
Lecture 12: 
C Programming

E85 Digital Design & Computer Engineering



Lecture 12 <2> Digital Design and Computer Architecture: ARM® Edition © 2019

Lecture 12

• Overview
• Programming Constructs
– Comments
– Constants
– Variables
– Primitive Data Types
– Function Calls
– Operators
– Control Flow
– Loops
– Arrays and Strings

eCC Programming

C.1 INTRODUCTION
The overall goal of this book is to give a picture of how computers work on
many levels, from the transistors bywhich they are constructed all theway up
to the software they run. The first five chapters of this bookwork up through
the lower levels of abstraction, from transistors to gates to logic design.
Chapters 6 through 8 jump up to architecture andwork back down tomicro-
architecture to connect the hardware with the software. This Appendix on C
programming fits logically between Chapters 5 and 6, covering C program-
ming as the highest level of abstraction in the text. It motivates the architec-
ture material and links this book to programming experience that may
already be familiar to the reader. This material is placed in the Appendix
so that readers may easily cover or skip it depending on previous experience.

Programmers use many different languages to tell a computer what to
do. Fundamentally, computers process instructions in machine language
consisting of 1’s and 0 ’s, as is explored in Chapter 6. But programming
in machine language is tedious and slow, leading programmers to use more
abstract languages to get their meaning across more efficiently. Table eC.1
lists some examples of languages at various levels of abstraction.

One of the most popular programming languages ever developed is
called C. It was created by a group including Dennis Ritchie and Brian
Kernighan at Bell Laboratories between 1969 and 1973 to rewrite the
UNIX operating system from its original assembly language. By many
measures, C (including a family of closely related languages such as C++,
C#, and Objective C) is the most widely used language in existence. Its
popularity stems from a number of factors including its:

▶ Availability on a tremendous variety of platforms, from supercomputers
down to embedded microcontrollers

▶ Relative ease of use, with a huge user base

C.1 Introduction

C.2 Welcome to C

C.3 Compilation

C.4 Variables

C.5 Operators

C.6 Function Calls

C.7 Control-Flow Statements

C.8 More Data Types

C.9 Standard Libraries

C.10 Compiler and Command Line
Options

C.11 Common Mistakes

+

+−

Physics

Devices

Analog
Circuits

Digital
Circuits

Logic

Micro-
architecture

Architecture

Operating
Systems

Application
Software

>”hello
world!”

541.e1



Lecture 12 <3> Digital Design and Computer Architecture: ARM® Edition © 2019

Overview

• C programming language developed at Bell Labs 
around 1973

• Capable of controlling a computer to do nearly 
anything, including directly interacting with the 
hardware

• Suitable for generating high performance code
• Relatively easy to use
• Available from supercomputers to microcontrollers
• Closely related to other important languages 

including C++, C#, Objective C, Java, Arduino



Lecture 12 <4> Digital Design and Computer Architecture: ARM® Edition © 2019

C is Libertarian

• Lets you do just about anything

• Interacts directly with the hardware

• Does NOT protect you from your own 
stupidity

• Assumes YOU know the size of arrays and 
variables

• Unless sandboxed will write ANYWHERE in 
memory



Lecture 12 <5> Digital Design and Computer Architecture: ARM® Edition © 2019

Example

// factorial.c
// David_Harris@hmc.edu 22 October 2019

int fact(int n) {
if (n <= 1) return 1;
else return n*fact(n-1);

}

void main(void) {
int result;

result = fact(4);
}

mailto:David_Harris@hmc.edu


Lecture 12 <6> Digital Design and Computer Architecture: ARM® Edition © 2019

Steps to C Programming

• Write code
• Compile code
• Execute code
• Debug code



Lecture 12 <7> Digital Design and Computer Architecture: ARM® Edition © 2019

Comments

• Single-line comments begin with “//” and continue to 
the end of the line.
x += 2; //This is a single-line comment.

