
Lecture 10:
Sequential Blocks
Arrays

E85 Digital Design & Computer Engineering

Lecture 10 <2> Digital Design and Computer Architecture: ARM® Edition © 2015

Lecture 8

• Counters
• Shift Registers
• Memory Arrays
– RAM
– ROM

• Logic Arrays
– PLAs
– FPGAs

Lecture 10 <3> Digital Design and Computer Architecture: ARM® Edition © 2015

Q

CLK

Reset
N

+ N

1

CLK

Reset

N

N
QN

r

Symbol Implementation

• Increments on each clock edge
• Used to cycle through numbers. For example,

– 000, 001, 010, 011, 100, 101, 110, 111, 000, 001…

• Example uses:
– Digital clock displays
– Program counter: keeps track of current instruction executing

Counters

Lecture 10 <4> Digital Design and Computer Architecture: ARM® Edition © 2015

Q

CLK

Reset
N

+ N

1

CLK

Reset

N

N
QN

r

Symbol Implementation

module counter (input logic clk, reset,
output logic [N-1:0] q);

logic [N-1:0] nextq;

// register
always_ff @(posedge clk, posedge reset)
if (reset) q <= 0;
else q <= nextq;

// next state
assign nextq = q + 1;

endmodule

Counter Verilog (FSM style)

Lecture 10 <5> Digital Design and Computer Architecture: ARM® Edition © 2015

Q

CLK

Reset
N

+ N

1

CLK

Reset

N

N
QN

r

Symbol Implementation

module counter (input logic clk, reset,
output logic [N-1:0] q);

always_ff @(posedge clk, posedge reset)
if (reset) q <= 0;
else q <= q+1;

endmodule

Counter Verilog (better idiom)

Lecture 10 <6> Digital Design and Computer Architecture: ARM® Edition © 2015

• Most significant bit of an N-bit counter toggles every 2N

cycles.

• Useful for slowing a clock. Ex: blink an LED

• Example: 50 MHz clock, 24-bit counter
• 2.98 Hz

Divide-by-2N Counter

Lecture 10 <7> Digital Design and Computer Architecture: ARM® Edition © 2015

• N-bit counter

• Add p on each cycle, instead of 1

• Most significant bit toggles at fout = fclk * p / 2N

• Example: fclk = 50 MHz clock

• How to generate a fout = 200 Hz signal?

• p/2N = 200 / 50 MHz

• Try N = 24, p = 67 è fout = 199.676 Hz

• Or N = 32, p = 17179 è fout = 199.990 Hz

Digitally Controlled Oscillator

Lecture 10 <8> Digital Design and Computer Architecture: ARM® Edition © 2015

NQ

Sin Sout

CLK
Sin Sout

Q0 Q1 QN-1Q2

Implementation:

• Shift a new bit in on each clock edge
• Shift a bit out on each clock edge
• Serial-to-parallel converter: converts serial input (Sin) to

parallel output (Q0:N-1)

Shift Registers

Symbol:

Lecture 10 <9> Digital Design and Computer Architecture: ARM® Edition © 2015

Clk
0
1

0
1

0
1

0
1

D0 D1 DN-1D2

Q0 Q1 QN-1Q2

Sin Sout

Load

• When Load = 1, acts as a normal N-bit register
• When Load = 0, acts as a shift register
• Now can act as a serial-to-parallel converter (Sin to Q0:N-1) or

a parallel-to-serial converter (D0:N-1 to Sout)

Shift Register with Parallel Load

Lecture 10 <10> Digital Design and Computer Architecture: ARM® Edition © 2015

module shiftreg(input logic clk,
input logic load, sin,
input logic [N-1:0] d,
output logic [N-1:0] q,
output logic sout);

always_ff @(posedge clk)
if (load) q <= d;
else q <= {q[N-2:0], sin};

assign sout = q[N-1];
endmodule

Shift Register Verilog Idiom

Clk
0
1

0
1

0
1

0
1

D0 D1 DN-1D2

Q0 Q1 QN-1Q2

Sin Sout

Load

Lecture 10 <11> Digital Design and Computer Architecture: ARM® Edition © 2015

Address

Data

ArrayN

M

• Efficiently store large amounts of data
• 3 common types:

