
int phone;
float height; // in meters

} contact; // defines contact as shorthand for "struct contact”

contact c1; // now we can declare the variable as type contact

Lecture 13 <7> Digital Design and Computer Architecture: ARM® Edition © 2019

Structure Examples

typedef struct point {
int x;
int y;

} point;

point p1;
p1.x = 42; p1.y = 9;

typedef struct rect {
point ll;
point ur;
int color;

} rect;

rect r1;
r1.color = 1;
r1.ll = p1;
r1.ur.x = r1.ll.x + width;
r1.ur.y = r1.ll.y + height;

Lecture 13 <8> Digital Design and Computer Architecture: ARM® Edition © 2019

Sizeof

• Sizeof operator returns size of a datatype

char c;
double d;
point p;
rect r;
int s1 = sizeof c; // s1 = 1
int s2 = sizeof(d); // s2 = 8
int s3 = sizeof(p); // s3 = 4 + 4 = 8
int s4 = sizeof(r); // s4 = 8 + 8 + 4 = 20

Lecture 13 <9> Digital Design and Computer Architecture: ARM® Edition © 2019

Memory Example: Array

C . 8 . 2 Arrays

An array is a group of similar variables stored in consecutive addresses in
memory. The elements are numbered from 0 to N−1, where N is the
length of the array. C Code Example eC.20 declares an array variable
called scores that holds the final exam scores for three students. Memory
space is reserved for three longs, that is, 3 × 4 = 12 bytes. Suppose the
scores array starts at address 0x40. The address of the 1st element
(i.e., scores[0]) is 0x40, the 2nd element is 0x44, and the 3rd element
is 0x48, as shown in Figure eC.4. In C, the array variable, in this case
scores, is a pointer to the 1st element. It is the programmer’s responsibil-
ity not to access elements beyond the end of the array. C has no internal
bounds checking, so a program that writes beyond the end of an array
will compile fine but may stomp on other parts of memory when it runs.

The elements of an array can be initialized either at declaration using
curly braces {}, as shown in C Code Example eC.21, or individually in the
body of the code, as shown in C Code Example eC.22. Each element of an
array is accessed using brackets []. The contents of memory containing the
array are shown in Figure eC.4. Array initialization using curly braces{} can
only be performed at declaration, and not afterward. for loops are commonly
used to assign and read array data, as shown in C Code Example eC.23.

C Code Example eC.21 ARRAY INITIALIZATIONATDECLARATIONUSING { }

long scores[3]={93, 81, 97}; // scores[0]=93; scores[1]=81; scores[2]=97;

C Code Example eC.20 ARRAY DECLARATION

long scores[3]; // array of three 4-byte numbers

Memory

Address
(Byte #)

Data Variable Name

scores[0]

scores[2]

scores[1]

..

.

0x41
0x40

0x43
0x42

0x44
0x45
0x46

0x48
0x47

0x4A
0x49

0x4B

93

81

97

Memory

Address
(Byte #)

Data Variable Name

..

.

0x41
0x40

0x43
0x42

0x44
0x45
0x46

0x48
0x47

0x4A
0x49

0x4B

0x00
0x5D

0x00
0x00

0x51
0x00
0x00

0x61
0x00

0x00
0x00

0x00

scores[0]

scores[2]

scores[1]

Figure eC.4 scores array
stored in memory

C.8 More Data Types 541.e23

Lecture 13 <10> Digital Design and Computer Architecture: ARM® Edition © 2019

Memory Example: Structure

Lecture 13 <11> Digital Design and Computer Architecture: ARM® Edition © 2019

Pointers

• A pointer is an address in memory
• Pointer variables are declared with * and a data type

to which the pointer points
int salary1, salary2;

int *ptr; // a pointer to an integer

• & returns address of a variable
salary1 = 98500; // suppose this is at address 100 in memory

ptr = &salary1; // ptr contains 100 (the address of salary1)

• * dereferences a pointer (finds value it points to)
salary2 = *ptr + 1000; // salary2 gets 99500

Lecture 13 <12> Digital Design and Computer Architecture: ARM® Edition © 2019

Arrays and Pointers

• An array in C is viewed as the address of the zeroth
element

• Equivalent to a pointer to the beginning of the array

Lecture 13 <13> Digital Design and Computer Architecture: ARM® Edition © 2019

Pointer Example

Lecture 13 <14> Digital Design and Computer Architecture: ARM® Edition © 2019

Pointer Example

Lecture 13 <15> Digital Design and Computer Architecture: ARM® Edition © 2019

Pointer Example

Lecture 13 <16> Digital Design and Computer Architecture: ARM® Edition © 2019

Pointer Example

Lecture 13 <17> Digital Design and Computer Architecture: ARM® Edition © 2019

Pointer Example

Lecture 13 <18> Digital Design and Computer Architecture: ARM® Edition © 2019

Pointer Example

Lecture 13 <19> Digital Design and Computer Architecture: ARM® Edition © 2019

Pointer Example

Lecture 13 <20> Digital Design and Computer Architecture: ARM® Edition © 2019

Pointer Example

Lecture 13 <21> Digital Design and Computer Architecture: ARM® Edition © 2019

Pointer Example

Lecture 13 <22> Digital Design and Computer Architecture: ARM® Edition © 2019

Pointer Example

Lecture 13 <23> Digital Design and Computer Architecture: ARM® Edition © 2019

Pointer Example

Lecture 13 <24> Digital Design and Computer Architecture: ARM® Edition © 2019

Pointer Example

Lecture 13 <25> Digital Design and Computer Architecture: ARM® Edition © 2019

Pointer Example

Lecture 13 <26> Digital Design and Computer Architecture: ARM® Edition © 2019

Pointer Example

Lecture 13 <27> Digital Design and Computer Architecture: ARM® Edition © 2019

Pointer Example

Lecture 13 <28> Digital Design and Computer Architecture: ARM® Edition © 2019

Pointers and Structures

rect *rptr; // Let rptr know it’s pointing to a rect
rptr = &r1; // Have rptr point at r1

(*rptr).color = 3; // Change r1.color to 3
rptr->color = 4; // Change r1.color to 4

// Use dot “.” when you are using the structure name.
// Arrow “->” is preferred when you are using the pointer.