• Multi-line comments begin with “/*” end with “*/”.
/* You can hide or disable a section of 
code such as this block with a multi-line 
comment 

x = bob ? x : y;
y -= 5;

*/



Lecture 12 <8> Digital Design and Computer Architecture: ARM® Edition © 2019

Constants, Defines, or Macros

• Constants are named using the #define directive
#define MAXGUESSES 5 
#define PI 3.14159

• The # indicates that this line in the program will be 
handled by the preprocessor.

• Before compilation, the preprocessor replaces each 
occurrence of the identifier MAXGUESSES in the 
program with 5.

• By convention, #define lines are located at the top 
of the file and identifiers are written in all capital 
letters. 



Lecture 12 <9> Digital Design and Computer Architecture: ARM® Edition © 2019

Global and Local Variables

• Global variables often lead to hard-to-debug 
code and should be avoided

• Global variables are declared outside of any 
function

• Local variables are declared inside a function
• Local variables should be your go-to type



Lecture 12 <10> Digital Design and Computer Architecture: ARM® Edition © 2019

Primitive Data Types

C . 4 . 1 Primitive Data Types

C has a number of primitive, or built-in, data types available. They can be
broadly characterized as integers, floating-point variables, and characters.
An integer represents a two’s complement or unsigned number within a
finite range. A floating-point variable uses IEEE floating point representa-
tion to describe real numbers with a finite range and precision. A charac-
ter can be viewed as either an ASCII value or an 8-bit integer.1 Table eC.2
lists the size and range of each primitive type. Integers may be 16, 32,
or 64 bits. They use two’s complement unless qualified as unsigned.

Table eC.2 Primitive data types and sizes

Type Size (bits) Minimum Maximum

char 8 −2−7 = −128 27 − 1 = 127

unsigned char 8 0 28 − 1 = 255

short 16 −215 = −32,768 215 − 1 = 32,767

unsigned short 16 0 216 − 1 = 65,535

long 32 −231 = −2,147,483,648 231 − 1 = 2,147,483,647

unsigned long 32 0 232 − 1 = 4,294,967,295

long long 64 −263 263 − 1

unsigned long 64 0 264 − 1

int machine-dependent

unsigned int machine-dependent

float 32 ±2−126 ±2127

double 64 ±2−1023 ±21022

Memory

Address
(Byte #)

Data
1 byte

1
0

3
2

.
4

.

.

Figure eC.1 C’s view of memory

1 Technically, the C99 standard defines a character as “a bit representation that fits in a
byte,” without requiring a byte to be 8 bits. However, current systems define a byte as 8 bits.

541.e8 APPENDIX C



Lecture 12 <11> Digital Design and Computer Architecture: ARM® Edition © 2019

ASCII Table

https://commons.wikimedia.org/wiki/File:ASCII-Table.svg



Lecture 12 <12> Digital Design and Computer Architecture: ARM® Edition © 2019

Functions

• Curly braces {} enclose the body of the function, which may 
contain zero or more statements

• A function can return (or output) at most one value
• The type of returned value is declared in the function 

declaration
• The return statement indicates the value that the function 

should return to its caller
• A function can receive inputs
• The type of the inputs is declared in the function 

declaration
• Functions pass variables by value not reference
• A function must be either declared BEFORE it is used or a 

function prototype declared BEFORE it is used



Lecture 12 <13> Digital Design and Computer Architecture: ARM® Edition © 2019

Function Example

// Return the sum of the three input variables

int sum3(int a, int b, int c) { 
int result = a + b + c; 
return result;

}



Lecture 12 <14> Digital Design and Computer Architecture: ARM® Edition © 2019

Function Prototypes
// sum3example.c
// David_Harris@hmc.edu 22 October 2019

////////////////////////////////
// Prototypes
////////////////////////////////
int sum3(int, int, int); // needed because sum3 is called before declared

////////////////////////////////
// main
////////////////////////////////

void main(void) {
int answer;
answer = sum3(6, 7, 8);

