E85: Digital Electronics and Computer Engineering
Lab 2: FPGA Tools and Combinational Logic Design

Objective

The purpose of this lab is to learn to use Field Programmable Gate Array (FPGA)
tools to simulate a SystemVerilog description of combinational logic, then
synthesize it onto the FPGA and download it onto an FPGA board. The lab tutorial
will walk you through a full adder and then you will design an instruction decoder
circuit.

1. Tutorial: Altera FPGA Tools

All of the FPGA labs in E85 will be using the Altera/Intel Quartus Prime FPGA
software (Version 18 was current as of this writing) and the Altera DE0-CV
evaluation board with the Cyclone V 5CEBA4F23C7N1 chip. You can download and
install the software on your own Windows PC to do parts of the labs from home, but
will need to go to the E85 lab to use the DE0O-CV boards (unless you want to spend
the $100 to get one for yourself).

You’'ll want to keep your E85 files on a shared network disk so that you can access
them from any computer in the lab. CIS should have created an account for you on
tempstorage.hmc.edu. Mount it from a Windows 10 PC in Windows Explorer by
clicking This PC on the left side. Then click on the Computer tab at the top and
choose Map network drive. Pick a letter for the drive and enter the folder as
\\tempstorage.hmc.edu\eng.

In this tutorial, you will take the full adder that you designed in Lab 1, simulate it
in ModelSim, and implement it on the DEO-CV board. You will hook up three
switches for input and two LEDs for output and check that the circuit behaves
correctly. The instruction steps are as followed:

e Make sure the DEO-CV board is powered on with a wall adapter plugged into
the DC 5V jack and the USB Blaster (J13) port is plugged into the computer
you are using. Press the red button to turn on power and confirm that the
POWER LED (D15) is glowing blue.

e (reate a new folder in your tempstorage directory for this tutorial, such as
lab2_xx, where xx are your initials. Open Quartus Prime. It is found under
the Start menu under INTEL FPGA 18... Lite Edition->Quartus. You will be greeted
with a getting started window. Click on the New Project Wizard.

1 5C indicates the Cyclone V family of chips. The E indicates Enhanced logic/memory. The B
indicates no hardware PCle or memory controller. The A4 indicates the number of logic elements
(49k, a medium-sized chip). F23 indicates that the chip is in a 484-pin ball grid array package. C
indicates commercial temperature grade, and 7 is the medium speed grade for this chip. N indicates
lead-free packaging (standard these days).

Page 1 of 18

o Ifthe getting started screen is not present, you can reach the same
wizard by selecting File-> New Project Wizard.

o Ifthe Introduction screen appears, click the Don’t show me this introduction
again box and click on Next.

O Custus P Lt Estren — 5

e tdn

~d T OGSOV S OCAVR 9

Compdason ewchy

View Proct Assgements Processing Toos Window Melp (]

® Catmog sex
Dnvce Famiy Cycone ¥ RIGH/GTISUSE/ST)
. x| =

¥ W intated »
¥ PropaDeecory

Comptasion vagex

OAAM A Y BBcind. 88 Fndrt

o oo |

e On the Directory, Name, Top-Level Entry screen, change the working
location of the project to the folder you created, change the name of the
project to something suitable such as lab2_XX. Set the top-level design entity
to fulladder.

(B Mew Project Wizard *

Directory, Name, Top-Level Entity

What is the working directory for this project?

|Hc harlie.ac.hmc.edu/AcadHome/Engineering/E85/Spjut/apongpiriyakarmn/lab2_ap |

What is the name of this project?

|lab2_ap |

What is the name of the top-level design entity for this project? This name is case sensitive and must exactly match the entity name in the
design file.

[fulladde] |

Use Existing Project Settings...

e C(Click Next. On the Project Type screen, select Empty project, and click Next.

Page 2 of 18

e (lick Next on the Add Files page as we have no files to add. The next page will
set the specific FPGA we want the tool to target.

e Select Pin Count->484, then Device->Cyclone V E Base; this will greatly reduce the
choices. Click 5CEBA4F23C7 in available devices and click next.

Ok New Project Wizard X
Family, Device & Board Settings

Device Board

Select the family and device you want to target for compilation.

You can install additional device support with the Install Devices command on the Tools menu.

To determine the version of the Quartus Prime software in which your target device is supported, refer to the Device Support List webpage.