Lecture 13 <29> Digital Design and Computer Architecture: ARM® Edition © 2019

Passing Structures to Functions
Complex data structures and arrays are normally passed to C
programs by address rather than copied; it’s more efficient.

void createRect(int xl, int yl, int width, int height, int color, rect *r) {
r->ll.x = x1; r->ll.y = yl;
r->ur.x = xl + width; r->ur.y = yl + height;
r->color = color;

}

int main(void) {
rect r1;
createRect(3, 5, 10, 20, 1, &r1);

}

Lecture 13 <30> Digital Design and Computer Architecture: ARM® Edition © 2019

Local Variable Hazard

void doubleWidthRect(rect *r1, rect *r2) {
rect s;

s.ll.x = r1->ll.x;
s.ll.y = r1->ll.y;
s.ur.x = (r1->ur.x – r1->ll.x) * 2 + r1->ll.x;
s.ur.y = r1->ll.y;
r2 = &s; // bad; s is a local variable and is lost

}

Lecture 13 <31> Digital Design and Computer Architecture: ARM® Edition © 2019

Solution

void doubleWidthRect(rect *r1, rect *r2) {
r2->ll.x = r1->ll.x;
r2->ll.y = r1->ll.y;
r2->ur.x = (r1->ur.x – r1->ll.x) * 2 + r1->ll.x;
r2->ur.y = r1->ll.y;

}

Be sure to declare rectangle r2 in calling function. Then:

Lecture 13 <32> Digital Design and Computer Architecture: ARM® Edition © 2019

Multidimensional Arrays

• Stored in consecutive addresses
– last dimension first

double field[2][3][3];

Address0 Entry

0x1068 field[1][2][2]

0x1060 field[1][2][1]

0x1068 field[1][2][0]

0x1060 field[1][1][2]

0x1068 field[1][1][1]

0x1060 field[1][1][0]

0x1068 field[1][0][2]

0x1060 field[1][0][1]

0x1068 field[1][0][0]

0x1060 field[0][2][2]

0x1068 field[0][2][1]

0x1060 field[0][2][0]

0x1068 field[0][1][2]

0x1060 field[0][1][1]

0x1058 field[0][1][0]

0x1050 field[0][0][2]

0x1048 field[0][0][1]

0x1040 field[0][0][0]

Lecture 13 <33> Digital Design and Computer Architecture: ARM® Edition © 2019

Complex Structures in Memory

typedef struct foo {

double d[4][5];
unsigned short s[16];

} foo;

foo z[10];

int s5 = sizeof(z[0]);
// 8*4*5 + 2*16 = 192 = 0xC0

int s5 = sizeof(z);
// 10*192 = 1920 = 0x780

Address Entry

0x277E z[9].s[15]

.. …

0x217E z[1][s[15]

.. …

0x20C0 z[1].d[0][0]

0x20BE z[0].s[15]

… …

0x20A2 z[0].s[1]

0x20A0 z[0].s[0]

0x2098 z[0].d[3][4]

… …

0x2008 z[0].d[0][1]

0x2000 z[0].d[0][0]

Lecture 13 <34> Digital Design and Computer Architecture: ARM® Edition © 2019

Memory Allocation

• malloc returns a pointer to allocated memory of a
certain number of bytes.

• free frees this memory.
• These functions are declared in stdlib

Lecture 13 <35> Digital Design and Computer Architecture: ARM® Edition © 2019

Variable Sized Arrays

• In standard C, multidimensional array sizes must be
declared at compile time.

• Treat variable-sized M row x N column array as 1-
dimensional array of M x N entries

Lecture 13 <36> Digital Design and Computer Architecture: ARM® Edition © 2019

Variable Dimension Matrix Example
#include <stdlib.h> // for malloc

double* newMatrix(int m, int n) {
double *mat;

mat = (double*)malloc(m*n*sizeof(double));
return mat;

}

double* newIdentityMatrix(int n) {
double *mat = newMatrix(n, n);
int i, j;

for (i=0; i<n; i++)
for (j=0; j<n; j++)

mat[j+i*n] = (i==j);
return mat;

}

Lecture 13 <37> Digital Design and Computer Architecture: ARM® Edition © 2019

Variable Dimension Matrix Example

void scaleMatrix(double *mat, double *scaled, int m, int n, double c) {
int i, j;

for (i=0; i<m; i++)
for (j=0; j<n; j++)
scaled[j+i*n] = mat[j+i*n]*c;

}

int main(void) {
double *m1, *m2;

m1 = newIdentityMatrix(3);
m2 = newMatrix(3, 3);
scaleMatrix(m1, m2, 3, 3, 10);
free(m1);

}

