

Page 1 of 6

E85: Digital Electronics and Computer Engineering
Lab 11: Multicycle Processor

Objective
In this lab, you will complete a multicycle RISC-V processor.

1. Multicycle RISC-V Processor
Figure 1 shows the complete multicycle processor.
Figure 2 (near the end of this lab) shows the high-level hierarchy of the single-cycle
processor including the connections between the controller, datapath, instruction
memory, and data memory. Your multi-cycle processor has only a single unified
memory and has slightly different control signals, so you will need to modify these
connections. Sketch a diagram similar to Figure 2 showing your controller,
datapath, and memory modules. Draw a box for the riscv module that should
encompass the controller and datapath. Label the signals passing between blocks.
Write a hierarchical Verilog description of the processor. The processor should have
the following module declaration. The memory signals are tapped out for testing
purposes. Use your controller from Lab 10 and any general Verilog building blocks
you need (e.g., muxes, flops, adders, ALU, register file, immediate extender, etc.)
from the single-cycle processor. NOTE: The controller microarchitecture for the
ResultSrc mux has changed slightly from that shown in Lab 10 so you will need to
change your ResultSrc encoding: 10 and 00 have been swapped. See Figure 3 for an
updated Main FSM with changes highlighted. The testbench for Lab 10 on the
website has been updated so you can double check that your updated controller is
working. The single-cycle processor code (RISCVsingle.sv) is on the class web
site and you may wish to cut and paste blocks from it.

module top(input logic clk, reset,
 output logic [31:0] WriteData, DataAdr,
 output logic MemWrite);

2. Test Bench
The riscv_testbench.sv and test code (in assembly .asm and machine language .dat)
are on the class web page. Study the test bench to understand how it determines if
your tests succeeded or failed.
Your memory should read the test code from the memory file at startup with the
line:

initial $readmemh("memfile.dat", RAM);

Page 2 of 6

Before you begin simulation, predict what the processor should do while executing
the first three instructions. Table 1 has been filled out for you for the first
instruction.
Generate simulation waveforms at least for clk, reset, PC, Instr, state, SrcA, SrcB,
ALUResult, Adr, WriteData, and MemWrite. Display the 32-bit signals in
hexadecimal for ease of reading (select the signals and right click, then choose
Radix). Compare against your expectations. You may wish to add other signals to
help debug. Fix any problems you may find until your code executes the program as
expected and the testbench reports success.
Refer to the previous lab for debugging hints. Fix all relevant warnings from
Quartus and Modelsim before you debug further. It will save you much time to
carefully predict what each of the signals in your waveforms should be doing on
each cycle, and to systematically debug beginning with the first known discrepancy
and working your way backward until you have good inputs and bad outputs and
have isolated the bug.
Particularly common bugs include:

● Copying the single-cycle processor top, riscv, or datapath interface with
signals that don’t match the multi-cycle processor. Be sure you have a clear
idea what belongs in each module. You will likely save time if you sketch a
picture similar to Figure 2 and identify what signals flow between the riscv
and memory modules.

● Connecting signals in different orders in a module declaration vs. in the
instantiation.

● Forgetting to declare internal signals, or giving them the wrong widths.
● Inconsistent capitalization or spelling.

If you’ve checked these and your processor still isn’t working, try adding all the
outputs of the controller to your sim and make sure none are floating or X. If you
still haven’t found the problem, refer to your predicted waveforms in Table 1 and
check that the processor is doing the right thing on each step. If the first few
instructions are correct, you may need to extend the table to predict what the rest of
the program should be doing. (Once you’ve filled out the table for several
instructions, you may get the hang of the pattern and only fill out entries that are
interesting…)

What to Turn In
1. Please indicate how many hours you spent on this lab. This will be helpful for

calibrating the workload for next time the course is taught.
2. Diagram showing your memory, riscv, datapath, and controller block hierarchy

and names of all signals between them.
3. Hierarchical SystemVerilog for your top-level processor module (and

submodules) matching the declaration given above.

Page 3 of 6

4. Table 1 showing key signals for at least the first three instructions.
5. Simulation waveforms (in the order listed above) at least for the specified

signals. Does your system pass your testbench? Circle or highlight the waves
showing that the correct value is written to the correct address, and make sure it
is legible.