Device family Show in *Available devices’ list
Family: | Cyclone V (E/GX/GT/SX/SE/ST) = Package: Any -
Device: | Cyclone V E Base = Pin count: 484 -
Target device Core speed grade: | Any <
Auto dev by the Fitter Name filter:
O] Specific device selected in Available devices list Show advanced devices
Other: n/a

Available devices:

Name Core Voltage ALMs Total 1/Os GPIOs GXB Channel PMA GXB Channel PCS ~

>

< Back Finish Cancel Help

e On the next page, change Simulation to ModelSim-Altera and the Format to
SystemVerilog HDL, click next, then Finish.

(4 New Project Wizard X

EDA Tool Settings

Specify the other EDA tools used with the Quartus Prime software to develop your project.

EDA tools:
Tool Type Tool Name Format(s) Run Tool Automatically
Design Entry/Synth... | <None> ¥ | <None> Run this tool automatically to synthesize the current design
Simulation ModelSim-Altera v | SystemVerilog HDL ¥ [run gate-level simulation automatically after compilation
Board-Level Timing <MNone> -

Symbol <MNone> hd

signal Integrity <Mone> -

Boundary Scan <Mone> -

Page 3 of 18

(O New Project Wizard

Summary

Project directory:
Project name:
Top-level design entity:
Number of files added:
Number of user libraries added:
Device assignments:
Design template:
Family name:
Device:
Board:
EDA tools:
Design entry/synthesis:
Simulation:
Timing analysis:
Operating conditions:
Core voltage:

Junction temperature range:

When you click Finish, the project will be created with the following settings:

Jicharlie.ac.hme.eduf/AcadHome/Engineering/E85/Spjut/apongpiriyakam/lab2_ap

lab2_ap
fulladder
1]

1]

nfa
Cyclone V (EfGX/GT/SX[SEfST)
SCEBA4F23CT

nfa

<Mone> (<Mone>)
ModelSim-Altera (SystemVerilog HDL)
0

1V

0-85°C

Finish || Cancel ||

For this tutorial we will create a full adder.

e Choose File->New->SystemVerilog HDL File.

D Quartus Prime Lite Edition - //charlie.ac.hme.edu/AcadHome/Engineering/E85/Spjut/apongpiriyakamn/lab2_ap/lab2_ap - fulladder

Help

Project Navigalorl 4% Hierarchy - |Q na =

Entity:Instance
#% Cyclone V: SCEBA4F23C7
® fulladder "B

Tasks Compilation r=nax

Task
~ P Compile Design
> P Analysis & Synthesis
> P Fitter (Place & Route)
> P Assembler (Generate programn

> w Tirming Analysis v

File Edit WView Project Assignments Processing Tools Win
ORHE <D0 ')C‘|§_|fuuadder

LGS TrFESSASE 9

W New

New Quartus Prime Project
¥ Design Files
AHDL File
Block Diagram/Schematic File
EDIF File
Qsys System File
State Machine File
SystemVerilog HDL File
Tel Script File
Werilog HDL File
WHDL File
¥ Memaory Files
Hexadecimal (Intel-Format) File
Memory Initizlization File
¥ Verification/Debugging Files
In-System Sources and Probes File

Logic Analyzer Interface File

Sienal Tap Logic Analvzer File

OK || Cancel || Help

Page 4 of 18

e Enter the HDL for the full adder below into the file. Although it is not
required, it might be more useful to type up the code, instead of copy and
paste it, to get comfortable with SystemVerilog now. Then, save your file as
fulladder.sv in your lab2_xx directory.

// Behavioral Verilog explains relationships between inputs and outputs
// For example, >>> assign y = a & b;

// Structural Verilog describes structures formed by simpler components
// For example, >>> and gl(y, a, b);

// Section 4.2 & 4.3 in the book(p. 177) describes these differences in
detail

// Is this module structural or behavioral?
module fulladder (input logic a,b, cin,
output logic sum, cout);

// Declare 5 internal logic signals or local variables
// which can only be used inside of this module
logic ns, nl, n2, n3, n4;

// The following logic gates are part of SystemVerilog Spec

// (built-in primitives).

// The first signal (eg. ns) 1is the output. The rest(eg. a, b) are
// inputs.