– Dynamic random access memory (DRAM)

– Static random access memory (SRAM)
– Read only memory (ROM)

• M-bit data value read/ written at each
unique N-bit address

Memory Arrays

Lecture 10 <12> Digital Design and Computer Architecture: ARM® Edition © 2015

Address

Data

ArrayN

M

Address Data
11
10
01
00

depth

0 1 0
1 0 0
1 1 0
0 1 1

width

Address

Data

Array2

3

• 2-dimensional array of bit cells

• Each bit cell stores one bit

• N address bits and M data bits:
– 2N rows and M columns

– Depth: number of rows (number of words)

– Width: number of columns (size of word)

– Array size: depth × width = 2N × M

Memory Arrays

Lecture 10 <13> Digital Design and Computer Architecture: ARM® Edition © 2015

Address Data
11
10
01
00

depth

0 1 0
1 0 0
1 1 0
0 1 1

width

Address

Data

Array2

3

• 22 × 3-bit array
• Number of words: 4
• Word size: 3-bits
• For example, the 3-bit word stored at address 10 is 100

Memory Array Example

Lecture 10 <14> Digital Design and Computer Architecture: ARM® Edition © 2015

Address

Data

1024-word x
32-bit
Array

10

32

Memory Arrays

Lecture 10 <15> Digital Design and Computer Architecture: ARM® Edition © 2015

stored
bit

wordline
bitline

stored
bit = 0

wordline = 1

stored
bit = 1

stored
bit = 0

stored
bit = 1

bitline =

(a) (b)

wordline = 1

wordline = 0

wordline = 0

bitline =

bitline =

bitline =

Memory Array Bit Cells

Lecture 10 <16> Digital Design and Computer Architecture: ARM® Edition © 2015

stored
bit

wordline
bitline

stored
bit = 0

wordline = 1

stored
bit = 1

stored
bit = 0

stored
bit = 1

bitline =

(a) (b)

wordline = 1

wordline = 0

wordline = 0

bitline =

bitline =

bitline = 0

1

Z

Z

Memory Array Bit Cells

Lecture 10 <17> Digital Design and Computer Architecture: ARM® Edition © 2015

wordline311

10

2:4
Decoder

Address

01

00

stored
bit = 0wordline2

wordline1

wordline0

stored
bit = 1

stored
bit = 0

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

bitline2 bitline1 bitline0

Data2 Data1 Data0

2

• Wordline:
– like an enable

– single row in memory array read/written

– corresponds to unique address

– only one wordline HIGH at once

Memory Array

Lecture 10 <18> Digital Design and Computer Architecture: ARM® Edition © 2015

• Random access memory (RAM): volatile
• Read only memory (ROM): nonvolatile

Types of Memory

Lecture 10 <19> Digital Design and Computer Architecture: ARM® Edition © 2015

• Volatile: loses its data when power off

• Read and written quickly

• Main memory in your computer is RAM
(DRAM)

Historically called random access memory because any data
word accessed as easily as any other (in contrast to
sequential access memories such as a tape recorder)

RAM: Random Access Memory

Lecture 10 <20> Digital Design and Computer Architecture: ARM® Edition © 2015

• Nonvolatile: retains data when power off

• Read quickly, but writing is impossible or

slow

• Flash memory in cameras, thumb drives, and

digital cameras are all ROMs

Historically called read only memory because ROMs were

written at manufacturing time or by burning fuses. Once

ROM was configured, it could not be written again. This is

no longer the case for Flash memory and other types of

ROMs.