}

////////////////////////////////
// other functions
// prototype not needed if thsse were moved before main
////////////////////////////////

int sum3(int a, int b, int c) {
int result = a + b + c; 
return result;

}

mailto:David_Harris@hmc.edu


Lecture 12 <15> Digital Design and Computer Architecture: ARM® Edition © 2019

Prototypes are Sometimes Unavoidable

// Prototypes needed for f1 and/or f2 because they
// can’t both be declared before each other

int f1(int);
int f2(int);

int f1(int n) {
return f2(n-1) + 1;

} 

int f2(int n) {
return f1(n-1)*2;

}

void main(void) {
int answer;
answer = f1(5);

}



Lecture 12 <16> Digital Design and Computer Architecture: ARM® Edition © 2019

Includes

• The function prototypes for the standard libraries 
are included at the top of a file with the 
#include directive:
e.g., #include <stdio.h>  or    #include 
<math.h> 

• Your own function prototypes (or anything else 
you want to include) is done with quotes instead 
of brackets for relative or absolute path:
e.g., #include "other/myFuncs.h" 



Lecture 12 <17> Digital Design and Computer Architecture: ARM® Edition © 2019

Boolean (True/False) in C

• A variable or expression is considered FALSE if its 
value is 0

• A variable is considered TRUE if it has any other value
– 1, 42, and -1 are all TRUE for C

• Logical operators assign FALSE as 0 and TRUE as 1



Lecture 12 <18> Digital Design and Computer Architecture: ARM® Edition © 2019

Operators and Precedence
Table eC.3 Operators listed by decreasing precedence

Category Operator Description Example

Unary ++ post-increment a++; // a = a+1

− − post-decrement x--; // x = x−1

& memory address of a variable x = &y; // x = the memory
// address of y

~ bitwise NOT z = ~a;

! Boolean NOT !x

− negation y = -a;

++ pre-increment ++a; // a = a+1

− − pre-decrement --x; // x = x−1

(type) casts a variable to (type) x = (int)c; // cast c to an
// int and assign it to x

sizeof() size of a variable or type in bytes long int y;
x = sizeof(y); // x = 4

Multiplicative * multiplication y = x * 12;

/ division z = 9 / 3; // z = 3

% modulo z = 5 % 2; // z = 1

Additive + addition y = a + 2;

− subtraction y = a - 2;

Bitwise Shift << bitshift left z = 5 << 2; // z = 0b00010100

>> bitshift right x = 9 >> 3; // x = 0b00000001

Relational == equals y == 2

!= not equals x != 7

< less than y < 12

> greater than val > max

<= less than or equal z <= 2

>= greater than or equal y >= 10

541.e12 APPENDIX C



Lecture 12 <19> Digital Design and Computer Architecture: ARM® Edition © 2019

Operators Continued

Table eC.3 Operators listed by decreasing precedence

Category Operator Description Example

Unary ++ post-increment a++; // a = a+1

− − post-decrement x--; // x = x−1

& memory address of a variable x = &y; // x = the memory
// address of y

~ bitwise NOT z = ~a;

! Boolean NOT !x

− negation y = -a;

++ pre-increment ++a; // a = a+1

− − pre-decrement --x; // x = x−1

(type) casts a variable to (type) x = (int)c; // cast c to an
// int and assign it to x

sizeof() size of a variable or type in bytes long int y;
x = sizeof(y); // x = 4

Multiplicative * multiplication y = x * 12;

/ division z = 9 / 3; // z = 3

% modulo z = 5 % 2; // z = 1

Additive + addition y = a + 2;

− subtraction y = a - 2;

Bitwise Shift << bitshift left z = 5 << 2; // z = 0b00010100

>> bitshift right x = 9 >> 3; // x = 0b00000001

Relational == equals y == 2

!= not equals x != 7

< less than y < 12

> greater than val > max

<= less than or equal z <= 2

>= greater than or equal y >= 10

541.e12 APPENDIX C



Lecture 12 <20> Digital Design and Computer Architecture: ARM® Edition © 2019

Operators Continued

operators. Within the same category, operators are evaluated in the order
that they appear in the program.