// sum logic
xor x1(ns, a, b); // ns = a XOR b

Xor x2(sum, ns, cin); // sum = ns XOR cin

// carry logic

and al(nl, a, b); // nl = a &b

and a2 (n2, a, cin); // n2 = a & cin

and a3 (n3, b, cin); // n3 =Db & cin

or ol(n4, nl, n2); // n4 = nl n2
or o2 (cout, n3, n4); // cout = n3 | nd

// This example is Structural Verilog because the module is described
// structurally using more fundamental building blocks
endmodule

1.1 Synthesis

Having completed the code we can now synthesize it into hardware. Quartus Prime
calls this process compilation.

e (Choose Processing->Start Compilation (or click the Start Compilation arrow >

(X

to the STOP icon). Watch for warnings ‘** | critical warnings P\ , errors *
and other notes in the bottom panel. It is a good habit to learn which
warnings are normal and to track down the root cause of abnormal warnings
that can signal something awry that would otherwise take you hours to
debug.

Page 5 of 18

next

In addition to other warnings, you should get a critical warning that the pins have
not been assigned. Now you will need to assign the proper pins so that the signals
in your design connect to the desired switches and LEDs on the board.

e Look at section 3.2, starting on Page 21, of the DE0-CV User Manual for the
FPGA pin numbers for each function including push-buttons, slide-switches,
and LEDs on the board.

Now that synthesis has run, Quartus knows what signals are used by your top-level
module, so you can assign them to pins. Let’s assign inputs a, b, and ¢ to SWO0, SW1,
and SW2, respectively. The manual shows that SWO0 1s PIN_U13 on your FPGA.

e Choose Assignments —> Pin Planner and set Location for input a to PIN_U13.
Likewise, set b to PIN_V13 and cin to PIN_T13. Hook sum to LEDRO
(PIN_AAZ2), and look up the pin assignment for LEDR1 for cout. Then close
the Pin Planner and synthesize again. You should see two critical warnings
that Synopsys Design Constraints File file not found because you have
specified no timing requirements for your circuit, but the critical warnings
about pin assignments should go away. The rest of the lab should operate
properly even with the set of warnings that are left. The file
QuartusFulladderCompOut.txt on the website contains typical output at this
stage. If you have lots of spare time, you can see how many of the remaining
warnings you can make go away.

<% Pin Planner - ffcharlie.ac.hme.edu/AcadHome/Engineering/E85/5pjut/apongpiriyakarn/lab2_ap/lab2_ap - fulladder -] x
File Edit View Processing Tools Window Help
e [Report oa = Pin Legend
= - Top View - Wire Bond -
Y Repart not available Cyclonew - SCEBA4F23CT Symbol Pin Type
a . O] S { _I UserlfO
SN OO OO OO AN X -
. %0%80809 o%exa.xxx- . Userassigned |...
W . YOACOAOAD KRR
B AN K N] o . .
ini A SACADOAC XS [] Fitter assigned ...
N OADOADOOO! Byl
AT sl ra oty il 08&?6. @ Unbonded pad
" Shviet é}oeoxé . o d pi
Groups R rt e Oooego i = Resen® -
e S M = o fRo0ay: — ||©® pevioe
| Tasks ng x .) ggco Sneiors ==l DIFE n
s . o O%ooeo Jof Q- = -!
e [vyalael fiNe] i8] -
= v Early Fin Planning o : 0) Og' e/ DIFF_p
[E]} - - o 8 8 BD : —
] Early Pin Planning... 5} eyt s atal o Ln/ DIFF_n output
L Y 8 R vl Lottt ODSOADOSDSO - —
o P Run1/O Assignment Analysi ., R e T e/ DIFF_p output
o |2 > e Do v
i
2 X | Named|* ~ e Edit | Filter: Pins: all ~
=]
g 0 Mode Name Direction Location 1/O Bank VREF Group Fitter Location 1/O Standard
o B a Input PIN_U13 44 B4A_NO PIN_J17 2.5V (default)
B b Input PIN_V13 4A B4A_ND PIN_K16 2.5 V (default)
- B cin Input PFIN_T13 4A B4A_ND FIN_H16 2.5 V (default)
=9 9”-‘ cout Output PIN_F14 2.5V (default)
| a ‘B sum Output PIN_AA2 24 B2A_NO PIN_H15 2.5V (default)
& | <<new node=> v
2|« >
0% 00:00:00

Page 6 of 18

https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=163&No=921&PartNo=4
http://pages.hmc.edu/spjut/E85/DSM/QuartusFulladderCompilationOutput.txt