Please indicate any bugs you found in this lab manual, or any suggestions you
would have to improve the lab.

Page 4 of 6

Figure 1: Complete multicycle processor

ImmExt

CLK

A
RD

Instr / Data
Memory

PC 0
1

Instr

SrcB

ALUResult

SrcA

ALUOut

MemWrite

ALUSrcA1:0

RegWrite

Zero

ResultSrc1:0

CLK

ALUControl2:0

AL
U

WD

WE

CLK

Adr

Data

CLK

CLK

A
W
riteD

ata

4

CLK

EN

ALUSrcB1:0

IRWrite

AdrSrc
PCWrite

R
eadD

ata

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

19:15

11:7

31:7

24:20
00

01

10

Result

14:12

30 funct75
funct3

Zero

6:0 op

Control
Unit

ImmSrc1:0

Extend

Rs1

Rs2

CLK

OldPC

Rd

EN

00

01

10

00

01

10

PCNext

Figure 2: Single-cycle processor interfaced to external memories

Controller

Datapath

PC
Instr

DataAdr

WriteData
ReadData

CLK

Reset

Processor External Memories

Im
m
S
rc

M
em
W
rite

R
esultS

rc

A
LU
S
rc

A
LU
C
ontrol

R
egW

rite

P
C
S
rcZero

A

RD

Instruction
Memory

A

RD

Data
Memory
WD

WE

CLK

ALUResult

Instr

R
egS

rc

RISCVsingle

Instr

WriteData
ReadData

PC

Top

Page 5 of 6

Table 1: Expected Operation (after two cycles of reset)

Step PC Instr State Result Result Notes
3 00 00500113 S0: Fetch 4 PC+4
4 04 "" S1: Decode X OldPC+Immediate
5 04 "" S8: ExecuteI X ALUResult = x0 (0) + 5 = 5
6 04 "" S7: ALUWB 5 Result = ALUOUT
7 04 "" S0: Fetch 8 PC+4
8 08 00c00193 S1: Decode X OldPC+Immediate
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

(Only fill in the notes column if it is helpful to you to understand what is happening
and why.)

Page 6 of 6

Fig 3. Complete multicycle control Main FSM state diagram

S1: Decode
ALUSrcA = 01
ALUSrcB = 01
ALUOp = 00

S8: ExecuteI
ALUSrcA = 10
ALUSrcB = 01
ALUOp = 10

Reset

S6: ExecuteR
ALUSrcA = 10
ALUSrcB = 00
ALUOp = 10

S2: MemAdr
ALUSrcA = 10
ALUSrcB = 01
ALUOp = 00

op = 0000011 (lw)
OR

op = 0100011 (sw)

op =
0000011

(lw)

op =
0100011

(sw)

op =
0110011
(R-type)

op =
 0010011
 (I-type ALU)

op =
 1101111

 (jal)

op =
 1100011
 (beq)

State Datapath µOp
Fetch Instr ←Mem[PC]; PC ← PC+4
Decode ALUOut ← PCTarget
MemAdr ALUOut ← rs1 + imm
MemRead Data ← Mem[ALUOut]
MemWB rd ← Data
MemWrite Mem[ALUOut] ← rd
ExecuteR ALUOut ← rs1 op rs2
ExecuteI ALUOut ← rs1 op imm
ALUWB rd ← ALUOut
BEQ ALUResult = rs1-rs2; if Zero, PC = ALUOut
JAL PC = ALUOut; ALUOut = PC+4

S9: JAL
ALUSrcA = 01
ALUSrcB = 10
ALUOp = 00

ResultSrc = 00
PCUpdate

S4: MemWB
ResultSrc = 01

RegWrite

S7: ALUWB
ResultSrc = 00

RegWrite

S10: BEQ
ALUSrcA = 10
ALUSrcB = 00
ALUOp = 01

ResultSrc = 00
Branch

S0: Fetch
AdrSrc = 0

IRWrite
ALUSrcA = 00
ALUSrcB =10
ALUOp = 00

ResultSrc = 10
PCUpdate

S3: MemRead
ResultSrc = 00

AdrSrc = 1

S5: MemWrite
ResultSrc = 00

AdrSrc = 1
MemWrite

Josh Brake

Josh Brake

Josh Brake

Josh Brake

Josh Brake

Josh Brake

