
E85: Digital Electronics and Computer Engineering

Lab 6: Linear Algebra in C on a Microcontroller

Objective

The purpose of this lab is to familiarize yourself with programming and debugging

in C on an embedded microcontroller. Specifically, you will write some linear

algebra routines that will help you become comfortable with loops, arrays, and

pointers.

1. Welcome to the SparkFun RED-V

The SparkFun RED-V Thing Plus board is circuit board roughly the size of a stick of

gum which costs about $30. It is based around a 32-bit RV32IMAC Freedom E310

core and uses the RISC-V instruction set architecture (ISA). It is in a form factor

which makes it easy to plug into a breadboard to connect to other circuit elements

and can be programmed over USB through a USB-C connector and the onboard

NXP K22 ARM Cortex-M4 processor. The FE310 core runs at 150 MHz which

makes it one of the fastest microcontrollers currently on the market. It also features

several useful peripherals such as UARTs, QSPI, PWMs, and timers.

2. Platform IO Tutorial

PlatformIO is an integrated development environment (IDE) for embedded systems

which is built on top of Microsoft Visual Studio (VS) Code. It is cross-platform and

includes a built-in debugger.

In this section, you will learn to write, compile, and debug programs with the

PlatformIO IDE.

● Launch VS Code from the start menu.

● PlatformIO is an extension for VS Code and all extensions are installed on a

per user basis. The first step is to find and install the PlatformIO extension

from within VS Code. Open VS Code and click on the blocks symbol in the

Activity Bar on the left edge of the VS Code window. Enter “PlatformIO IDE”

in the search window and install the PlatformIO IDE extension. After the

installation completes (you should see some output in the VS Code terminal

window and a notification when it completes) restart VS Code and select the

alien head PlatformIO icon in the Activity Bar. If you are unfamiliar with the

VS Code interface you may find the overview here helpful for getting

oriented.

● Choose New Project from the Quick Access menu in the center right of the

PIO Home window.

https://platformio.org/
https://code.visualstudio.com/docs/getstarted/userinterface

● Name your new project ‘tutorial’, select the ‘SparkFun RED-V ThingPlus’ in

the ‘Board’ field using the search box, and select ‘Freedom E SDK’ as the

Framework. Uncheck the “Use default location” checkbox and select a new

folder on your Charlie directory (in //tempstorage.hmc.edu/eng/e85) for

storing the project files. Scroll down and click the “Finish” button.

● After you click “Finish” PlatformIO will make sure that you have the

appropriate toolchains installed for the selected platforms and boards and

install them if necessary. Then it will open the project folder you just created

in your VS Code workspace, accessible through the Explorer tab.

Now we will create a program that computes the dot product of two vectors.

● Create a new file (File -> New...) and enter the following code below. Note

that it intentionally contains some bugs. Save your program as ‘tutorial.c’ in

the ‘src’ directory. You may also download the file from the E85 webpage.

// tutorial.c

// Your Name, date, email

// Dot product code to learn the PlatformIO tools

#define DIM 3

double dotproduct(int n, double a[], double b[]) {

 volatile int i;

 double sum;

 for (i=0; i<n; i++) {

 if (i=0) sum=0;

 sum += a[i]*a[i];

 }

 return sum;

}

int main(void) {

 double x[DIM] = {3, 4, 5}; // x is an array of size 3(DIM)

 double y[DIM] = {1, 2, 3}; // same as y

 double dot;

 dot = dotproduct(DIM, x, y);

 return dot;

}

● Calculate the dot product of [3 4 5] and [1 2 3] to predict the output of your

program.

● Select the PlatformIO icon in the Activity Bar. In the top of the Side Bar you

will see a list of ‘Project Tasks’. Choose Build to compile (you can also use the

keyboard shortcut Ctrl + Alt + B or the checkmark icon found in the Status

Bar.) When you compile the project, you should see a terminal window appear

in the Panel and some text scroll by as the project is compiled. If all goes as

expected, you should see a message that confirms the build was successful.

However, you will see two warnings in the Problems tab of the Panel about

an assignment as a truth value where the (i = 0) comparison should have

been (i == 0) and that the value of ‘sum’ may be used uninitialized. Fix the

errors, rebuild the code, and ensure there are now errors or warnings.