1.2 RTL Viewer

Now we will look at what the synthesizer created using the register transfer level
(RTL) viewer.

e C(Choose Tools->Netlist viewer-> RTL Viewer. You should see the following circuit
that matches your code.

b >— s

a[>

can[>—

1.3 Simulation

Next, we will simulate our circuit to make sure it performs the intended function.
The best way to do a simulation is with a self-checking testbench written in System
Verilog. The testbench applies inputs and checks that the outputs match
expectation. If you find a mistake, you can correct the design and rerun the
simulation to confirm. This process reduces the tedium and risk of introducing
errors when running simulations and checking the results manually.

SystemVerilog is powerful in that it supports both hardware modeling and
testbenches, but you will have to be careful not to use the kinds of programming
language constructs of a testbench when you intend to imply hardware.

e C(Create a new SystemVerilog file and enter the following code into it. Green
lines are comments so you do not need to copy them. Again, you have an
option of copying/pasting the code or typing it up yourself. You’ll have this
option for the rest of sample codes provided in class as well. Save the code as
testbench.sv in your lab2_xx directory. Observe that this code is a very
different style of Verilog than you have previously seen; instead of implying
physical hardware, it reads inputs called test vectors from a file, applies
them, and checks the result.

o Note that if you copy and paste the code from this document, you might
want to replace any smart quotes(‘’,“”) with standard quotes (',")in
Quartus

module testbench();
logic clk, reset;

logic a, b, cin, s, cout, sexpected, coutexpected;

Page 7 of 18

/117 T

// These variables or signals represent 3 inputs, 2 outputs, 2 expected
// outputs, respectively.

logic [31:0] vectornum, errors;

// '"[31:0]" indicates that the following signals, vectornum and errors
// in this case, are 32-bit long (start from bit 0 to bit 31) in little
// endian order (the least significant bit at the lowest address or

// [msb:lsb]) .

// vectornum shows the number of test vectors that has been applied.

// errors represents the number of errors found.

// The size of 'int' data type is 4 bytes, thus 32 bits.

logic [4:0] testvectors[10000:0];

// RAbove is a 5-bit binary array named testvectors with index 0 to 10000
// (testvectors[0], testvectors[1l], testvectors[2],...,testvectors[100007]).
// In other words, testvectors contains 10001 elements, each of which is
// a 5-bit binary number. The number of bits represent the sum of the

// number of input and output bits (eg. three 1-bit inputs + two 1-bit
// outputs = one 5-bit testvector).

// In this tutorial, we will only

// use 8 test vectors (found in .tv file below), however it doesn’t hurt
// to set up array to support more so we could easily add test vectors
// later.

nstantiate device under test (DUT).

// Inputs: a, b, cin. Outputs: s, cout.
fulladder dut(a, b, cin, s, cout);

//// Generate clock.

always
// ‘al

ways' statement causes the statements in the block to be

// continuously re-evaluated.

begin
//// Create clock with period of 10 time units.
// Set the clk signal HIGH(1l) for 5 units, LOW(0) for 5 units

clk=1; #5;
clk=0; #5;
end
//// Start of test.
initial

// 'initial' is used only in testbench simulation.

begin
//// Load vectors stored as 0s and 1s (binary) in .tv file.
Sreadmemb ("fulladder.tv", testvectors);
// S$readmemb reads binarys, Sreadmemh reads hexadecimals.

// Initialize the number of vectors applied & the amount of
// errors detected.

vectornum=0;

errors=0;

// Both signals hold 0 at the beginning of the test.

//// Pulse reset for 22 time units (2.2 cycles) so the reset
// signal falls after a clk edge.
reset=1; #22;

reset=0;
// The signal starts HIGH(l) for 22 time units then remains
LOW (0)

Page 8 of 18

// for the rest of the test.
end

//// RApply test vectors on rising edge of clk.
always @ (posedge clk)
// Notice that this 'always' has the sensitivity list that controls when all

// statements in the block will start to be evaluated. '@ (posedge clk)' means
// at positive or rising edge of clock.
begin

//// Rpply testvectors 1 time unit after rising edge of clock to
// avoid data changes concurrently with the clock.
#1;
//// Break the current 5-bit test vector into 3 inputs and 2
// expected outputs.
{a,b,cin, coutexpected, sexpected} = testvectors|[vectornum];
end