Unary operators, also called monadic operators, have a single operand.
Ternary operators have three operands, and all others have two. The
ternary operator (from the Latin ternarius meaning consisting of three)
chooses the second or third operand depending on whether the first
value is TRUE (nonzero) or FALSE (zero), respectively. C Code Example
eC.6 shows how to compute y = max(a,b) using the ternary operator,
along with an equivalent but more verbose if/else statement.

Table eC.3 Operators listed by decreasing precedence—Cont’d

Category Operator Description Example

Bitwise & bitwise AND y = a & 15;

^ bitwise XOR y = 2 ^ 3;

| bitwise OR y = a | b;

Logical && Boolean AND x && y

|| Boolean OR x || y

Ternary ? : ternary operator y = x ? a : b; // if x is TRUE,
// y=a, else y=b

Assignment = assignment x = 22;

+= addition and assignment y += 3; // y = y + 3

−= subtraction and assignment z −= 10; // z = z – 10

*= multiplication and assignment x *= 4; // x = x * 4

/= division and assignment y /= 10; // y = y / 10

%= modulo and assignment x %= 4; // x = x % 4

>>= bitwise right-shift and assignment x >>= 5; // x = x>>5

<<= bitwise left-shift and assignment x <<= 2; // x = x<<2

&= bitwise AND and assignment y &= 15; // y = y & 15

|= bitwise OR and assignment x |= y; // x = x | y

^= bitwise XOR and assignment x ^= y; // x = x ^ y

C.5 Operators 541.e13



Lecture 12 <21> Digital Design and Computer Architecture: ARM® Edition © 2019

Operators Continued

operators. Within the same category, operators are evaluated in the order
that they appear in the program.

Unary operators, also called monadic operators, have a single operand.
Ternary operators have three operands, and all others have two. The
ternary operator (from the Latin ternarius meaning consisting of three)
chooses the second or third operand depending on whether the first
value is TRUE (nonzero) or FALSE (zero), respectively. C Code Example
eC.6 shows how to compute y = max(a,b) using the ternary operator,
along with an equivalent but more verbose if/else statement.

Table eC.3 Operators listed by decreasing precedence—Cont’d

Category Operator Description Example

Bitwise & bitwise AND y = a & 15;

^ bitwise XOR y = 2 ^ 3;

| bitwise OR y = a | b;

Logical && Boolean AND x && y

|| Boolean OR x || y

Ternary ? : ternary operator y = x ? a : b; // if x is TRUE,
// y=a, else y=b

Assignment = assignment x = 22;

+= addition and assignment y += 3; // y = y + 3

−= subtraction and assignment z −= 10; // z = z – 10

*= multiplication and assignment x *= 4; // x = x * 4

/= division and assignment y /= 10; // y = y / 10

%= modulo and assignment x %= 4; // x = x % 4

>>= bitwise right-shift and assignment x >>= 5; // x = x>>5

<<= bitwise left-shift and assignment x <<= 2; // x = x<<2

&= bitwise AND and assignment y &= 15; // y = y & 15

|= bitwise OR and assignment x |= y; // x = x | y

^= bitwise XOR and assignment x ^= y; // x = x ^ y

C.5 Operators 541.e13



Lecture 12 <22> Digital Design and Computer Architecture: ARM® Edition © 2019

Control Flow Statements
if

if (expression)
statement; 

if/else
if (expression)

statement1; 
else

statement2;

switch/case
switch (variable) {

case (expression1): statement1; break;
case (expression2): statement2; break;
case (expression3): statement3; break;
default: statement4;

} 

Don’t forget “break” or “default”



Lecture 12 <23> Digital Design and Computer Architecture: ARM® Edition © 2019

If example
if (n <= 1) return 1;