ROM: Read Only Memory

Lecture 10 <21> Digital Design and Computer Architecture: ARM® Edition © 2015

• DRAM (Dynamic random access memory)

• SRAM (Static random access memory)

• Differ in how they store data:
– DRAM uses a capacitor

– SRAM uses cross-coupled inverters

Types of RAM

Lecture 10 <22> Digital Design and Computer Architecture: ARM® Edition © 2015

• Invented DRAM in 1966
at IBM

• Others were skeptical
that the idea would
work

• By the mid-1970’s DRAM
in virtually all computers

Robert Dennard, 1932 -

Lecture 10 <23> Digital Design and Computer Architecture: ARM® Edition © 2015

stored
bit

wordline
bitline

wordline

bitline

stored
bit

• Data bits stored on capacitor

• Dynamic because the value needs to be refreshed
(rewritten) periodically and after read:
– Charge leakage from the capacitor degrades the value

– Reading destroys the stored value

DRAM

Lecture 10 <24> Digital Design and Computer Architecture: ARM® Edition © 2015

wordline

bitline

wordline

bitline

+ +stored
bit = 1

stored
bit = 0

DRAM

Lecture 10 <25> Digital Design and Computer Architecture: ARM® Edition © 2015

stored
bit

wordline
bitline

wordline
bitline bitline

SRAM

Lecture 10 <26> Digital Design and Computer Architecture: ARM® Edition © 2015

wordline311

10

2:4
Decoder

Address

01

00

stored
bit = 0wordline2

wordline1

wordline0

stored
bit = 1

stored
bit = 0

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

bitline2 bitline1 bitline0

Data2 Data1 Data0

2

wordline
bitline bitline

wordline

bitline

DRAM bit cell: SRAM bit cell:

Memory Arrays Review

Lecture 10 <27> Digital Design and Computer Architecture: ARM® Edition © 2015

11

10

2:4
Decoder

Address

Data0Data1Data2

01

00

2

wordline

bitline

wordline

bitline

bit cell
containing 0

bit cell
containing 1

ROM: Dot Notation

Lecture 10 <28> Digital Design and Computer Architecture: ARM® Edition © 2015

Types of ROMs
Type Name Description
ROM Read Only Memory Chip is hardwired with presence or absence of

transistors. Changing requires building a new chip.

PROM Programmable ROM Fuses in series with each transistor are blown to
program bits. Can’t be changed after
programming.

EPROM Electrically
Programmable ROM

Charge is stored on a floating gate to activate or
deactivate transistor. Erasing requires exposure to
UV light.

EEPROM Electrically Erasable
Programmable ROM

Like EPROM, but erasing can be done electrically.

Flash Flash Memory Like EEPROM, but erasing is done on large blocks
to amortize cost of erase circuit. Low cost per bit,
dominates nonvolatile storage today.

Lecture 10 <29> Digital Design and Computer Architecture: ARM® Edition © 2015

• Developed memories and high speed

circuits at Toshiba, 1971-1994

• Invented Flash memory as an

unauthorized project pursued during

nights and weekends in the late 1970’s

• The process of erasing the memory

reminded him of the flash of a camera

• Toshiba slow to commercialize the

idea; Intel was first to market in 1988

• Flash has grown into a $25 billion per

year market

Fujio Masuoka, 1944 -

Lecture 10 <30> Digital Design and Computer Architecture: ARM® Edition © 2015

11

10

2:4
Decoder

Address

Data0Data1Data2

01

00

2

Address Data
11
10
01
00

depth

0 1 0
1 0 0
1 1 0
0 1 1

width

ROM Storage

Lecture 10 <31> Digital Design and Computer Architecture: ARM® Edition © 2015

11

10

2:4
Decoder

Address

Data0Data1Data2

01

00

2 Data2 = A1 ^ A0

Data1 = A1 + A0

Data0 = A1A0

ROM Logic

Lecture 10 <32> Digital Design and Computer Architecture: ARM® Edition © 2015

11

10

2:4
Decoder

A, B

ZYX

01

00

2

Implement the following logic functions using a 22 × 3-bit ROM:
– X = AB
– Y = A + B
– Z = A B