//// Check results on falling edge of clk.
always @ (negedge clk)
// This line of code lets the program execute the following indented
// statements in the block at the negative edge of clock.
//// Don’t do anything during reset. Otherwise, check result.
if (~reset) begin
//// Detect error by checking if outputs from DUT match
// expectation.
if (s !== sexpected || cout !== coutexpected) begin
// If error is detected, print all 3 inputs, 2 outputs,
// 2 expected outputs.
S$display("Error: inputs = %b", {a, b, cin});
// '"S$display' prints any statement inside the quotation to
// the simulator window.
// %b, %d, and %h indicate values in binary, decimal, and
// hexadecimal, respectively.
// {a, b, cin} create a vector containing three signals.
S$display (" outputs = %b %$b (%b %b expected)", s, cout,
sexpected, coutexpected);
//// Increment the count of errors.
errors = errors + 1;
end
//// In any event, increment the count of vectors.
vectornum = vectornum + 1;
//// When the test vector becomes all 'x', that means all the
// vectors that were initially loaded have been processed, thus
// the test is complete.

if (testvectors|[vectornum] === 5'bx) begin
// '"==='§'!==' can compare unknown & floating values (X&Z),unlike
// '=='&"!=", which can only compare 0Os and ls.

// 5'bx is 5-bit binary of x's or xXxxxx.
// If the current testvector is xxxxx, report the number of
// vectors applied & errors detected.
Sdisplay ("%d tests completed with %d errors", vectornum,
errors) ;
// Then stop the simulation.
Sstop;
end
end

Page 9 of 18

endmodule

e (reate another file called fulladder.tv and add the following lines (easiest in
a different text editor, such as Notepad. Save with the “All Files” format).
Each line has 5 bits corresponding to the three inputs and two expected
outputs (essentially the truth table). Underscores in the test vector file are
1gnored, so the underscores are placed between the inputs and expected
outputs to make them easier to read. The // line is a comment and is also
ignored. For example, this test vector file indicates that a, b, and cin will all
be read in as 0 and used in the simulation for the first test, and that s (sum)
and cout are expected to both be 0 on this test. On the second test, cin
becomes 1 and the expected s becomes 1 as well, but the other read-in and
expected values are still 0. Since the logic is all combinational (no flip-flops or
memory) and there are three 1-bit inputs, then there are 23 = 8 possible
inputs with their corresponding outputs.

// a b cin _ cout s
000_00
001 01
010 01
01110
100 01
10110
11010
111 11

Page 10 of 18

]
File Edit Format View Help
/f abcin _ cout s

00_00
201 01 [. ;
310 01 | Save As X
311 1@ Sear 1.
189_91 « v <« Engineering » E83 * Spjut » apongpiriyakarn » lab2_sp v Q Search lab2_sp P
1e1_1e Organize = MNew folder == - o
11e 1@ -
111 11 4 Downloads A Name Date modified Type Size
] Documents db 7/31/2018322PM File folder
| Pictures incremental_db 7/3172018 317 PM File folder
apengpiriyakarn output_files 7/31720 8PM File folder
J>, Music simulation 713 PM File folder
m Videos =] €5_pin_model_dump 7, L PM Text Document IKB
ulladder.qgs 7 22 PM ile
fulladder.qsf 7 22PM QSFFil 4KB
i@ OneDrive lab2_sp 7 5PM QPFFile 2KB
[This PC | lab2_sp 7/3 F17PM SV File 1KB
v
File name: | fulladder.tv »
Save as type: |All Files ~
Text Documents (*.txd)

All Files

~ Hide Folders

We will use ModelSim, a commercial hardware description language (HDL)
simulator made by Mentor Graphics. You can download and install ModelSim
either as part of the Quartus Prime installation or directly from Mentor Graphics on
your computer if you wish. On the lab computers it is found under the Start menu
under INTEL FPGA 18... Lite Edition->ModelSim.

e Choose File -> New -> Project... and create a project named lab2_ms_xx in your
Charlie directory. Click OK.

M Create Project X

Project Mame
lab2 ms_ap

Project Location
E25/5pjut/apongpirivaka rm’lab2_ad Browse. ..

Default Library Mame
work

Copy Settings From

modelsim ase/modelsim.ini Browse...