Lecture 12 <24> Digital Design and Computer Architecture: ARM® Edition © 2019

Compound Statements
• When a statement has more than one line, enclose it in {}

if (answer == 42) {
ultimateQuesiton = 1;
hitchhikersGuide = 1;

}



Lecture 12 <25> Digital Design and Computer Architecture: ARM® Edition © 2019

If/else example
if (n <= 1) return 1;
else        return fact(n-1);



Lecture 12 <26> Digital Design and Computer Architecture: ARM® Edition © 2019

Case example
switch (state) {

case (0): if (ta) state = 0; else state = 1; break;
case (1): state = 2; break;
case (2): if (tb) state = 2; else state = 3; break;
case (3): state = 0; break;
default:  state = 0;

} 



Lecture 12 <27> Digital Design and Computer Architecture: ARM® Edition © 2019

Loops
while

while (condition)
statement;

do/while
do {
statement;

} while (condition); 

for
for (initialization; condition; loop operation)
statement;



Lecture 12 <28> Digital Design and Computer Architecture: ARM® Edition © 2019

While example
int fact(int n) {
int result = 1;
while (n > 1) {
result = result * n; // or write result *= n;
n = n – 1;           // or write n—

}
return result;

}

// Alternative code is shorter but less clear

while (n > 1) result *= n--;



Lecture 12 <29> Digital Design and Computer Architecture: ARM® Edition © 2019

Do/while example
int fact(int n) {
int result = 1;
do {
result *= n;

} while (n-- > 1);
return result;

}

• Do always executes the statement at least once.
• Longer and not preferred for this example



Lecture 12 <30> Digital Design and Computer Architecture: ARM® Edition © 2019

For example
int fact(int n) {
int result = 1;
int i;

for (i=1; i <= n; i++) 
result *= I;

return result;
}

• First do initialization (I = 1)
• Then check condition (i<=n)
• If satisfied, do body (result *= i)
• Then do loop operation (i++)

• Then repeat from checking condition



Lecture 12 <31> Digital Design and Computer Architecture: ARM® Edition © 2019

Data Types: Arrays

• Array contains multiple elements
float accel[3];

• The elements are numbered from 0 to N−1, where 
N is the length of the array

• Initialize your arrays. 

– An uninitialized array can contain anything

• Arrays can be multidimensional
#define NUMSTUDENTS 120
#define NUMLABS 11
int grades[NUMSTUDENTS][NUMLABS];



Lecture 12 <32> Digital Design and Computer Architecture: ARM® Edition © 2019

Array Example

#include <math.h>

double mag(double v[3]) {
return sqrt(v[0]*v[0] + v[1]*v[1] + v[2]*v[2]);

}



Lecture 12 <33> Digital Design and Computer Architecture: ARM® Edition © 2019

Data Types: Strings

• A string is an array of characters
• Last entry is zero to indicate end (”NULL terminated”)

char name[20] = "BOB";

• Stored as:
name[0] = 66; // ASCII value for B
name[1] = 79; // ASCII value for O
name[2] = 66; // ASCII value for B
name[3] = 0;   // NULL termination
other entries are junk, ignored



Lecture 12 <34> Digital Design and Computer Architecture: ARM® Edition © 2019

Examples: String Handling

#define MAXLEN 80

int strlen(char str[]) {
int len=0;

while (str[len] && len < MAXLEN) len++;
return len;

}

void strcpy(char dest[], char src[]) {
int i = 0;

do { 
dest[i] = src[i];

} while (src[i++] && i < MAXLEN);
}



Lecture 12 <35> Digital Design and Computer Architecture: ARM® Edition © 2019

Examples: Using Strings

#include <string.h>
#define MAXLEN 80

void main(void) {
char name[80];
int len;
char c;

strcpy(name, "BOB"); // copy BOB into name
len = strlen(name);  // len = 3
c = name[1];         // c = 'O' (79)

}