Example: Logic with ROMs

Lecture 10 <33> Digital Design and Computer Architecture: ARM® Edition © 2015

11

10

2:4
Decoder

A, B

ZYX

01

00

2

Implement the following logic functions using a 22 × 3-bit ROM:
– X = AB
– Y = A + B
– Z = A B

Example: Logic with ROMs

Lecture 10 <34> Digital Design and Computer Architecture: ARM® Edition © 2015

wordline311

10

2:4
Decoder

Address

01

00

stored
bit = 0wordline2

wordline1

wordline0

stored
bit = 1

stored
bit = 0

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

bitline2 bitline1 bitline0

Data2 Data1 Data0

2

Data2 = A1 Å A0
Data1 = A1 + A0
Data0 = A1A0

Logic with Any Memory Array

Lecture 10 <35> Digital Design and Computer Architecture: ARM® Edition © 2015

Implement the following logic functions using a 22 × 3-bit
memory array:

– X = AB
– Y = A + B
– Z = A B

Logic with Memory Arrays

Lecture 10 <36> Digital Design and Computer Architecture: ARM® Edition © 2015

wordline311

10

2:4
Decoder

A, B

01

00

stored
bit = 1wordline2

wordline1

wordline0

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

stored
bit = 0

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 0

stored
bit = 0

bitline2 bitline1 bitline0

X Y Z

2

Implement the following logic functions using a 22 × 3-bit
memory array:

– X = AB
– Y = A + B
– Z = A B

Logic with Memory Arrays

Lecture 10 <37> Digital Design and Computer Architecture: ARM® Edition © 2015

stored
bit = 1

stored
bit = 0

00

01

2:4
Decoder

A

stored
bit = 0

bitline

stored
bit = 0

Y

B

10

11

4-word x 1-bit Array

A B Y
0 0
0 1
1 0
1 1

0
0
0
1

Truth
Table

A1

A0

Called lookup tables (LUTs): look up output at each input
combination (address)

Logic with Memory Arrays

Lecture 10 <38> Digital Design and Computer Architecture: ARM® Edition © 2015

A1

A3
WD3

WE3

A2

CLK

Array

RD2
RD1 M

M
N
N

N
M

• Port: address/data pair

• 3-ported memory

– 2 read ports (A1/RD1, A2/RD2)

– 1 write port (A3/WD3, WE3 enables writing)

• Register file: small multi-ported memory

Multi-ported Memories

Lecture 10 <39> Digital Design and Computer Architecture: ARM® Edition © 2015

// 256 x 64 memory module with one read/write port
module dmem(input logic clk, we,

input logic [7:0] a,
input logic [63:0] wd,
output logic [63:0] rd);

logic [63:0] RAM[255:0];

always @(posedge clk)
begin
rd <= RAM[a]; // synchronous read
if (we)
RAM[a] <= wd; // synchronous write

end
endmodule

SystemVerilog Memory Arrays

Lecture 10 <40> Digital Design and Computer Architecture: ARM® Edition © 2015

// 16 x 32 register file with two read, 1 write port
module rf(input logic clk, we3,

input logic [3:0] a1, a2, a3,
input logic [31:0] wd3,
output logic [31:0] rd1, rd2);

logic [31:0] RAM[15:0];

always @(posedge clk) // synchronous write
if (we3)

RAM[a3] <= wd3;
assign rd1 = RAM[a1]; // asynchronous read
assign rd2 = RAM[a2];

endmodule

SystemVerilog Register File

Lecture 10 <41> Digital Design and Computer Architecture: ARM® Edition © 2015

• PLAs (Programmable logic arrays)
– AND array followed by OR array
– Combinational logic only

– Fixed internal connections

• FPGAs (Field programmable gate arrays)
– Array of Logic Elements (LEs)