(* Copy Library Mappings Reference Library Mappings

CK Cancel

e C(Click Add Existing File and browse to add your fulladder.sv and testbench.sv
files. This step might take a few seconds. Choose Compile-> Compile All. You
should see a message “2 compiles, 0 failed with no errors.” If you do get
errors, click on the red errors message to bring up the errors, and correct the
bad file, then compile again.

Page 11 of 18

M ModelSim - INTEL FPGA STARTER EDITION 10.5b

Layout Bookmarks Window Help

| 221 ¢ [ome@m] vo 18 o8] x0ox ol &l
Layout [, i !I ColumnLayout |a11Co v 1. 5%
oDesign olumnLayout |311Columns ﬁ Bl L. 2} 5.5l
¥ c.hmec.edu/AcadHome /Er [E85/5pjut/apongpiriyakarn/lab2_apflab2_ms_ap i + | x| | Jengpiriyakarn/lab4_ap/Untitled-1 - Default = +H A x|
"’|Name |SiamsiType |Orde‘Modiﬁed | | Ln# |
fulladder.sv { Syst... 0 05/31/2018 03:50:49 ... 1
testbench.sv { Syst... 1 06/04/2018 02:36:37 ...
M Library Iﬁl Project ﬂil
Jd Transcript R e
C f fulladder.sv was successful.

b bx

f testbench.sv was successful.

-
C £
2 compiles, 0 failed with no errors.

ModelSim =

Project : lab2_ms_ap |<Mo Design Loaded = fulladder.sv

BN

e (Choose Simulate -> Start Simulation... Expand the + symbol next to the work
library, then click on your testbench module. Choose OK to simulate it.

ﬁ Start Simulation

X

Design I WHDL] Verilog] Libraries] SDF] Others] 48]
T‘Name |Type ‘Path | | -
= work Library [fcharlie.ac.hmc.edufAcadHome Engin. ..

1] fulladder Module [ffcharlie.ac.hme.edufAcadHome Engin...

(] testbench Module [ffcharlie.ac.hmc. edu/acadHome Engin. ..
+-4l, 220madel Library SMODEL_TECH].. [altera fvhdl/220model
1,—“1 220model_ver Library SMODEL_TECH/.. faltera/verilog/220m...
#-4l altera Library $MODEL_TECH/.. [altera vhdl/altera
:’—m altera_lnsim Library SMODEL _TECHY/.. [alterafvhdl/altera_|...
1,—“1 altera_lnsim_ver Library SMODEL_TECH/.. [altera/verilogfaltera. ..
+H4l, altera_mf Library $MODEL_TECH.. faltera /vhdl/altera_mf
il altera_mf_ver Library SMODEL_TECHY/.. [alterafverilog/altera. .. j

il i

Design Unit{s) Resolution
work.testbench default !’

Cancel

e In the Objects pane, select all of the signals, then choose Add -> To Wave ->

Selected Signals so that all of your inputs and outputs show up in a waveform
viewer.

Page 12 of 18

] ==y S e e

oo JJ_|| ' gm Wave - Defauilt
Titene e T mn o | Y I

* dk X Regi... Internal
v) reset X Regi... Internal
v) a X Regi... Internal
v) b X Regi... Internal
v) @n X Regi... Internal
v) s X Regi... Internal
* cout X Regi... Internal
* sexpected X Regi... Internal
* coutexpected X Regi... Internal
+ vectornum XXXX... Pack... Internal
+ errors XXxX... Pack... Internal

testvectors ... Fixe...

View Dedaration
View Memory Contents

Add Wave Ctrl+w
Add Wave New

F J Add Wave To 3
Add Dataflow Ctrl+D

Processes (Active) Add to Selected Signals
¥ |Name Signals in Region
4 ZALWAYS#14 Signals in Design
¢ #INITIAL#23 Copy Ctri+C Datafiow * |
Find...

Insert Breakpoint
Toggle Coverage

Modify
Radix...

Show

[testhenchjdk
[testhenchjreset
[testbenchja
[testbench/b
[testhenchjdn

[testhenchfs
[testbench/cout X
[testbench/sexpected |x
[testbenchjcoutexp...
[testhenchjvectornum
[testhenchferrors
[testhenchftestvect...

e Type run 200 in the Transcript pane to run the simulation for 200 time units.
You should see a message “8 tests completed with 0 errors.” You can make
the waveforms reappear by using the Wave tab at the bottom of the side
window. Click on the Zoom Full (F) icon to see the full sweep.