● To run and debug your program you have two options: debugging on actual

hardware or in the simulator. Instructions for both are provided below.

a) Hardware: Make sure a SparkFun RED-V ThingPlus board is

plugged in and connected via a USB port (note that when you plug the

board in, you should see a new USB drive appear in Explorer named

“HiFive.” If you do not see this, then it is likely that the USB port you

plugged it into is not working properly and you need to try a different

port. The USB ports on the rear of the machine tend to be more

reliable than those on the front).

b) Simulator: In the project folder, open the ‘platformio.ini’ file and

comment out the block of code starting with the line

[env:sparkfun_thing_plus_v]. This block of code is used to configure the

build and debug environment for PlatformIO. Then add the following

block below the now commented block. This block of code enables

software emulation of the FE310 chip.

[env:e310-emulation]

platform = sifive

framework = freedom-e-sdk

board = e310-arty

debug_tool = qemu

● Choose Debug -> Start Debugging or press F5 to begin a debugging

session. If it does not automatically come to the forefront of your window, you

may also need to click on the debugging icon on the left of the interface in the

Activity Bar. You should see the debugger jump through a few screens and

then end at your ‘tutorial.c’ source code with a yellow arrow pointing to the

beginning of the main function. (Note: If working with the hardware to

debug, your computer must have the Segger J-Link drivers installed to

properly upload and debug programs on the RED-V board. The lab computers

should be properly configured with the appropriate drivers, but if you get an

error when going to debug related to J-Link please contact one of the

teaching staff for assistance.)

● To control your debugging session, you can use the debugging toolbar which

appears near the top of the editor. The Continue button will allow the

program to execute until the next breakpoint. Breakpoints can be added by

clicking to the left of the line number in the editor. The Step Over button

will execute the current line and then stop. The Step Into button will

execute the current line and if it includes a function call, will jump into that

function and stop. The Step Out button will execute all the code in the

function you are in and then stop once it returns. The Restart button will go

back and restart the debugging session from the top. Finally, the Stop button

will stop the debugging session and return to normal editing mode.

The Debugger Side Bar

The Variables section lists out the various local,

global, and static variables present in your

program along with their values. The Call Stack

section shows you the current function being run,

the calling function (if any), and the location of the

current instruction in memory. The Breakpoints

section shows you any set breakpoints and

highlights their line number. Breakpoints can be

managed in this section and also helpfully can be

temporarily deactivated without removing them

by toggling the checkbox. The Peripherals

section (if debugging on hardware) allows you to

see the status of the registers of the memory-

mapped peripherals of the device (we will cover

these in more detail in later labs). The Registers

section lists the current values present in each of

the registers of the processor. The Memory

section displays the contents of a specific address

of memory. Finally, the Disassembly section

allows you to view the assembly code for a specific

function or switch to the assembly view for

debugging the instructions one-by-one.

• Use the Step Into (F11) command to step through your code one line at a

time. You can watch the variable addresses and values in the Side Bar

change as you step through the code. Expand the x and y arrays so you can

see their values. As you step through the first two lines, you should see

arrays getting initialized. The compiler aggressively optimizes the code, so

sometimes you will see weird things in the debugger or variables not

changing when you expect them to change. The variable i is declared as

volatile in this code to force it to be preserved by the optimizer and appear in

the debugger.

• Find the bug that causes the dot product to be incorrect. Fix your code. Stop

the debugger, rebuild, and redownload the fixed code.

3. Linear Algebra

The goal in this section is to write a library of linear algebra routines in C. This will

help you get accustomed to loops, arrays, and pointers in C, and it is good to

understand these routines because they are fundamental building blocks of signal

processing code.

Mathematical operations that you will be writing include matrix addition, linear

combination of matrices, matrix transpose, matrix equality, and matrix

multiplication.

The following functions operate on matrices of m rows and n columns (m x n). You

may assume that the result matrix has already been allocated prior to the function

call. The transpose function produces an n x m result. Function declarations are

given below:

void add(int m, int n, double *A, double *B, double *Y); //Y=A+B

void linearcomb(int m, int n, double sa, double sb, double *A, double *B, double *Y);

//Y=sa*A + sb*B

void transpose(int m, int n, double *A, double *A_t); //A_t=transpose(A)

int equal(int m, int n, double *A, double *B); //returns 1 if equal, 0 if not

The last function multiplies an m1 x n1m2 matrix A by an n1m2 x n2 matrix B to

produce an m1 x n2 matrix Y. Y should already be allocated and the contents will be

overwritten. The following is the function declaration.

void mult(int m1, int n1m2, int n2, double *A, double *B, double *Y); //Y=A*B

Now is your turn to program.