– Combinational and sequential logic
– Programmable internal connections

Logic Arrays

Lecture 10 <42> Digital Design and Computer Architecture: ARM® Edition © 2015

X Y

A B C

AND ARRAY

OR ARRAY

ABC

AB

ABC

AND
ARRAY

OR
ARRAY

Inputs

Outputs

Implicants
N

M

P

• X = ABC + ABC
• Y = AB

PLAs

Lecture 10 <43> Digital Design and Computer Architecture: ARM® Edition © 2015

AND
ARRAY

OR
ARRAY

Inputs

Outputs

Implicants
N

M

P

X Y

ABC

AB

ABC

A B C

AND ARRAY

OR ARRAY

PLAs: Dot Notation

Lecture 10 <44> Digital Design and Computer Architecture: ARM® Edition © 2015

• Composed of:
– LEs (Logic elements): perform logic
– IOEs (Input/output elements): interface with outside

world
– Programmable interconnection: connect LEs and

IOEs
– Some FPGAs include other building blocks such as

multipliers and RAMs

FPGA: Field Programmable Gate Array

Lecture 10 <45> Digital Design and Computer Architecture: ARM® Edition © 2015

General FPGA Layout

Lecture 10 <46> Digital Design and Computer Architecture: ARM® Edition © 2015

• Composed of:
– LUTs (lookup tables): perform combinational logic
– Flip-flops: perform sequential logic
– Multiplexers: connect LUTs and flip-flops

LE: Logic Element

Lecture 10 <47> Digital Design and Computer Architecture: ARM® Edition © 2015

Altera Cyclone IV LE

Lecture 10 <48> Digital Design and Computer Architecture: ARM® Edition © 2015

• The Altera Cyclone IV LE has:
– 1 four-input LUT
– 1 registered output
– 1 combinational output

Altera Cyclone IV LE

Lecture 10 <49> Digital Design and Computer Architecture: ARM® Edition © 2015

Show how to configure a Cyclone IV LE to perform the following
functions:

– X = ABC + ABC
– Y = AB

LE Configuration Example

Lecture 10 <50> Digital Design and Computer Architecture: ARM® Edition © 2015

Show how to configure a Cyclone IV LE to perform the following
functions:

– X = ABC + ABC
– Y = AB

LE Configuration Example

LUT output
0 0
0 1
1 0
1 1

0
1
0
0

data 2
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

0
0
1
0

X
X
X
X
X
X
X
X

data 1
(A) (B) (C) (X)

data 1

0

A
B
0 Y

data 4data 3

data 2
data 3
data 4 LUT

data 1

0

A
BC X

data 2
data 3
data 4 LUT

LUT output
0
1
0
1

0
0
1
0

data 2
0
0
1
1

X
X
X
X

data 1
(A) (B) (Y)

data 4data 3
X
X
X
X

LE 1

LE 2

Lecture 10 <51> Digital Design and Computer Architecture: ARM® Edition © 2015

How many LEs are required to build a 5-input AND gate?

Solution: 2. First performs AND4 (function of 4 variables).
Second performs AND2 of the first result and the 5th input.

LE Example: AND5

Lecture 10 <52> Digital Design and Computer Architecture: ARM® Edition © 2015

How many LEs are required to build an 8-bit shift register?

Solution: 8. The shift register has 8 flip-flops, so it requires at

least 8 LEs. There is no logic between flops, so 8 LEs is

sufficient.

LE Example: 8-bit shift register

Lecture 10 <53> Digital Design and Computer Architecture: ARM® Edition © 2015

How many LEs are required to build a 3-bit counter?

Solution: 3. The counter has 3 flip-flops, so it requires at least 3

LEs. The add logic for each bit is a function of less than 4

variables, so it can fit in the LUT before the flop. Hence, 3 LEs is

sufficient.

LE Example: 3-bit counter

Lecture 10 <54> Digital Design and Computer Architecture: ARM® Edition © 2015

Using a CAD tool (such as Altera’s Quartus II)
• Enter the design with a HDL
• Simulate the design
• Synthesize design and map it onto FPGA
• Download the configuration onto the FPGA
• Test the design

FPGA Design Flow

This is an iterative process!