Page 13 of 18

8| Wave - Default + 7

Jtestbench/dk
[testbench/reset
Jtestbenchfa
Jtestbench/b
Jtestbench/fdn
Jtestbench/fs
Jtesthenchfcout
Jtestbench/sexpected
4 [testbench/coutexpected
[ftesthenchfvectornum 00000000000000000000000000000001
Jtestbench/ferrors 00000000000000000000000000000000

Jtestbenchftestvectors | xxaxx KXXXX XXXXX XKXKXK XKXKK XKXX,

Pm |
Cursor 1 33ps __l

| K| i JEn | 2 |

58| Wave [Ttestbench.sv] 77 fulladder.sv]

o Ifyou see a warning that ModelSim can’t find your fulladder.tv file,
move it to the same directory that you chose for your ModelSim project
(Iab2_ms_xx). Then type restart —f in the Transcript pane to restart
your simulation and run 200 to rerun. restart —f forces a restart of the
simulation without recompiling. It's useful if you want to change your
test vectors without changing your simulation or testbench code. You
DO lose your waveforms. Everything starts over from 0. It lets you
save your LIST of displayed signals in the waveform window. If you
change anything but the test vectors, you need to recompile and go
through the other steps as well.

o Ifyou ever need to stop a runaway simulation, you can use the Simulate
-> Break menu.

o If you make any changes to your code, be sure to choose Compile All
again before rerunning, or you’ll resimulate the old code.

fAT ip s
sim:/testbench/errors \

sim:/testbench/testvectors

WSIM 3> run 200

3 tests completed with 0 errors

¥ Note: $stop : //charlie.ac.hmc.edu/Acaddome/Engineering/ES85/5pjut/apongpirivakarn/lab2_ap/testhench.sv(62)

Time: 95 ps Iteraticn: 1 Instance: Stestbench

Break in Module testbench at //charlie.ac.hmc.edu/AcadHome/Engineering/ES85/5pjut/apongpiriyakarn/lab2 ap/testbench.sv

Now, let’s look closer at the waveform signals
ftestbench/dk
[testbench/freset
ftesthench/a
Jtesthench/b
Jtestbench/dn
[testhenchfs
ftestbenchfcout
[testhenchfsexpected

EIEEEEEEEEEEEE

ftestbench/coutexpected
ftestbenchfvectornum 00000000000000000000000000000001
ftesthench/ferrors 00000000000000000000000000000000
ftestbenchftestvectors | X XXNKK KKK KHKKH XXHKK KKK, ..

Page 14 of 18

The first column is the name of each signal, followed by the value at which you are
looking at (yellow line). In this specific example, the clk signal on the first line at 33
ps has the value of 1, so do cin, s, and sexpected.

The green waveforms on the third column indicate values of all signals over
time(‘ps’ at the bottom). Notice that the clk signal starts high for 5 ps then falls low
for 5 ps and so on, as we coded in the testbench module. This means that one clock
cycle lasts 5+5=10 ps. Recall that we pulse reset for 22 time units (ps) which is 2.2
clock cycles.

After pulsing reset, the first testvector(000_00) passes then the vectornum value
starts counting from O to 1 at the negative edge of clock(25ps). At the next rising
clock edge(30ps) we wait for 1 time unit before loading the next testvector(001_01) to
mputs(a, b, cin) and expected outputs(coutexpected, sexpected). At the following
falling clock edge(35ps) we compare the DUT outputs(cout, s) to our expectations.
We could see that s = sexpected = 1 and cout = coutexpected = 0 then the vectornum
counts from 1 to 2. This process continues until we reach the last testvector then the
simulation stops. Note that if there is an error, the signal will turn red.

1.4 Hardware Programming

Synthesis generates a bitfile indicating how each logic block and interconnection on
the FPGA should be configured. We can now program the DE0O-CV board with the
bitfile to place your design on the chip.

Now go back to Quartus Prime.

e (Choose Tools->Programmer.
o If programmer window does not say USB-Blaster next to Hardware Setup,
then use the Hardware Setup button to set it to USB-Blaster.
o If the 5CEBA4F23 icon in the above image isn’t visible, click Add File... and
browse to the “output_files” folder of your project. Select the .SOF file.
It may be pre-selected.
e (lick the start button. It should program the FPGA and run to 100%
successful.