• Write a C program to complete five operations given above

• Test your program with the following code, using the newMatrix and

newIdentityMatrix code from lecture. Remember that you will need to include

the standard library that has the malloc function using the statement:

#include <stdlib.h> at the beginning of your code.

#include <stdlib.h> // for malloc

double* newMatrix(int m, int n)

{

 double *mat;

 mat = (double*)malloc(m*n*sizeof(double));

 return mat;

}

double* newIdentityMatrix(int n)

{

 double *mat = newMatrix(n, n);

 int i, j;

 for (i=0; i<n; i++)

 for (j=0; j<n; j++)

 {

 mat[j+i*n] = (i==j);

 }

 return mat;

}

int main(void)

{

 double v1[3] = {4, 2, 1}; // 1x3 vector

 double v2[3] = {1, -2, 3}; // 1x3 vector

 double dp = dotproduct(3, v1, v2); // compute v1 dot v2

 double m1[9] = {0, 0, 2, 0, 0, 0, 2, 0, 0}; // 3x3 matrix

 double *m2 = newIdentityMatrix(3); // 3x3 identity matrix

 double *m3 = newMatrix(3, 3); // 3x3 matrix

 double m4[6] = {2, 3, 4, 5, 6, 7}; // 3x2 matrix

 double *m5 = newMatrix(3, 2); // 3x2 matrix

 double m6[6] = {6, 2, 5, 8, 2, 7}; // 2x3 matrix

 double *m7 = newMatrix(3, 2); // 3x2 matrix

 double *m8 = newMatrix(3, 2); // 3x2 matrix

 double expected[6] = {2, 1, 0, 1, 0, -1}; // expected result matrix

 int eq;

 add(3, 3, m1, m2, m3); // m3= m1+m2

 mult(3, 3, 2, m3, m4, m5); // m5= m3*m4 (3x2 result matrix)

 transpose(2, 3, m6, m7); // m7= m6^t

 linearcomb(3, 2, 1, 1-dp, m5, m7, m8); // m8= 1*m5 + (1-dp)*m7

 eq = equal(3, 2, m8, expected); // check if m8 is as expected

 return eq; // return 1 if so; 0 otherwise

}

• Predict what each of the matrices should be and particularly check that m8

matches your expectations.

• You’ll find it frustrating in the debugger watch window that when you look at

a pointer variable such as m2, you only see the 0th element. However, the

watch section of the debugger Side Bar allows you to enter expressions. You

can type in particular elements such as m2[4] to have them displayed for you.

4. Extra Credit: Solving Systems of Linear Equations

Write a C function to invert an n x n matrix. If the matrix is singular, the function

should return 0 and Y is a don’t care; otherwise, the function should return 1 and Y

is A-1. Use the following function declaration:

int invert(int n, double *A, double *Y);

Then write a function to solve for x in Ax=b for a system of n variables.

int solve(int n, double *A, double *b, double *x);

The function should again return 0 if A is singular.

Use your function to solve the following system of linear equations:

Note that your new program may hang from lack of memory. Comment out the test

code from the previous part or use free to free up some space. Be careful in your

memory allocation and deallocation, particularly if you are using a recursive

determinant function. A malloc that fails for lack of memory will return a NULL

pointer (with an address of 0).

What to Turn In

1. Please indicate how many hours you spent on this lab. This will be helpful for

calibrating the workload for next time the course is taught.

2. Code for add, linearcomb, transpose, equal, and mult.

3. What does your code produce for m8? Does it match your expectations?

4. Extra credit, if applicable. Give your code and a, b, c, and d.

Please indicate any bugs you found in this lab manual, or any suggestions you

would have to improve the lab.

	E85: Digital Electronics and Computer Engineering
	Objective
	1. Welcome to the SparkFun RED-V
	2. Platform IO Tutorial
	3. Linear Algebra
	4. Extra Credit: Solving Systems of Linear Equations