Page 15 of 18

O Programmer - C:/Users/spjut/Documents/EB5 F17/FPGA_Lab_Test/lab2_demo_es - fulladder - [fulladder.cdf] e
File Edit View Processing Tools Window Help ’ search altera
.:. Hardware Setup... |USB-Blaster [USB-0] Mode: | JTAG v Progress: |
[[] Enable real-time ISP to allow background programming when available
P gpart File Device Checksum Usercode Program/ Verify Blank-
Configure Check
" stop output_files/fulladder.s... SCEBA4F23 004DDDCB 004DDDCB
& Auto Detect
Delete
™ AddFile...
e Change File £
A save File
F* Add Device... S
0 TDI 5 ~
“up — :
b pown ol
S5CEBA4F23
G TDO

Now you can move the toggle switches SW[2:0] on the DEO-CV board and look at the
red LEDs just above the switches. Check that your adder adds properly.

2. DE0-CV Board

The Altera / Intel DEO-CV board contains an Altera Cyclone V 5CEBA4F23 FPGA,
a power supply, a USB interface to download configuration from the host computer,
and some LEDs, switches, and expansion pins.

&

If you like to know what is happening under the hood, skim through the DE0-CV
User Manual on the class website. The DEOCV_ControlPanel on the lab computers will
let you play with many of the features.

Page 16 of 18

https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=163&No=921&PartNo=4
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=163&No=921&PartNo=4

Il

. EARARSAEARE iy
ol b b kb b o -4

LED ‘ Memory ‘

L J L i)
7-SEG J SD Card ‘

L —) \.)

LBLLELEL

3. ALU Decoder

Now it is your turn to design a combinational logic circuit and build it on your
FPGA board.

Table 7.3 ALU Decoder truth table from the textbook describes the function of a
circuit with six inputs (ALUOp and Funct+0) and four outputs (ALUControli.o and
FlagWi.0). We will use this circuit in the second part of the semester to control an
arithmetic/logic unit (ALU) in a microprocessor.

Functy. Functy
ALUOp {cmd) (8) Type ALUControl,y FlagW,,

0 X X Not DP 00 (Add) 00
1 0100 0 ADD 00 (Add) 00
1 11

0010 0 SUB 01 (Sub) 00

1 11

0000 0 AND 10 (And) 00

1 10

1100 0 ORR 11 (Or) 00

1 10

For the purposes of this lab, you can assume that your circuit only has to correctly
handle the inputs in the table, and that the output for all other cases are don’t
cares. The following are the steps for building the ALU Decoder:

Page 17 of 18

e Write Boolean equations for the four outputs and sketch a schematic of a
circuit that implements your equations.

e Write structural Verilog code implementing your schematic.

e Build a self-checking test-bench that applies all the interesting inputs and
checks the output.

e Simulate your code in your testbench and check that it performs the function
you intended; debug any discrepancies.

e Assign pins for your FPGA, using SW5 through SWO0 to provide inputs and
LEDR3 through LEDRO to display the outputs.

e Synthesize your Verilog code and examine it in the RTL Viewer and check
that it matches your expectations.

e Download it onto the DEO-CV board and apply the inputs with the switches
and check that the outputs match expectations.

Hints:

e Make sure there is a new line after the last vector. ModelSim couldn’t read
one person’s vectors when they didn’t have the new blank line.

e Make sure your lab2.tv file isn’t actually called lab2.tv.txt. Windows
sometimes adds the .txt suffix, then hides the .txt so it looks as if your file is
named lab2.tv when it isn’t.

e If ModelSim can’t find the path, you can try giving the full path, such as:
Sreadmemb (“C:/Users/harris/Documents/lab2/lab2 dh.tv”);

What to Turn In

O oUR L

8.

Please indicate how many hours you spent on this lab. This will be helpful for
calibrating the workload for next time the course is taught.

Boolean equations for your ALU Decoder

Gate-level schematic of your ALU Decoder

Structural Verilog code for your ALU Decoder

RTL Viewer schematics of your synthesized ALU Decoder

Self-checking test bench for your ALU Decoder with a test vector file
Simulation waveforms showing the ALU Decoder simulation. Did it work
correctly?

Did the ALU Decoder function correctly on the DEO-CV Board?

Please indicate any bugs you found in this lab manual, or any suggestions you
would have to improve the lab.

Page 18 of 18

